cuddEssent.c 48.3 KB
Newer Older
Alan Mishchenko committed
1 2 3 4 5 6 7 8 9
/**CFile***********************************************************************

  FileName    [cuddEssent.c]

  PackageName [cudd]

  Synopsis    [Functions for the detection of essential variables.]

  Description [External procedures included in this file:
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
                <ul>
                <li> Cudd_FindEssential()
                <li> Cudd_bddIsVarEssential()
                <li> Cudd_FindTwoLiteralClauses()
                <li> Cudd_ReadIthClause()
                <li> Cudd_PrintTwoLiteralClauses()
                <li> Cudd_tlcInfoFree()
                </ul>
        Static procedures included in this module:
                <ul>
                <li> ddFindEssentialRecur()
                <li> ddFindTwoLiteralClausesRecur()
                <li> computeClauses()
                <li> computeClausesWithUniverse()
                <li> emptyClauseSet()
                <li> sentinelp()
                <li> equalp()
                <li> beforep()
                <li> oneliteralp()
                <li> impliedp()
                <li> bitVectorAlloc()
                <li> bitVectorClear()
                <li> bitVectorFree()
                <li> bitVectorRead()
                <li> bitVectorSet()
                <li> tlcInfoAlloc()
                </ul>]
Alan Mishchenko committed
37 38 39

  Author      [Fabio Somenzi]

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
  Copyright   [Copyright (c) 1995-2004, Regents of the University of Colorado

  All rights reserved.

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions
  are met:

  Redistributions of source code must retain the above copyright
  notice, this list of conditions and the following disclaimer.

  Redistributions in binary form must reproduce the above copyright
  notice, this list of conditions and the following disclaimer in the
  documentation and/or other materials provided with the distribution.

  Neither the name of the University of Colorado nor the names of its
  contributors may be used to endorse or promote products derived from
  this software without specific prior written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  POSSIBILITY OF SUCH DAMAGE.]
Alan Mishchenko committed
71 72 73

******************************************************************************/

Alan Mishchenko committed
74
#include "util_hack.h"
Alan Mishchenko committed
75 76
#include "cuddInt.h"

77 78 79
ABC_NAMESPACE_IMPL_START


80

Alan Mishchenko committed
81 82 83 84
/*---------------------------------------------------------------------------*/
/* Constant declarations                                                     */
/*---------------------------------------------------------------------------*/

85 86 87 88 89 90 91 92 93
/* These definitions are for the bit vectors. */
#if SIZEOF_LONG == 8
#define BPL 64
#define LOGBPL 6
#else
#define BPL 32
#define LOGBPL 5
#endif

Alan Mishchenko committed
94 95 96 97
/*---------------------------------------------------------------------------*/
/* Stucture declarations                                                     */
/*---------------------------------------------------------------------------*/

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
/* This structure holds the set of clauses for a node.  Each clause consists
** of two literals.  For one-literal clauses, the second lietral is FALSE.
** Each literal is composed of a variable and a phase.  A variable is a node
** index, and requires sizeof(DdHalfWord) bytes.  The constant literals use
** CUDD_MAXINDEX as variable indicator.  Each phase is a bit: 0 for positive
** phase, and 1 for negative phase.
** Variables and phases are stored separately for the sake of compactness.
** The variables are stored in an array of DdHalfWord's terminated by a
** sentinel (a pair of zeroes).  The phases are stored in a bit vector.
** The cnt field holds, at the end, the number of clauses.
** The clauses of the set are kept sorted.  For each clause, the first literal
** is the one of least index.  So, the clause with literals +2 and -4 is stored
** as (+2,-4).  A one-literal clause with literal +3 is stored as
** (+3,-CUDD_MAXINDEX).  Clauses are sorted in decreasing order as follows:
**      (+5,-7)
**      (+5,+6)
**      (-5,+7)
**      (-4,FALSE)
**      (-4,+8)
**      ...
** That is, one first looks at the variable of the first literal, then at the
** phase of the first litral, then at the variable of the second literal,
** and finally at the phase of the second literal.
*/
struct DdTlcInfo {
    DdHalfWord *vars;
    long *phases;
    DdHalfWord cnt;
};

/* This structure is for temporary representation of sets of clauses.  It is
** meant to be used in link lists, when the number of clauses is not yet
** known. The encoding of a clause is the same as in DdTlcInfo, though
** the phase information is not stored in a bit array. */
struct TlClause {
    DdHalfWord v1, v2;
    short p1, p2;
    struct TlClause *next;
};

Alan Mishchenko committed
138 139 140 141
/*---------------------------------------------------------------------------*/
/* Type declarations                                                         */
/*---------------------------------------------------------------------------*/

142 143 144
typedef long BitVector;
typedef struct TlClause TlClause;

Alan Mishchenko committed
145 146 147 148 149
/*---------------------------------------------------------------------------*/
/* Variable declarations                                                     */
/*---------------------------------------------------------------------------*/

#ifndef lint
150
static char rcsid[] DD_UNUSED = "$Id: cuddEssent.c,v 1.24 2009/02/21 18:24:10 fabio Exp $";
Alan Mishchenko committed
151 152
#endif

153 154 155 156 157
static BitVector *Tolv;
static BitVector *Tolp;
static BitVector *Eolv;
static BitVector *Eolp;

Alan Mishchenko committed
158 159 160 161 162 163 164 165 166 167
/*---------------------------------------------------------------------------*/
/* Macro declarations                                                        */
/*---------------------------------------------------------------------------*/

/**AutomaticStart*************************************************************/

/*---------------------------------------------------------------------------*/
/* Static function prototypes                                                */
/*---------------------------------------------------------------------------*/

