pdrTsim3.c 12.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/**CFile****************************************************************

  FileName    [pdrTsim3.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Property driven reachability.]

  Synopsis    [Improved ternary simulation.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - November 20, 2010.]

  Revision    [$Id: pdrTsim3.c,v 1.00 2010/11/20 00:00:00 alanmi Exp $]

***********************************************************************/

#include "pdrInt.h"
#include "aig/gia/giaAig.h"

ABC_NAMESPACE_IMPL_START

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

struct Txs3_Man_t_
{
    Gia_Man_t * pGia;      // user's AIG
    Vec_Int_t * vPrio;     // priority of each flop
    Vec_Int_t * vCiObjs;   // cone leaves (CI obj IDs)
    Vec_Int_t * vFosPre;   // cone leaves (CI obj IDs)
    Vec_Int_t * vFosAbs;   // cone leaves (CI obj IDs)
    Vec_Int_t * vCoObjs;   // cone roots (CO obj IDs)
    Vec_Int_t * vCiVals;   // cone leaf values (0/1 CI values)
    Vec_Int_t * vCoVals;   // cone root values (0/1 CO values)
    Vec_Int_t * vNodes;    // cone nodes (node obj IDs)
    Vec_Int_t * vTemp;     // cone nodes (node obj IDs)
    Vec_Int_t * vPiLits;   // resulting array of PI literals
    Vec_Int_t * vFfLits;   // resulting array of flop literals
    Pdr_Man_t * pMan;      // calling manager
    int         nPiLits;   // the number of PI literals
};

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Start and stop the ternary simulation engine.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Txs3_Man_t * Txs3_ManStart( Pdr_Man_t * pMan, Aig_Man_t * pAig, Vec_Int_t * vPrio )
{
    Txs3_Man_t * p;
//    Aig_Obj_t * pObj;
//    int i;
    assert( Vec_IntSize(vPrio) == Aig_ManRegNum(pAig) );
    p = ABC_CALLOC( Txs3_Man_t, 1 );
    p->pGia    = Gia_ManFromAigSimple(pAig); // user's AIG
//    Aig_ManForEachObj( pAig, pObj, i )
//        assert( i == 0 || pObj->iData == Abc_Var2Lit(i, 0) );
    p->vPrio   = vPrio;                // priority of each flop
    p->vCiObjs = Vec_IntAlloc( 100 );  // cone leaves (CI obj IDs)
    p->vFosPre = Vec_IntAlloc( 100 );  // present flop outputs
    p->vFosAbs = Vec_IntAlloc( 100 );  // absracted flop outputs
    p->vCoObjs = Vec_IntAlloc( 100 );  // cone roots (CO obj IDs)
    p->vCiVals = Vec_IntAlloc( 100 );  // cone leaf values (0/1 CI values)
    p->vCoVals = Vec_IntAlloc( 100 );  // cone root values (0/1 CO values)
    p->vNodes  = Vec_IntAlloc( 100 );  // cone nodes (node obj IDs)
    p->vTemp   = Vec_IntAlloc( 100 );  // cone nodes (node obj IDs)
    p->vPiLits = Vec_IntAlloc( 100 );  // resulting array of PI literals
    p->vFfLits = Vec_IntAlloc( 100 );  // resulting array of flop literals
    p->pMan    = pMan;                 // calling manager
    return p;
}
void Txs3_ManStop( Txs3_Man_t * p )
{
    Gia_ManStop( p->pGia );
    Vec_IntFree( p->vCiObjs );
    Vec_IntFree( p->vFosPre );
    Vec_IntFree( p->vFosAbs );
    Vec_IntFree( p->vCoObjs );
    Vec_IntFree( p->vCiVals );
    Vec_IntFree( p->vCoVals );
    Vec_IntFree( p->vNodes );
    Vec_IntFree( p->vTemp );
    Vec_IntFree( p->vPiLits );
    Vec_IntFree( p->vFfLits );
    ABC_FREE( p );
}

/**Function*************************************************************

  Synopsis    [Marks the TFI cone and collects CIs and nodes.]

