SolverTypes.h 16.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/***********************************************************************************[SolverTypes.h]
 Glucose -- Copyright (c) 2009, Gilles Audemard, Laurent Simon
                CRIL - Univ. Artois, France
                LRI  - Univ. Paris Sud, France
 
Glucose sources are based on MiniSat (see below MiniSat copyrights). Permissions and copyrights of
Glucose are exactly the same as Minisat on which it is based on. (see below).

---------------
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Copyright (c) 2007-2010, Niklas Sorensson

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/


#ifndef Glucose_SolverTypes_h
#define Glucose_SolverTypes_h

#include <assert.h>

#include "sat/glucose2/IntTypes.h"
#include "sat/glucose2/Alg.h"
#include "sat/glucose2/Vec.h"
#include "sat/glucose2/Map.h"
#include "sat/glucose2/Alloc.h"

41 42
#include "sat/glucose2/CGlucose.h"

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
ABC_NAMESPACE_CXX_HEADER_START

namespace Gluco2 {

//=================================================================================================
// Variables, literals, lifted booleans, clauses:


// NOTE! Variables are just integers. No abstraction here. They should be chosen from 0..N,
// so that they can be used as array indices.

typedef int Var;
#define var_Undef (-1)


struct Lit {
    int     x;

    // Use this as a constructor:
    friend Lit mkLit(Var var, bool sign);
    bool operator == (Lit p) const { return x == p.x; }
    bool operator != (Lit p) const { return x != p.x; }
    bool operator <  (Lit p) const { return x < p.x;  } // '<' makes p, ~p adjacent in the ordering.
};


inline  Lit  mkLit     (Var var, bool sign = false) { Lit p; p.x = var + var + (int)sign; return p; }
inline  Lit  operator ~(Lit p)              { Lit q; q.x = p.x ^ 1; return q; }
inline  Lit  operator ^(Lit p, bool b)      { Lit q; q.x = p.x ^ (unsigned int)b; return q; }
inline  bool sign      (Lit p)              { return p.x & 1; }
inline  int  var       (Lit p)              { return p.x >> 1; }

// Mapping Literals to and from compact integers suitable for array indexing:
inline  int  toInt     (Var v)              { return v; } 
inline  int  toInt     (Lit p)              { return p.x; } 
inline  Lit  toLit     (int i)              { Lit p; p.x = i; return p; } 

//const Lit lit_Undef = mkLit(var_Undef, false);  // }- Useful special constants.
//const Lit lit_Error = mkLit(var_Undef, true );  // }

const Lit lit_Undef = { -2 };  // }- Useful special constants.
const Lit lit_Error = { -1 };  // }


//=================================================================================================
// Lifted booleans:
//
// NOTE: this implementation is optimized for the case when comparisons between values are mostly
//       between one variable and one constant. Some care had to be taken to make sure that gcc 
//       does enough constant propagation to produce sensible code, and this appears to be somewhat
//       fragile unfortunately.

#define l_True  (Gluco2::lbool((uint8_t)0)) // gcc does not do constant propagation if these are real constants.
#define l_False (Gluco2::lbool((uint8_t)1))
#define l_Undef (Gluco2::lbool((uint8_t)2))

class lbool {
    uint8_t value;

public:
    explicit lbool(uint8_t v) : value(v) { }

    lbool()       : value(0) { }
    explicit lbool(bool x) : value(!x) { }

    bool  operator == (lbool b) const { return (((b.value&2) & (value&2)) | (!(b.value&2)&(value == b.value))) != 0; }
    bool  operator != (lbool b) const { return !(*this == b); }
    lbool operator ^  (bool  b) const { return lbool((uint8_t)(value^(uint8_t)b)); }

    lbool operator && (lbool b) const { 
        uint8_t sel = (this->value << 1) | (b.value << 3);
        uint8_t v   = (0xF7F755F4 >> sel) & 3;
        return lbool(v); }

    lbool operator || (lbool b) const {
        uint8_t sel = (this->value << 1) | (b.value << 3);
        uint8_t v   = (0xFCFCF400 >> sel) & 3;
        return lbool(v); }

    friend int   toInt  (lbool l);
    friend lbool toLbool(int   v);
};
inline int   toInt  (lbool l) { return l.value; }
inline lbool toLbool(int   v) { return lbool((uint8_t)v);  }