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
static DdNode * ddFindEssentialRecur (DdManager *dd, DdNode *f);
static DdTlcInfo * ddFindTwoLiteralClausesRecur (DdManager * dd, DdNode * f, st_table *table);
static DdTlcInfo * computeClauses (DdTlcInfo *Tres, DdTlcInfo *Eres, DdHalfWord label, int size);
static DdTlcInfo * computeClausesWithUniverse (DdTlcInfo *Cres, DdHalfWord label, short phase);
static DdTlcInfo * emptyClauseSet (void);
static int sentinelp (DdHalfWord var1, DdHalfWord var2);
static int equalp (DdHalfWord var1a, short phase1a, DdHalfWord var1b, short phase1b, DdHalfWord var2a, short phase2a, DdHalfWord var2b, short phase2b);
static int beforep (DdHalfWord var1a, short phase1a, DdHalfWord var1b, short phase1b, DdHalfWord var2a, short phase2a, DdHalfWord var2b, short phase2b);
static int oneliteralp (DdHalfWord var);
static int impliedp (DdHalfWord var1, short phase1, DdHalfWord var2, short phase2, BitVector *olv, BitVector *olp);
static BitVector * bitVectorAlloc (int size);
DD_INLINE static void bitVectorClear (BitVector *vector, int size);
static void bitVectorFree (BitVector *vector);
DD_INLINE static short bitVectorRead (BitVector *vector, int i);
DD_INLINE static void bitVectorSet (BitVector * vector, int i, short val);
static DdTlcInfo * tlcInfoAlloc (void);
Alan Mishchenko committed
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

/**AutomaticEnd***************************************************************/


/*---------------------------------------------------------------------------*/
/* Definition of exported functions                                          */
/*---------------------------------------------------------------------------*/


/**Function********************************************************************

  Synopsis    [Finds the essential variables of a DD.]

  Description [Returns the cube of the essential variables. A positive
  literal means that the variable must be set to 1 for the function to be
  1. A negative literal means that the variable must be set to 0 for the
  function to be 1. Returns a pointer to the cube BDD if successful;
  NULL otherwise.]

  SideEffects [None]

  SeeAlso     [Cudd_bddIsVarEssential]

******************************************************************************/
DdNode *
Cudd_FindEssential(
  DdManager * dd,
  DdNode * f)
{
    DdNode *res;

    do {
216 217
        dd->reordered = 0;
        res = ddFindEssentialRecur(dd,f);
Alan Mishchenko committed
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    } while (dd->reordered == 1);
    return(res);

} /* end of Cudd_FindEssential */


/**Function********************************************************************

  Synopsis    [Determines whether a given variable is essential with a
  given phase in a BDD.]

  Description [Determines whether a given variable is essential with a
  given phase in a BDD. Uses Cudd_bddIteConstant. Returns 1 if phase == 1
  and f-->x_id, or if phase == 0 and f-->x_id'.]

  SideEffects [None]

  SeeAlso     [Cudd_FindEssential]

******************************************************************************/
int
Cudd_bddIsVarEssential(
  DdManager * manager,
  DdNode * f,
  int  id,
  int  phase)
{
245 246
    DdNode      *var;
    int         res;
Alan Mishchenko committed
247

248
    var = Cudd_bddIthVar(manager, id);
Alan Mishchenko committed
249 250 251

    var = Cudd_NotCond(var,phase == 0);

252
    res = Cudd_bddLeq(manager, f, var);
Alan Mishchenko committed
253 254 255 256 257 258

    return(res);

} /* end of Cudd_bddIsVarEssential */


259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
/**Function********************************************************************

  Synopsis    [Finds the two literal clauses of a DD.]

  Description [Returns the one- and two-literal clauses of a DD.
  Returns a pointer to the structure holding the clauses if
  successful; NULL otherwise.  For a constant DD, the empty set of clauses
  is returned.  This is obviously correct for a non-zero constant.  For the
  constant zero, it is based on the assumption that only those clauses
  containing variables in the support of the function are considered.  Since
  the support of a constant function is empty, no clauses are returned.]

  SideEffects [None]

  SeeAlso     [Cudd_FindEssential]

******************************************************************************/
DdTlcInfo *
Cudd_FindTwoLiteralClauses(
  DdManager * dd,
  DdNode * f)
{
    DdTlcInfo *res;
    st_table *table;
    st_generator *gen;
    DdTlcInfo *tlc;
    DdNode *node;
    int size = dd->size;

    if (Cudd_IsConstant(f)) {
        res = emptyClauseSet();
        return(res);
    }
    table = st_init_table(st_ptrcmp,st_ptrhash);
    if (table == NULL) return(NULL);
    Tolv = bitVectorAlloc(size);
    if (Tolv == NULL) {
        st_free_table(table);
        return(NULL);
    }
    Tolp = bitVectorAlloc(size);
    if (Tolp == NULL) {
        st_free_table(table);
        bitVectorFree(Tolv);
        return(NULL);
    }
    Eolv = bitVectorAlloc(size);
    if (Eolv == NULL) {
        st_free_table(table);
        bitVectorFree(Tolv);
        bitVectorFree(Tolp);
        return(NULL);
    }
    Eolp = bitVectorAlloc(size);
    if (Eolp == NULL) {
        st_free_table(table);
        bitVectorFree(Tolv);
        bitVectorFree(Tolp);
        bitVectorFree(Eolv);
        return(NULL);
    }

    res = ddFindTwoLiteralClausesRecur(dd,f,table);
    /* Dispose of table contents and free table. */
    st_foreach_item(table, gen, (const char **)&node, (char **)&tlc) {
        if (node != f) {
            Cudd_tlcInfoFree(tlc);
        }
    }
    st_free_table(table);
    bitVectorFree(Tolv);
    bitVectorFree(Tolp);
    bitVectorFree(Eolv);
    bitVectorFree(Eolp);

    if (res != NULL) {
        int i;
        for (i = 0; !sentinelp(res->vars[i], res->vars[i+1]); i += 2);
        res->cnt = i >> 1;
    }

    return(res);

} /* end of Cudd_FindTwoLiteralClauses */


/**Function********************************************************************

  Synopsis    [Accesses the i-th clause of a DD.]

  Description [Accesses the i-th clause of a DD given the clause set which
  must be already computed.  Returns 1 if successful; 0 if i is out of range,
  or in case of error.]

  SideEffects [the four components of a clause are returned as side effects.]