  Description [For this procedure to work Value should not be ~0 
  at the beginning.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Txs3_ManCollectCone_rec( Txs3_Man_t * p, Gia_Obj_t * pObj )
{
    if ( !~pObj->Value )
        return;
    pObj->Value = ~0;
    if ( Gia_ObjIsCi(pObj) )
    {
        int Entry;
        if ( Gia_ObjIsPi(p->pGia, pObj) )
        {
            Vec_IntPush( p->vCiObjs, Gia_ObjId(p->pGia, pObj) );
            return;
        }
        Entry = Gia_ObjCioId(pObj) - Gia_ManPiNum(p->pGia);
        if ( Vec_IntEntry(p->vPrio, Entry) ) // present flop
            Vec_IntPush( p->vFosPre, Gia_ObjId(p->pGia, pObj) );
        else // asbstracted flop
            Vec_IntPush( p->vFosAbs, Gia_ObjId(p->pGia, pObj) );
        return;
    }
    assert( Gia_ObjIsAnd(pObj) );
    Txs3_ManCollectCone_rec( p, Gia_ObjFanin0(pObj) );
    Txs3_ManCollectCone_rec( p, Gia_ObjFanin1(pObj) );
    Vec_IntPush( p->vNodes, Gia_ObjId(p->pGia, pObj) );
}
void Txs3_ManCollectCone( Txs3_Man_t * p, int fVerbose )
{
    Gia_Obj_t * pObj; int i, Entry;
//    printf( "Collecting cones for clause with %d literals.\n", Vec_IntSize(vCoObjs) );
    Vec_IntClear( p->vCiObjs );
    Vec_IntClear( p->vFosPre );
    Vec_IntClear( p->vFosAbs );
    Vec_IntClear( p->vNodes );
    Gia_ManConst0(p->pGia)->Value = ~0;
    Gia_ManForEachObjVec( p->vCoObjs, p->pGia, pObj, i )
        Txs3_ManCollectCone_rec( p, Gia_ObjFanin0(pObj) );
if ( fVerbose )
printf( "%d %d %d \n", Vec_IntSize(p->vCiObjs), Vec_IntSize(p->vFosPre), Vec_IntSize(p->vFosAbs) );
    p->nPiLits = Vec_IntSize(p->vCiObjs);
    // sort primary inputs
    Vec_IntSelectSort( Vec_IntArray(p->vCiObjs), Vec_IntSize(p->vCiObjs) );
    // sort and add present flop variables
    Vec_IntSelectSortReverse( Vec_IntArray(p->vFosPre), Vec_IntSize(p->vFosPre) );
    Vec_IntForEachEntry( p->vFosPre, Entry, i )
        Vec_IntPush( p->vCiObjs, Entry );
    // sort and add absent flop variables
    Vec_IntSelectSortReverse( Vec_IntArray(p->vFosAbs), Vec_IntSize(p->vFosAbs) );
    Vec_IntForEachEntry( p->vFosAbs, Entry, i )
        Vec_IntPush( p->vCiObjs, Entry );
    // cleanup
    Gia_ManForEachObjVec( p->vCiObjs, p->pGia, pObj, i )
        pObj->Value = 0;
    Gia_ManForEachObjVec( p->vNodes, p->pGia, pObj, i )
        pObj->Value = 0;
}

/**Function*************************************************************

  Synopsis    [Shrinks values using ternary simulation.]