//=================================================================================================
// Clause -- a simple class for representing a clause:

class Clause;
typedef RegionAllocator<uint32_t>::Ref CRef;

class Clause {
    struct {
      unsigned mark      : 2;
      unsigned learnt    : 1;
      unsigned has_extra : 1;
      unsigned reloced   : 1;
      unsigned lbd       : 26;
      unsigned canbedel  : 1;
      unsigned size      : 32;
      unsigned szWithoutSelectors : 32;

    }                            header;
    union { Lit lit; float act; uint32_t abs; CRef rel; } data[0];

    friend class ClauseAllocator;

150 151 152 153
    #ifdef CGLUCOSE_EXP
    friend class Solver;
    #endif

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
    // NOTE: This constructor cannot be used directly (doesn't allocate enough memory).
    template<class V>
    Clause(const V& ps, bool use_extra, bool learnt) {
        header.mark      = 0;
        header.learnt    = learnt;
        header.has_extra = use_extra;
        header.reloced   = 0;
        header.size      = ps.size();
    header.lbd = 0;
    header.canbedel = 1;
        for (int i = 0; i < ps.size(); i++) 
            data[i].lit = ps[i];
    
        if (header.has_extra){
      if (header.learnt) 
                data[header.size].act = 0; 
            else 
                calcAbstraction(); }
    }

public:
    void calcAbstraction() {
        assert(header.has_extra);
        uint32_t abstraction = 0;
        for (int i = 0; i < size(); i++)
            abstraction |= 1 << (var(data[i].lit) & 31);
        data[header.size].abs = abstraction;  }


    int          size        ()      const   { return header.size; }
    void         shrink      (int i)         { assert(i <= size()); if (header.has_extra) data[header.size-i] = data[header.size]; header.size -= i; }
    void         pop         ()              { shrink(1); }
    bool         learnt      ()      const   { return header.learnt; }
    bool         has_extra   ()      const   { return header.has_extra; }
    uint32_t     mark        ()      const   { return header.mark; }
    void         mark        (uint32_t m)    { header.mark = m; }
    const Lit&   last        ()      const   { return data[header.size-1].lit; }

    bool         reloced     ()      const   { return header.reloced; }
    CRef         relocation  ()      const   { return data[0].rel; }
    void         relocate    (CRef c)        { header.reloced = 1; data[0].rel = c; }

    // NOTE: somewhat unsafe to change the clause in-place! Must manually call 'calcAbstraction' afterwards for
    //       subsumption operations to behave correctly.
    Lit&         operator [] (int i)         { return data[i].lit; }
    Lit          operator [] (int i) const   { return data[i].lit; }
    operator const Lit* (void) const         { return (Lit*)data; }

    float&       activity    ()              { assert(header.has_extra); return data[header.size].act; }
    uint32_t     abstraction () const        { assert(header.has_extra); return data[header.size].abs; }

    Lit          subsumes    (const Clause& other) const;
    void         strengthen  (Lit p);
    void         setLBD(int i)  {header.lbd = i;} 
    // unsigned int&       lbd    ()              { return header.lbd; }
    unsigned int        lbd    () const        { return header.lbd; }
    void setCanBeDel(bool b) {header.canbedel = b;}
    bool canBeDel() {return header.canbedel;}
    void setSizeWithoutSelectors   (unsigned int n)              {header.szWithoutSelectors = n; }
    unsigned int        sizeWithoutSelectors   () const        { return header.szWithoutSelectors; }

};


//=================================================================================================
// ClauseAllocator -- a simple class for allocating memory for clauses:


const CRef CRef_Undef = RegionAllocator<uint32_t>::Ref_Undef;
class ClauseAllocator : public RegionAllocator<uint32_t>
{
    static int clauseWord32Size(int size, bool has_extra){
        return (sizeof(Clause) + (sizeof(Lit) * (size + (int)has_extra))) / sizeof(uint32_t); }
 public:
    bool extra_clause_field;