  SeeAlso     [Cudd_FindTwoLiteralClauses]

******************************************************************************/
int
Cudd_ReadIthClause(
  DdTlcInfo * tlc,
  int i,
  DdHalfWord *var1,
  DdHalfWord *var2,
  int *phase1,
  int *phase2)
{
    if (tlc == NULL) return(0);
    if (tlc->vars == NULL || tlc->phases == NULL) return(0);
    if (i < 0 || (unsigned) i >= tlc->cnt) return(0);
    *var1 = tlc->vars[2*i];
    *var2 = tlc->vars[2*i+1];
    *phase1 = (int) bitVectorRead(tlc->phases, 2*i);
    *phase2 = (int) bitVectorRead(tlc->phases, 2*i+1);
    return(1);

} /* end of Cudd_ReadIthClause */


/**Function********************************************************************

  Synopsis    [Prints the two literal clauses of a DD.]

  Description [Prints the one- and two-literal clauses. Returns 1 if
  successful; 0 otherwise.  The argument "names" can be NULL, in which case
  the variable indices are printed.]

  SideEffects [None]

  SeeAlso     [Cudd_FindTwoLiteralClauses]

******************************************************************************/
int
Cudd_PrintTwoLiteralClauses(
  DdManager * dd,
  DdNode * f,
  char **names,
  FILE *fp)
{
    DdHalfWord *vars;
    BitVector *phases;
    int i;
    DdTlcInfo *res = Cudd_FindTwoLiteralClauses(dd, f);
    FILE *ifp = fp == NULL ? dd->out : fp;

    if (res == NULL) return(0);
    vars = res->vars;
    phases = res->phases;
    for (i = 0; !sentinelp(vars[i], vars[i+1]); i += 2) {
        if (names != NULL) {
            if (vars[i+1] == CUDD_MAXINDEX) {
                (void) fprintf(ifp, "%s%s\n",
                               bitVectorRead(phases, i) ? "~" : " ",
                               names[vars[i]]);
            } else {
                (void) fprintf(ifp, "%s%s | %s%s\n",
                               bitVectorRead(phases, i) ? "~" : " ",
                               names[vars[i]],
                               bitVectorRead(phases, i+1) ? "~" : " ",
                               names[vars[i+1]]);
            }
        } else {
            if (vars[i+1] == CUDD_MAXINDEX) {
                (void) fprintf(ifp, "%s%d\n",
                               bitVectorRead(phases, i) ? "~" : " ",
                               (int) vars[i]);
            } else {
                (void) fprintf(ifp, "%s%d | %s%d\n",
                               bitVectorRead(phases, i) ? "~" : " ",
                               (int) vars[i],
                               bitVectorRead(phases, i+1) ? "~" : " ",
                               (int) vars[i+1]);
            }
        }
    }
    Cudd_tlcInfoFree(res);

    return(1);

} /* end of Cudd_PrintTwoLiteralClauses */


/**Function********************************************************************

  Synopsis    [Frees a DdTlcInfo Structure.]

  Description [Frees a DdTlcInfo Structure as well as the memory pointed
  by it.]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
void
Cudd_tlcInfoFree(
  DdTlcInfo * t)
{
    if (t->vars != NULL) ABC_FREE(t->vars);
    if (t->phases != NULL) ABC_FREE(t->phases);
    ABC_FREE(t);

} /* end of Cudd_tlcInfoFree */


Alan Mishchenko committed
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
/*---------------------------------------------------------------------------*/
/* Definition of internal functions                                          */
/*---------------------------------------------------------------------------*/


/*---------------------------------------------------------------------------*/
/* Definition of static functions                                            */
/*---------------------------------------------------------------------------*/


/**Function********************************************************************

  Synopsis    [Implements the recursive step of Cudd_FindEssential.]

  Description [Implements the recursive step of Cudd_FindEssential.
  Returns a pointer to the cube BDD if successful; NULL otherwise.]

  SideEffects [None]

******************************************************************************/
static DdNode *
ddFindEssentialRecur(
  DdManager * dd,
  DdNode * f)
{
490 491 492 493
    DdNode      *T, *E, *F;
    DdNode      *essT, *essE, *res;
    int         index;
    DdNode      *one, *lzero, *azero;
Alan Mishchenko committed
494 495 496 497 498 499 500 501

    one = DD_ONE(dd);
    F = Cudd_Regular(f);
    /* If f is constant the set of essential variables is empty. */
    if (cuddIsConstant(F)) return(one);

    res = cuddCacheLookup1(dd,Cudd_FindEssential,f);
    if (res != NULL) {
502
        return(res);
Alan Mishchenko committed
503 504 505 506 507 508 509 510
    }

    lzero = Cudd_Not(one);
    azero = DD_ZERO(dd);
    /* Find cofactors: here f is non-constant. */
    T = cuddT(F);
    E = cuddE(F);
    if (Cudd_IsComplement(f)) {
511
        T = Cudd_Not(T); E = Cudd_Not(E);
Alan Mishchenko committed
512 513 514 515
    }

    index = F->index;
    if (Cudd_IsConstant(T) && T != lzero && T != azero) {
516 517 518 519 520 521 522 523 524 525
        /* if E is zero, index is essential, otherwise there are no
        ** essentials, because index is not essential and no other variable
        ** can be, since setting index = 1 makes the function constant and
        ** different from 0.
        */
        if (E == lzero || E == azero) {
            res = dd->vars[index];
        } else {
            res = one;
        }
Alan Mishchenko committed
526
    } else if (T == lzero || T == azero) {
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
        if (Cudd_IsConstant(E)) { /* E cannot be zero here */
            res = Cudd_Not(dd->vars[index]);
        } else { /* E == non-constant */
            /* find essentials in the else branch */
            essE = ddFindEssentialRecur(dd,E);
            if (essE == NULL) {
                return(NULL);
            }
            cuddRef(essE);

            /* add index to the set with negative phase */
            res = cuddUniqueInter(dd,index,one,Cudd_Not(essE));
            if (res == NULL) {
                Cudd_RecursiveDeref(dd,essE);
                return(NULL);
            }
            res = Cudd_Not(res);
            cuddDeref(essE);
Alan Mishchenko committed
545
        }
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
    } else { /* T == non-const */
        if (E == lzero || E == azero) {
            /* find essentials in the then branch */
            essT = ddFindEssentialRecur(dd,T);
            if (essT == NULL) {
                return(NULL);
            }
            cuddRef(essT);