  Description [The cube contains the set of flop index literals which,
  when converted into a clause and applied to the combinational outputs, 
  led to a satisfiable SAT run in frame k (values stored in the SAT solver).
  If the cube is NULL, it is assumed that the first property output was
  asserted and failed.
  The resulting array is a set of flop index literals that asserts the COs.
  Priority contains 0 for i-th entry if the i-th FF is desirable to remove.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Pdr_Set_t * Txs3_ManTernarySim( Txs3_Man_t * p, int k, Pdr_Set_t * pCube )
{
190 191
//    int fTryNew = 1;
//    int fUseLit = 1;
192 193 194 195 196
    int fVerbose = 0;
    sat_solver * pSat;
    Pdr_Set_t * pRes;
    Gia_Obj_t * pObj;
    Vec_Int_t * vVar2Ids, * vLits;
197
    int i, Lit, LitAux, Var, Value, RetValue, nCoreLits, * pCoreLits;//, nLits;
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
//    if ( k == 0 )
//        fVerbose = 1;
    // collect CO objects
    Vec_IntClear( p->vCoObjs );
    if ( pCube == NULL ) // the target is the property output
    {
        pObj = Gia_ManCo(p->pGia, p->pMan->iOutCur);
        Vec_IntPush( p->vCoObjs, Gia_ObjId(p->pGia, pObj) );
    }
    else // the target is the cube
    {
        int i;
        for ( i = 0; i < pCube->nLits; i++ )
        {
            if ( pCube->Lits[i] == -1 )
                continue;
            pObj = Gia_ManCo(p->pGia, Gia_ManPoNum(p->pGia) + Abc_Lit2Var(pCube->Lits[i]));
            Vec_IntPush( p->vCoObjs, Gia_ObjId(p->pGia, pObj) );
        }
    }
if ( 0 )
{
Abc_Print( 1, "Trying to justify cube " );
if ( pCube )
    Pdr_SetPrint( stdout, pCube, Gia_ManRegNum(p->pGia), NULL );
else
    Abc_Print( 1, "<prop=fail>" );
Abc_Print( 1, " in frame %d.\n", k );
}

    // collect CI objects
    Txs3_ManCollectCone( p, fVerbose );
    // collect values
    Pdr_ManCollectValues( p->pMan, k, p->vCiObjs, p->vCiVals );
    Pdr_ManCollectValues( p->pMan, k, p->vCoObjs, p->vCoVals );

    // read solver
    pSat = Pdr_ManFetchSolver( p->pMan, k );
    LitAux = toLit( Pdr_ManFreeVar(p->pMan, k) );
    // add the clause (complemented cube) in terms of next state variables
    if ( pCube == NULL ) // the target is the property output
    {
        vLits = p->pMan->vLits;
        Lit = Abc_Var2Lit( Pdr_ObjSatVar(p->pMan, k, 2, Aig_ManCo(p->pMan->pAig, p->pMan->iOutCur)), 1 ); // neg literal (property holds)
        Vec_IntFill( vLits, 1, Lit );
    }
    else
        vLits = Pdr_ManCubeToLits( p->pMan, k, pCube, 1, 1 );
    // add activation literal
    Vec_IntPush( vLits, LitAux );
    RetValue = sat_solver_addclause( pSat, Vec_IntArray(vLits), Vec_IntArray(vLits) + Vec_IntSize(vLits) );
    assert( RetValue == 1 );
    sat_solver_compress( pSat );

    // collect assumptions 
    Vec_IntClear( p->vTemp );
    Vec_IntPush( p->vTemp, Abc_LitNot(LitAux) );
    // iterate through the values of the CI variables
    Vec_IntForEachEntryTwo( p->vCiObjs, p->vCiVals, Var, Value, i )
    {
        Aig_Obj_t * pObj = Aig_ManObj( p->pMan->pAig, Var );
//        iVar = Pdr_ObjSatVar( p->pMan, k, fNext ? 2 - lit_sign(pCube->Lits[i]) : 3, pObj ); assert( iVar >= 0 );
        int iVar = Pdr_ObjSatVar( p->pMan, k, 3, pObj ); assert( iVar >= 0 );
        assert( Aig_ObjIsCi(pObj) );
        Vec_IntPush( p->vTemp, Abc_Var2Lit(iVar, !Value) );
    }
    if ( fVerbose )
    {
        printf( "Clause with %d lits on lev %d\n", pCube ? pCube->nLits : 0, k );
        Vec_IntPrint( p->vTemp );
    }