    ClauseAllocator(uint32_t start_cap) : RegionAllocator<uint32_t>(start_cap), extra_clause_field(false){}
    ClauseAllocator() : extra_clause_field(false){}

    void moveTo(ClauseAllocator& to){
        to.extra_clause_field = extra_clause_field;
        RegionAllocator<uint32_t>::moveTo(to); }

    template<class Lits>
    CRef alloc(const Lits& ps, bool learnt = false)
    {
        assert(sizeof(Lit)      == sizeof(uint32_t));
        assert(sizeof(float)    == sizeof(uint32_t));
        bool use_extra = learnt | extra_clause_field;

        CRef cid = RegionAllocator<uint32_t>::alloc(clauseWord32Size(ps.size(), use_extra));
        new (lea(cid)) Clause(ps, use_extra, learnt);

        return cid;
    }

    // Deref, Load Effective Address (LEA), Inverse of LEA (AEL):
    Clause&       operator[](Ref r)       { return (Clause&)RegionAllocator<uint32_t>::operator[](r); }
    const Clause& operator[](Ref r) const { return (Clause&)RegionAllocator<uint32_t>::operator[](r); }
    Clause*       lea       (Ref r)       { return (Clause*)RegionAllocator<uint32_t>::lea(r); }
    const Clause* lea       (Ref r) const { return (Clause*)RegionAllocator<uint32_t>::lea(r); }
    Ref           ael       (const Clause* t){ return RegionAllocator<uint32_t>::ael((uint32_t*)t); }

    void free_(CRef cid)
    {
        Clause& c = operator[](cid);
        RegionAllocator<uint32_t>::free_(clauseWord32Size(c.size(), c.has_extra()));
    }

    void reloc(CRef& cr, ClauseAllocator& to)
    {
        Clause& c = operator[](cr);
        
        if (c.reloced()) { cr = c.relocation(); return; }
        
        cr = to.alloc(c, c.learnt());
        c.relocate(cr);
        
        // Copy extra data-fields: 
        // (This could be cleaned-up. Generalize Clause-constructor to be applicable here instead?)
        to[cr].mark(c.mark());
        if (to[cr].learnt())        {
      to[cr].activity() = c.activity();
      to[cr].setLBD(c.lbd());
      to[cr].setSizeWithoutSelectors(c.sizeWithoutSelectors());
      to[cr].setCanBeDel(c.canBeDel());
    }
        else if (to[cr].has_extra()) to[cr].calcAbstraction();
    }
};


//=================================================================================================
// OccLists -- a class for maintaining occurence lists with lazy deletion:

template<class Idx, class Vec, class Deleted>
class OccLists
{
    vec<Vec>  occs;
    vec<char> dirty;
    vec<Idx>  dirties;
    Deleted   deleted;

 public:
    OccLists(const Deleted& d) : deleted(d) {}
    
    void  init      (const Idx& idx){ occs.growTo(toInt(idx)+1); dirty.growTo(toInt(idx)+1, 0); }
301
    void  prelocate (const int num){ occs.prelocate(num); dirty.prelocate(num); }
302 303 304 305 306 307 308 309 310 311 312 313 314 315
    // Vec&  operator[](const Idx& idx){ return occs[toInt(idx)]; }
    Vec&  operator[](const Idx& idx){ return occs[toInt(idx)]; }
    Vec&  lookup    (const Idx& idx){ if (dirty[toInt(idx)]) clean(idx); return occs[toInt(idx)]; }

    void  cleanAll  ();
    void  clean     (const Idx& idx);
    void  smudge    (const Idx& idx){
        if (dirty[toInt(idx)] == 0){
            dirty[toInt(idx)] = 1;
            dirties.push(idx);
        }
    }

    void  clear(bool free = true){
316 317 318 319 320
        if(free){
            occs   .clear(free);
            dirty  .clear(free);
            dirties.clear(free);
        } else {
321
            occs   .shrink (occs   .size());
322 323 324
            dirty  .shrink_(dirty  .size());
            dirties.shrink_(dirties.size());
        }
325 326 327 328 329 330 331 332 333 334 335
    }
};