            /* add index to the set with positive phase */
            /* use And because essT may be complemented */
            res = cuddBddAndRecur(dd,dd->vars[index],essT);
            if (res == NULL) {
                Cudd_RecursiveDeref(dd,essT);
                return(NULL);
            }
            cuddDeref(essT);
        } else if (!Cudd_IsConstant(E)) {
            /* if E is a non-zero constant there are no essentials
            ** because T is non-constant.
            */
            essT = ddFindEssentialRecur(dd,T);
            if (essT == NULL) {
                return(NULL);
            }
            if (essT == one) {
                res = one;
            } else {
                cuddRef(essT);
                essE = ddFindEssentialRecur(dd,E);
                if (essE == NULL) {
                    Cudd_RecursiveDeref(dd,essT);
                    return(NULL);
                }
                cuddRef(essE);

                /* res = intersection(essT, essE) */
                res = cuddBddLiteralSetIntersectionRecur(dd,essT,essE);
                if (res == NULL) {
                    Cudd_RecursiveDeref(dd,essT);
                    Cudd_RecursiveDeref(dd,essE);
                    return(NULL);
                }
                cuddRef(res);
                Cudd_RecursiveDeref(dd,essT);
                Cudd_RecursiveDeref(dd,essE);
                cuddDeref(res);
            }
        } else {        /* E is a non-zero constant */
            res = one;
Alan Mishchenko committed
596 597
        }
    }
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724

    cuddCacheInsert1(dd,Cudd_FindEssential, f, res);
    return(res);

} /* end of ddFindEssentialRecur */


/**Function********************************************************************

  Synopsis    [Implements the recursive step of Cudd_FindTwoLiteralClauses.]

  Description [Implements the recursive step of
  Cudd_FindTwoLiteralClauses.  The DD node is assumed to be not
  constant.  Returns a pointer to a set of clauses if successful; NULL
  otherwise.]

  SideEffects [None]

  SeeAlso     [Cudd_FindTwoLiteralClauses]

******************************************************************************/
static DdTlcInfo *
ddFindTwoLiteralClausesRecur(
  DdManager * dd,
  DdNode * f,
  st_table *table)
{
    DdNode *T, *E, *F;
    DdNode *one, *lzero, *azero;
    DdTlcInfo *res, *Tres, *Eres;
    DdHalfWord index;

    F = Cudd_Regular(f);

    assert(!cuddIsConstant(F));

    /* Check computed table.  Separate entries are necessary for
    ** a node and its complement.  We should update the counter here. */
    if (st_lookup(table, (const char *)f, (char **)&res)) {
        return(res);
    }

    /* Easy access to the constants for BDDs and ADDs. */
    one = DD_ONE(dd);
    lzero = Cudd_Not(one);
    azero = DD_ZERO(dd);

    /* Find cofactors and variable labeling the top node. */
    T = cuddT(F); E = cuddE(F);
    if (Cudd_IsComplement(f)) {
        T = Cudd_Not(T); E = Cudd_Not(E);
    }
    index = F->index;

    if (Cudd_IsConstant(T) && T != lzero && T != azero) {
        /* T is a non-zero constant.  If E is zero, then this node's index
        ** is a one-literal clause.  Otherwise, if E is a non-zero
        ** constant, there are no clauses for this node.  Finally,
        ** if E is not constant, we recursively compute its clauses, and then
        ** merge using the empty set for T. */
        if (E == lzero || E == azero) {
            /* Create the clause (index + 0). */
            res = tlcInfoAlloc();
            if (res == NULL) return(NULL);
            res->vars = ABC_ALLOC(DdHalfWord,4);
            if (res->vars == NULL) {
                ABC_FREE(res);
                return(NULL);
            }
            res->phases = bitVectorAlloc(2);
            if (res->phases == NULL) {
                ABC_FREE(res->vars);
                ABC_FREE(res);
                return(NULL);
            }
            res->vars[0] = index;
            res->vars[1] = CUDD_MAXINDEX;
            res->vars[2] = 0;
            res->vars[3] = 0;
            bitVectorSet(res->phases, 0, 0); /* positive phase */
            bitVectorSet(res->phases, 1, 1); /* negative phase */
        } else if (Cudd_IsConstant(E)) {
            /* If E is a non-zero constant, no clauses. */
            res = emptyClauseSet();
        } else {
            /* E is non-constant */
            Tres = emptyClauseSet();
            if (Tres == NULL) return(NULL);
            Eres = ddFindTwoLiteralClausesRecur(dd, E, table);
            if (Eres == NULL) {
                Cudd_tlcInfoFree(Tres);
                return(NULL);
            }
            res = computeClauses(Tres, Eres, index, dd->size);
            Cudd_tlcInfoFree(Tres);
        }
    } else if (T == lzero || T == azero) {
        /* T is zero.  If E is a non-zero constant, then the
        ** complement of this node's index is a one-literal clause.
        ** Otherwise, if E is not constant, we recursively compute its
        ** clauses, and then merge using the universal set for T. */
        if (Cudd_IsConstant(E)) { /* E cannot be zero here */
            /* Create the clause (!index + 0). */
            res = tlcInfoAlloc();
            if (res == NULL) return(NULL);
            res->vars = ABC_ALLOC(DdHalfWord,4);
            if (res->vars == NULL) {
                ABC_FREE(res);
                return(NULL);
            }
            res->phases = bitVectorAlloc(2);
            if (res->phases == NULL) {
                ABC_FREE(res->vars);
                ABC_FREE(res);
                return(NULL);
            }
            res->vars[0] = index;
            res->vars[1] = CUDD_MAXINDEX;
            res->vars[2] = 0;
            res->vars[3] = 0;
            bitVectorSet(res->phases, 0, 1); /* negative phase */
            bitVectorSet(res->phases, 1, 1); /* negative phase */
        } else { /* E == non-constant */
            Eres = ddFindTwoLiteralClausesRecur(dd, E, table);
            if (Eres == NULL) return(NULL);
            res = computeClausesWithUniverse(Eres, index, 1);
        }
Alan Mishchenko committed
725
    } else { /* T == non-const */
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
        Tres = ddFindTwoLiteralClausesRecur(dd, T, table);
        if (Tres == NULL) return(NULL);
        if (Cudd_IsConstant(E)) {
            if (E == lzero || E == azero) {
                res = computeClausesWithUniverse(Tres, index, 0);
            } else {
                Eres = emptyClauseSet();
                if (Eres == NULL) return(NULL);
                res = computeClauses(Tres, Eres, index, dd->size);
                Cudd_tlcInfoFree(Eres);
            }
        } else {
            Eres = ddFindTwoLiteralClausesRecur(dd, E, table);
            if (Eres == NULL) return(NULL);
            res = computeClauses(Tres, Eres, index, dd->size);
Alan Mishchenko committed
741
        }
742
    }
Alan Mishchenko committed
743