/*
    // solve with assumptions
//printf( "%d -> ", Vec_IntSize(p->vTemp) );
{
abctime clk = Abc_Clock();
// assume all except flops
    Vec_IntForEachEntryStop( p->vTemp, Lit, i, p->nPiLits + 1 )
        if ( !sat_solver_push(pSat, Lit) )
        {
            assert( 0 );
        }
    nLits = sat_solver_minimize_assumptions( pSat, Vec_IntArray(p->vTemp) + p->nPiLits + 1, Vec_IntSize(p->vTemp) - p->nPiLits - 1, p->pMan->pPars->nConfLimit );
    Vec_IntShrink( p->vTemp, p->nPiLits + 1 + nLits );

p->pMan->tAbs += Abc_Clock() - clk;
    for ( i = 0; i <= p->nPiLits; i++ )
        sat_solver_pop(pSat);
}
//printf( "%d    ", nLits );
*/


    //check one last time
    RetValue = sat_solver_solve( pSat, Vec_IntArray(p->vTemp), Vec_IntLimit(p->vTemp), 0, 0, 0, 0 );
    assert( RetValue == l_False );

    // use analyze final
    nCoreLits = sat_solver_final(pSat, &pCoreLits);
    //assert( Vec_IntSize(p->vTemp) <= nCoreLits );

    Vec_IntClear( p->vTemp );
    for ( i = 0; i < nCoreLits; i++ )
        Vec_IntPush( p->vTemp, Abc_LitNot(pCoreLits[i]) );
    Vec_IntSelectSort( Vec_IntArray(p->vTemp), Vec_IntSize(p->vTemp) );

    if ( fVerbose )
        Vec_IntPrint( p->vTemp );

    // collect the resulting sets
    Vec_IntClear( p->vPiLits );
    Vec_IntClear( p->vFfLits );
    vVar2Ids = (Vec_Int_t *)Vec_PtrGetEntry( &p->pMan->vVar2Ids, k );
    Vec_IntForEachEntry( p->vTemp, Lit, i )
    {
        if ( Lit != Abc_LitNot(LitAux) )
        {
            int Id = Vec_IntEntry( vVar2Ids, Abc_Lit2Var(Lit) );
            Aig_Obj_t * pObj = Aig_ManObj( p->pMan->pAig, Id );
            assert( Aig_ObjIsCi(pObj) );
            if ( Saig_ObjIsPi(p->pMan->pAig, pObj) )
                Vec_IntPush( p->vPiLits, Abc_Var2Lit(Aig_ObjCioId(pObj), Abc_LitIsCompl(Lit)) );
            else
                Vec_IntPush( p->vFfLits, Abc_Var2Lit(Aig_ObjCioId(pObj) - Saig_ManPiNum(p->pMan->pAig), Abc_LitIsCompl(Lit)) );
        }
    }
    assert( Vec_IntSize(p->vTemp) == Vec_IntSize(p->vPiLits) + Vec_IntSize(p->vFfLits) + 1 );

    // move abstracted literals from flops to inputs
    if ( p->pMan->pPars->fUseAbs && p->pMan->vAbsFlops )
    {
        int i, iLit, k = 0;
        Vec_IntForEachEntry( p->vFfLits, iLit, i )
        {
            if ( Vec_IntEntry(p->pMan->vAbsFlops, Abc_Lit2Var(iLit)) ) // used flop
                Vec_IntWriteEntry( p->vFfLits, k++, iLit );
            else
                Vec_IntPush( p->vPiLits, 2*Saig_ManPiNum(p->pMan->pAig) + iLit );
        }
        Vec_IntShrink( p->vFfLits, k );
    }

    if ( fVerbose )
        Vec_IntPrint( p->vPiLits );
    if ( fVerbose )
        Vec_IntPrint( p->vFfLits );
    if ( fVerbose )
        printf( "\n" );

    // derive the final set
    pRes = Pdr_SetCreate( p->vFfLits, p->vPiLits );
    //ZH: Disabled assertion because this invariant doesn't hold with down
    //because of the join operation which can bring in initial states
    assert( k == 0 || !Pdr_SetIsInit(pRes, -1) );
    return pRes;
}

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


ABC_NAMESPACE_IMPL_END