template<class Idx, class Vec, class Deleted>
void OccLists<Idx,Vec,Deleted>::cleanAll()
{
    for (int i = 0; i < dirties.size(); i++)
        // Dirties may contain duplicates so check here if a variable is already cleaned:
        if (dirty[toInt(dirties[i])])
            clean(dirties[i]);
336
    dirties.shrink_( dirties.size() );
337 338 339 340 341 342 343 344 345 346 347
}


template<class Idx, class Vec, class Deleted>
void OccLists<Idx,Vec,Deleted>::clean(const Idx& idx)
{
    Vec& vec = occs[toInt(idx)];
    int  i, j;
    for (i = j = 0; i < vec.size(); i++)
        if (!deleted(vec[i]))
            vec[j++] = vec[i];
348
    vec.shrink_(i - j);
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
    dirty[toInt(idx)] = 0;
}


//=================================================================================================
// CMap -- a class for mapping clauses to values:


template<class T>
class CMap
{
    struct CRefHash {
        uint32_t operator()(CRef cr) const { return (uint32_t)cr; } };

    typedef Map<CRef, T, CRefHash> HashTable;
    HashTable map;
        
 public:
    // Size-operations:
    void     clear       ()                           { map.clear(); }
    int      size        ()                const      { return map.elems(); }

    
    // Insert/Remove/Test mapping:
    void     insert      (CRef cr, const T& t){ map.insert(cr, t); }
    void     growTo      (CRef cr, const T& t){ map.insert(cr, t); } // NOTE: for compatibility
    void     remove      (CRef cr)            { map.remove(cr); }
    bool     has         (CRef cr, T& t)      { return map.peek(cr, t); }

    // Vector interface (the clause 'c' must already exist):
    const T& operator [] (CRef cr) const      { return map[cr]; }
    T&       operator [] (CRef cr)            { return map[cr]; }

    // Iteration (not transparent at all at the moment):
    int  bucket_count() const { return map.bucket_count(); }
    const vec<typename HashTable::Pair>& bucket(int i) const { return map.bucket(i); }

    // Move contents to other map:
    void moveTo(CMap& other){ map.moveTo(other.map); }

    // TMP debug:
    void debug(){
        printf(" --- size = %d, bucket_count = %d\n", size(), map.bucket_count()); }
};


/*_________________________________________________________________________________________________
|
|  subsumes : (other : const Clause&)  ->  Lit
|  
|  Description:
|       Checks if clause subsumes 'other', and at the same time, if it can be used to simplify 'other'
|       by subsumption resolution.
|  
|    Result:
|       lit_Error  - No subsumption or simplification
|       lit_Undef  - Clause subsumes 'other'
|       p          - The literal p can be deleted from 'other'
|________________________________________________________________________________________________@*/
inline Lit Clause::subsumes(const Clause& other) const
{
    //if (other.size() < size() || (extra.abst & ~other.extra.abst) != 0)
    //if (other.size() < size() || (!learnt() && !other.learnt() && (extra.abst & ~other.extra.abst) != 0))
    assert(!header.learnt);   assert(!other.header.learnt);
    assert(header.has_extra); assert(other.header.has_extra);
    if (other.header.size < header.size || (data[header.size].abs & ~other.data[other.header.size].abs) != 0)
        return lit_Error;

    Lit        ret = lit_Undef;
    const Lit* c   = (const Lit*)(*this);
    const Lit* d   = (const Lit*)other;

    for (unsigned i = 0; i < header.size; i++) {
        // search for c[i] or ~c[i]
        for (unsigned j = 0; j < other.header.size; j++)
            if (c[i] == d[j])
                goto ok;
            else if (ret == lit_Undef && c[i] == ~d[j]){
                ret = c[i];
                goto ok;
            }

        // did not find it
        return lit_Error;
    ok:;
    }

    return ret;
}

inline void Clause::strengthen(Lit p)
{
    remove(*this, p);
    calcAbstraction();
}
 
//=================================================================================================
}

ABC_NAMESPACE_CXX_HEADER_END

#endif