744 745 746
    /* Cache results. */
    if (st_add_direct(table, (char *)f, (char *)res) == ST_OUT_OF_MEM) {
        ABC_FREE(res);
Alan Mishchenko committed
747
        return(NULL);
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
    }
    return(res);

} /* end of ddFindTwoLiteralClausesRecur */


/**Function********************************************************************

  Synopsis    [Computes the two-literal clauses for a node.]

  Description [Computes the two-literal clauses for a node given the
  clauses for its children and the label of the node.  Returns a
  pointer to a TclInfo structure if successful; NULL otherwise.]

  SideEffects [None]

  SeeAlso     [computeClausesWithUniverse]

******************************************************************************/
static DdTlcInfo *
computeClauses(
  DdTlcInfo *Tres /* list of clauses for T child */,
  DdTlcInfo *Eres /* list of clauses for E child */,
  DdHalfWord label /* variable labeling the current node */,
  int size /* number of variables in the manager */)
{
    DdHalfWord *Tcv = Tres->vars; /* variables of clauses for the T child */
    BitVector *Tcp = Tres->phases; /* phases of clauses for the T child */
    DdHalfWord *Ecv = Eres->vars; /* variables of clauses for the E child */
    BitVector *Ecp = Eres->phases; /* phases of clauses for the E child */
    DdHalfWord *Vcv = NULL; /* pointer to variables of the clauses for v */
    BitVector *Vcp = NULL; /* pointer to phases of the clauses for v */
    DdTlcInfo *res = NULL; /* the set of clauses to be returned */
    int pt = 0; /* index in the list of clauses of T */
    int pe = 0; /* index in the list of clauses of E */
    int cv = 0; /* counter of the clauses for this node */
    TlClause *iclauses = NULL; /* list of inherited clauses */
    TlClause *tclauses = NULL; /* list of 1-literal clauses of T */
    TlClause *eclauses = NULL; /* list of 1-literal clauses of E */
    TlClause *nclauses = NULL; /* list of new (non-inherited) clauses */
    TlClause *lnclause = NULL; /* pointer to last new clause */
    TlClause *newclause; /* temporary pointer to new clauses */

    /* Initialize sets of one-literal clauses.  The one-literal clauses
    ** are stored redundantly.  These sets allow constant-time lookup, which
    ** we need when we check for implication of a two-literal clause by a
    ** one-literal clause.  The linked lists allow fast sequential
    ** processing. */
    bitVectorClear(Tolv, size);
    bitVectorClear(Tolp, size);
    bitVectorClear(Eolv, size);
    bitVectorClear(Eolp, size);

    /* Initialize result structure. */
    res = tlcInfoAlloc();
    if (res == NULL) goto cleanup;

    /* Scan the two input list.  Extract inherited two-literal clauses
    ** and set aside one-literal clauses from each list.  The incoming lists
    ** are sorted in the order defined by beforep.  The three linked list
    ** produced by this loop are sorted in the reverse order because we
    ** always append to the front of the lists.
    ** The inherited clauses are those clauses (both one- and two-literal)
    ** that are common to both children; and the two-literal clauses of
    ** one child that are implied by a one-literal clause of the other
    ** child. */
    while (!sentinelp(Tcv[pt], Tcv[pt+1]) || !sentinelp(Ecv[pe], Ecv[pe+1])) {
        if (equalp(Tcv[pt], bitVectorRead(Tcp, pt),
                   Tcv[pt+1], bitVectorRead(Tcp, pt+1),
                   Ecv[pe], bitVectorRead(Ecp, pe),
                   Ecv[pe+1], bitVectorRead(Ecp, pe+1))) {
            /* Add clause to inherited list. */
            newclause = ABC_ALLOC(TlClause,1);
            if (newclause == NULL) goto cleanup;
            newclause->v1 = Tcv[pt];
            newclause->v2 = Tcv[pt+1];
            newclause->p1 = bitVectorRead(Tcp, pt);
            newclause->p2 = bitVectorRead(Tcp, pt+1);
            newclause->next = iclauses;
            iclauses = newclause;
            pt += 2; pe += 2; cv++;
        } else if (beforep(Tcv[pt], bitVectorRead(Tcp, pt),
                   Tcv[pt+1], bitVectorRead(Tcp, pt+1),
                   Ecv[pe], bitVectorRead(Ecp, pe),
                   Ecv[pe+1], bitVectorRead(Ecp, pe+1))) {
            if (oneliteralp(Tcv[pt+1])) {
                /* Add this one-literal clause to the T set. */
                newclause = ABC_ALLOC(TlClause,1);
                if (newclause == NULL) goto cleanup;
                newclause->v1 = Tcv[pt];
                newclause->v2 = CUDD_MAXINDEX;
                newclause->p1 = bitVectorRead(Tcp, pt);
                newclause->p2 = 1;
                newclause->next = tclauses;
                tclauses = newclause;
                bitVectorSet(Tolv, Tcv[pt], 1);
                bitVectorSet(Tolp, Tcv[pt], bitVectorRead(Tcp, pt));
            } else {
                if (impliedp(Tcv[pt], bitVectorRead(Tcp, pt),
                             Tcv[pt+1], bitVectorRead(Tcp, pt+1),
                             Eolv, Eolp)) {
                    /* Add clause to inherited list. */
                    newclause = ABC_ALLOC(TlClause,1);
                    if (newclause == NULL) goto cleanup;
                    newclause->v1 = Tcv[pt];
                    newclause->v2 = Tcv[pt+1];
                    newclause->p1 = bitVectorRead(Tcp, pt);
                    newclause->p2 = bitVectorRead(Tcp, pt+1);
                    newclause->next = iclauses;
                    iclauses = newclause;
                    cv++;
                }
            }
            pt += 2;
        } else { /* !beforep() */
            if (oneliteralp(Ecv[pe+1])) {
                /* Add this one-literal clause to the E set. */
                newclause = ABC_ALLOC(TlClause,1);
                if (newclause == NULL) goto cleanup;
                newclause->v1 = Ecv[pe];
                newclause->v2 = CUDD_MAXINDEX;
                newclause->p1 = bitVectorRead(Ecp, pe);
                newclause->p2 = 1;
                newclause->next = eclauses;
                eclauses = newclause;
                bitVectorSet(Eolv, Ecv[pe], 1);
                bitVectorSet(Eolp, Ecv[pe], bitVectorRead(Ecp, pe));
            } else {
                if (impliedp(Ecv[pe], bitVectorRead(Ecp, pe),
                             Ecv[pe+1], bitVectorRead(Ecp, pe+1),
                             Tolv, Tolp)) {
                    /* Add clause to inherited list. */
                    newclause = ABC_ALLOC(TlClause,1);
                    if (newclause == NULL) goto cleanup;
                    newclause->v1 = Ecv[pe];
                    newclause->v2 = Ecv[pe+1];
                    newclause->p1 = bitVectorRead(Ecp, pe);
                    newclause->p2 = bitVectorRead(Ecp, pe+1);
                    newclause->next = iclauses;
                    iclauses = newclause;
                    cv++;
                }
            }
            pe += 2;
Alan Mishchenko committed
892
        }
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
    }

    /* Add one-literal clauses for the label variable to the front of
    ** the two lists. */
    newclause = ABC_ALLOC(TlClause,1);
    if (newclause == NULL) goto cleanup;
    newclause->v1 = label;
    newclause->v2 = CUDD_MAXINDEX;
    newclause->p1 = 0;
    newclause->p2 = 1;
    newclause->next = tclauses;
    tclauses = newclause;
    newclause = ABC_ALLOC(TlClause,1);
    if (newclause == NULL) goto cleanup;
    newclause->v1 = label;
    newclause->v2 = CUDD_MAXINDEX;
    newclause->p1 = 1;
    newclause->p2 = 1;
    newclause->next = eclauses;
    eclauses = newclause;

    /* Produce the non-inherited clauses.  We preserve the "reverse"
    ** order of the two input lists by appending to the end of the
    ** list.  In this way, iclauses and nclauses are consistent. */
    while (tclauses != NULL && eclauses != NULL) {
        if (beforep(eclauses->v1, eclauses->p1, eclauses->v2, eclauses->p2,
                    tclauses->v1, tclauses->p1, tclauses->v2, tclauses->p2)) {
            TlClause *nextclause = tclauses->next;
            TlClause *otherclauses = eclauses;
            while (otherclauses != NULL) {
                if (tclauses->v1 != otherclauses->v1) {
                    newclause = ABC_ALLOC(TlClause,1);
                    if (newclause == NULL) goto cleanup;
                    newclause->v1 = tclauses->v1;
                    newclause->v2 = otherclauses->v1;
                    newclause->p1 = tclauses->p1;
                    newclause->p2 = otherclauses->p1;
                    newclause->next = NULL;
                    if (nclauses == NULL) {
                        nclauses = newclause;
                        lnclause = newclause;
                    } else {
                        lnclause->next = newclause;
                        lnclause = newclause;
                    }
                    cv++;
                }
                otherclauses = otherclauses->next;
            }
            ABC_FREE(tclauses);
            tclauses = nextclause;
Alan Mishchenko committed
944
        } else {
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
            TlClause *nextclause = eclauses->next;
            TlClause *otherclauses = tclauses;
            while (otherclauses != NULL) {
                if (eclauses->v1 != otherclauses->v1) {
                    newclause = ABC_ALLOC(TlClause,1);
                    if (newclause == NULL) goto cleanup;
                    newclause->v1 = eclauses->v1;
                    newclause->v2 = otherclauses->v1;
                    newclause->p1 = eclauses->p1;
                    newclause->p2 = otherclauses->p1;
                    newclause->next = NULL;
                    if (nclauses == NULL) {
                        nclauses = newclause;
                        lnclause = newclause;
                    } else {
                        lnclause->next = newclause;
                        lnclause = newclause;
                    }
                    cv++;
                }
                otherclauses = otherclauses->next;
            }
            ABC_FREE(eclauses);
            eclauses = nextclause;
Alan Mishchenko committed
969
        }
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
    }
    while (tclauses != NULL) {
        TlClause *nextclause = tclauses->next;
        ABC_FREE(tclauses);
        tclauses = nextclause;
    }
    while (eclauses != NULL) {
        TlClause *nextclause = eclauses->next;
        ABC_FREE(eclauses);
        eclauses = nextclause;
    }

    /* Merge inherited and non-inherited clauses.  Now that we know the
    ** total number, we allocate the arrays, and we fill them bottom-up
    ** to restore the proper ordering. */
    Vcv = ABC_ALLOC(DdHalfWord, 2*(cv+1));
    if (Vcv == NULL) goto cleanup;
    if (cv > 0) {
        Vcp = bitVectorAlloc(2*cv);
        if (Vcp == NULL) goto cleanup;
    } else {
        Vcp = NULL;
    }
    res->vars = Vcv;
    res->phases = Vcp;
    /* Add sentinel. */
    Vcv[2*cv] = 0;
    Vcv[2*cv+1] = 0;
    while (iclauses != NULL || nclauses != NULL) {
        TlClause *nextclause;
        cv--;
        if (nclauses == NULL || (iclauses != NULL &&
            beforep(nclauses->v1, nclauses->p1, nclauses->v2, nclauses->p2,
                    iclauses->v1, iclauses->p1, iclauses->v2, iclauses->p2))) {
            Vcv[2*cv] = iclauses->v1;
            Vcv[2*cv+1] = iclauses->v2;
            bitVectorSet(Vcp, 2*cv, iclauses->p1);
            bitVectorSet(Vcp, 2*cv+1, iclauses->p2);
            nextclause = iclauses->next;
            ABC_FREE(iclauses);
            iclauses = nextclause;
        } else {
            Vcv[2*cv] = nclauses->v1;
            Vcv[2*cv+1] = nclauses->v2;
            bitVectorSet(Vcp, 2*cv, nclauses->p1);
            bitVectorSet(Vcp, 2*cv+1, nclauses->p2);
            nextclause = nclauses->next;
            ABC_FREE(nclauses);
            nclauses = nextclause;
Alan Mishchenko committed
1019 1020
        }
    }
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
    assert(cv == 0);

    return(res);

 cleanup:
    if (res != NULL) Cudd_tlcInfoFree(res);
    while (iclauses != NULL) {
        TlClause *nextclause = iclauses->next;
        ABC_FREE(iclauses);
        iclauses = nextclause;
    }
    while (nclauses != NULL) {
        TlClause *nextclause = nclauses->next;
        ABC_FREE(nclauses);
        nclauses = nextclause;
    }
    while (tclauses != NULL) {
        TlClause *nextclause = tclauses->next;
        ABC_FREE(tclauses);
        tclauses = nextclause;
    }
    while (eclauses != NULL) {
        TlClause *nextclause = eclauses->next;
        ABC_FREE(eclauses);
        eclauses = nextclause;
Alan Mishchenko committed
1046 1047
    }

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
    return(NULL);

} /* end of computeClauses */


/**Function********************************************************************

  Synopsis    [Computes the two-literal clauses for a node.]

  Description [Computes the two-literal clauses for a node with a zero
  child, given the clauses for its other child and the label of the
  node.  Returns a pointer to a TclInfo structure if successful; NULL
  otherwise.]

  SideEffects [None]

  SeeAlso     [computeClauses]

******************************************************************************/
static DdTlcInfo *
computeClausesWithUniverse(
  DdTlcInfo *Cres /* list of clauses for child */,
  DdHalfWord label /* variable labeling the current node */,
  short phase /* 0 if E child is zero; 1 if T child is zero */)
{
    DdHalfWord *Ccv = Cres->vars; /* variables of clauses for child */
    BitVector *Ccp = Cres->phases; /* phases of clauses for child */
    DdHalfWord *Vcv = NULL; /* pointer to the variables of the clauses for v */
    BitVector *Vcp = NULL; /* pointer to the phases of the clauses for v */
    DdTlcInfo *res = NULL; /* the set of clauses to be returned */
    int i;

    /* Initialize result. */
    res = tlcInfoAlloc();
    if (res == NULL) goto cleanup;
    /* Count entries for new list and allocate accordingly. */
    for (i = 0; !sentinelp(Ccv[i], Ccv[i+1]); i += 2);
    /* At this point, i is twice the number of clauses in the child's
    ** list.  We need four more entries for this node: 2 for the one-literal
    ** clause for the label, and 2 for the sentinel. */
    Vcv = ABC_ALLOC(DdHalfWord,i+4);
    if (Vcv == NULL) goto cleanup;
    Vcp = bitVectorAlloc(i+4);
    if (Vcp == NULL) goto cleanup;
    res->vars = Vcv;
    res->phases = Vcp;
    /* Copy old list into new. */
    for (i = 0; !sentinelp(Ccv[i], Ccv[i+1]); i += 2) {
        Vcv[i] = Ccv[i];
        Vcv[i+1] = Ccv[i+1];
        bitVectorSet(Vcp, i, bitVectorRead(Ccp, i));
        bitVectorSet(Vcp, i+1, bitVectorRead(Ccp, i+1));
    }
    /* Add clause corresponding to label. */
    Vcv[i] = label;
    bitVectorSet(Vcp, i, phase);
    i++;
    Vcv[i] = CUDD_MAXINDEX;
    bitVectorSet(Vcp, i, 1);
    i++;
    /* Add sentinel. */
    Vcv[i] = 0;
    Vcv[i+1] = 0;
    bitVectorSet(Vcp, i, 0);
    bitVectorSet(Vcp, i+1, 0);

Alan Mishchenko committed
1114 1115
    return(res);

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
 cleanup:
    /* Vcp is guaranteed to be NULL here.  Hence, we do not try to free it. */
    if (Vcv != NULL) ABC_FREE(Vcv);
    if (res != NULL) Cudd_tlcInfoFree(res);

    return(NULL);

} /* end of computeClausesWithUniverse */


/**Function********************************************************************

  Synopsis    [Returns an enpty set of clauses.]

  Description [Returns a pointer to an empty set of clauses if
  successful; NULL otherwise.  No bit vector for the phases is
  allocated.]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
static DdTlcInfo *
emptyClauseSet(void)
{
    DdTlcInfo *eset;

    eset = ABC_ALLOC(DdTlcInfo,1);
    if (eset == NULL) return(NULL);
    eset->vars = ABC_ALLOC(DdHalfWord,2);
    if (eset->vars == NULL) {
        ABC_FREE(eset);
        return(NULL);
    }
    /* Sentinel */
    eset->vars[0] = 0;
    eset->vars[1] = 0;
    eset->phases = NULL; /* does not matter */
    eset->cnt = 0;
    return(eset);

} /* end of emptyClauseSet */


/**Function********************************************************************

  Synopsis    [Returns true iff the argument is the sentinel clause.]

  Description [Returns true iff the argument is the sentinel clause.
  A sentinel clause has both variables equal to 0.]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
static int
sentinelp(
  DdHalfWord var1,
  DdHalfWord var2)
{
    return(var1 == 0 && var2 == 0);

} /* end of sentinelp */


/**Function********************************************************************

  Synopsis    [Returns true iff the two arguments are identical clauses.]

  Description [Returns true iff the two arguments are identical
  clauses.  Since literals are sorted, we only need to compare
  literals in the same position.]

  SideEffects [None]

  SeeAlso     [beforep]

******************************************************************************/
static int
equalp(
  DdHalfWord var1a,
  short phase1a,
  DdHalfWord var1b,
  short phase1b,
  DdHalfWord var2a,
  short phase2a,
  DdHalfWord var2b,
  short phase2b)
{
    return(var1a == var2a && phase1a == phase2a &&
           var1b == var2b && phase1b == phase2b);

} /* end of equalp */


/**Function********************************************************************

  Synopsis    [Returns true iff the first argument precedes the second in
  the clause order.]

  Description [Returns true iff the first argument precedes the second
  in the clause order.  A clause precedes another if its first lieral
  precedes the first literal of the other, or if the first literals
  are the same, and its second literal precedes the second literal of
  the other clause.  A literal precedes another if it has a higher
  index, of if it has the same index, but it has lower phase.  Phase 0
  is the positive phase, and it is lower than Phase 1 (negative
  phase).]

  SideEffects [None]

  SeeAlso     [equalp]

******************************************************************************/
static int
beforep(
  DdHalfWord var1a,
  short phase1a,
  DdHalfWord var1b,
  short phase1b,
  DdHalfWord var2a,
  short phase2a,
  DdHalfWord var2b,
  short phase2b)
{
    return(var1a > var2a || (var1a == var2a &&
           (phase1a < phase2a || (phase1a == phase2a &&
            (var1b > var2b || (var1b == var2b && phase1b < phase2b))))));

} /* end of beforep */


/**Function********************************************************************

  Synopsis    [Returns true iff the argument is a one-literal clause.]

  Description [Returns true iff the argument is a one-literal clause.
  A one-litaral clause has the constant FALSE as second literal.
  Since the constant TRUE is never used, it is sufficient to test for
  a constant.]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
static int
oneliteralp(
  DdHalfWord var)
{
    return(var == CUDD_MAXINDEX);

} /* end of oneliteralp */


/**Function********************************************************************

  Synopsis [Returns true iff either literal of a clause is in a set of
  literals.]

  Description [Returns true iff either literal of a clause is in a set
  of literals.  The first four arguments specify the clause.  The
  remaining two arguments specify the literal set.]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
static int
impliedp(
  DdHalfWord var1,
  short phase1,
  DdHalfWord var2,
  short phase2,
  BitVector *olv,
  BitVector *olp)
{
    return((bitVectorRead(olv, var1) &&
            bitVectorRead(olp, var1) == phase1) ||
           (bitVectorRead(olv, var2) &&
            bitVectorRead(olp, var2) == phase2));

} /* end of impliedp */


/**Function********************************************************************

  Synopsis    [Allocates a bit vector.]

  Description [Allocates a bit vector.  The parameter size gives the
  number of bits.  This procedure allocates enough long's to hold the
  specified number of bits.  Returns a pointer to the allocated vector
  if successful; NULL otherwise.]

  SideEffects [None]

  SeeAlso     [bitVectorClear bitVectorFree]

******************************************************************************/
static BitVector *
bitVectorAlloc(
  int size)
{
    int allocSize;
    BitVector *vector;

    /* Find out how many long's we need.
    ** There are sizeof(long) * 8 bits in a long.
    ** The ceiling of the ratio of two integers m and n is given
    ** by ((n-1)/m)+1.  Putting all this together, we get... */
    allocSize = ((size - 1) / (sizeof(BitVector) * 8)) + 1;
    vector = ABC_ALLOC(BitVector, allocSize);
    if (vector == NULL) return(NULL);
    /* Clear the whole array. */
    (void) memset(vector, 0, allocSize * sizeof(BitVector));
    return(vector);

} /* end of bitVectorAlloc */


/**Function********************************************************************

  Synopsis    [Clears a bit vector.]

  Description [Clears a bit vector.  The parameter size gives the
  number of bits.]

  SideEffects [None]

  SeeAlso     [bitVectorAlloc]

******************************************************************************/
DD_INLINE
static void
bitVectorClear(
  BitVector *vector,
  int size)
{
    int allocSize;

    /* Find out how many long's we need.
    ** There are sizeof(long) * 8 bits in a long.
    ** The ceiling of the ratio of two integers m and n is given
    ** by ((n-1)/m)+1.  Putting all this together, we get... */
    allocSize = ((size - 1) / (sizeof(BitVector) * 8)) + 1;
    /* Clear the whole array. */
    (void) memset(vector, 0, allocSize * sizeof(BitVector));
    return;

} /* end of bitVectorClear */


/**Function********************************************************************

  Synopsis    [Frees a bit vector.]

  Description [Frees a bit vector.]

  SideEffects [None]

  SeeAlso     [bitVectorAlloc]

******************************************************************************/
static void
bitVectorFree(
  BitVector *vector)
{
    ABC_FREE(vector);

} /* end of bitVectorFree */


/**Function********************************************************************

  Synopsis    [Returns the i-th entry of a bit vector.]

  Description [Returns the i-th entry of a bit vector.]

  SideEffects [None]

  SeeAlso     [bitVectorSet]

******************************************************************************/
DD_INLINE
static short
bitVectorRead(
  BitVector *vector,
  int i)
{
    int word, bit;
    short result;

    if (vector == NULL) return((short) 0);

    word = i >> LOGBPL;
    bit = i & (BPL - 1);
    result = (short) ((vector[word] >> bit) & 1L);
    return(result);

} /* end of bitVectorRead */


/**Function********************************************************************

  Synopsis    [Sets the i-th entry of a bit vector to a value.]

  Description [Sets the i-th entry of a bit vector to a value.]

  SideEffects [None]

  SeeAlso     [bitVectorRead]

******************************************************************************/
DD_INLINE
static void
bitVectorSet(
  BitVector * vector,
  int i,
  short val)
{
    int word, bit;

    word = i >> LOGBPL;
    bit = i & (BPL - 1);
    vector[word] &= ~(1L << bit);
    vector[word] |= (((long) val) << bit);

} /* end of bitVectorSet */


/**Function********************************************************************

  Synopsis    [Allocates a DdTlcInfo Structure.]

  Description [Returns a pointer to a DdTlcInfo Structure if successful;
  NULL otherwise.]

  SideEffects [None]

  SeeAlso     [Cudd_tlcInfoFree]

******************************************************************************/
static DdTlcInfo *
tlcInfoAlloc(void)
{
    DdTlcInfo *res = ABC_ALLOC(DdTlcInfo,1);
    if (res == NULL) return(NULL);
    res->vars = NULL;
    res->phases = NULL;
    res->cnt = 0;
    return(res);

} /* end of tlcInfoAlloc */

Alan Mishchenko committed
1473

1474 1475
ABC_NAMESPACE_IMPL_END