Solver.cpp 29.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
/***************************************************************************************[Solver.cc]
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Copyright (c) 2007-2010, Niklas Sorensson

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/

#include <math.h>

#include "Sort.h"
#include "Solver.h"

using namespace Minisat;

//=================================================================================================
// Options:


static const char* _cat = "CORE";

static DoubleOption  opt_var_decay         (_cat, "var-decay",   "The variable activity decay factor",            0.95,     DoubleRange(0, false, 1, false));
static DoubleOption  opt_clause_decay      (_cat, "cla-decay",   "The clause activity decay factor",              0.999,    DoubleRange(0, false, 1, false));
static DoubleOption  opt_random_var_freq   (_cat, "rnd-freq",    "The frequency with which the decision heuristic tries to choose a random variable", 0, DoubleRange(0, true, 1, true));
static DoubleOption  opt_random_seed       (_cat, "rnd-seed",    "Used by the random variable selection",         91648253, DoubleRange(0, false, HUGE_VAL, false));
static IntOption     opt_ccmin_mode        (_cat, "ccmin-mode",  "Controls conflict clause minimization (0=none, 1=basic, 2=deep)", 2, IntRange(0, 2));
static IntOption     opt_phase_saving      (_cat, "phase-saving", "Controls the level of phase saving (0=none, 1=limited, 2=full)", 2, IntRange(0, 2));
static BoolOption    opt_rnd_init_act      (_cat, "rnd-init",    "Randomize the initial activity", false);
static BoolOption    opt_luby_restart      (_cat, "luby",        "Use the Luby restart sequence", true);
static IntOption     opt_restart_first     (_cat, "rfirst",      "The base restart interval", 100, IntRange(1, INT32_MAX));
static DoubleOption  opt_restart_inc       (_cat, "rinc",        "Restart interval increase factor", 2, DoubleRange(1, false, HUGE_VAL, false));
static DoubleOption  opt_garbage_frac      (_cat, "gc-frac",     "The fraction of wasted memory allowed before a garbage collection is triggered",  0.20, DoubleRange(0, false, HUGE_VAL, false));


//=================================================================================================
// Constructor/Destructor:


Solver::Solver() :

    // Parameters (user settable):
    //
    verbosity        (0)
  , var_decay        (opt_var_decay)
  , clause_decay     (opt_clause_decay)
  , random_var_freq  (opt_random_var_freq)
  , random_seed      (opt_random_seed)
  , luby_restart     (opt_luby_restart)
  , ccmin_mode       (opt_ccmin_mode)
  , phase_saving     (opt_phase_saving)
  , rnd_pol          (false)
  , rnd_init_act     (opt_rnd_init_act)
  , garbage_frac     (opt_garbage_frac)
  , restart_first    (opt_restart_first)
  , restart_inc      (opt_restart_inc)

    // Parameters (the rest):
    //
  , learntsize_factor((double)1/(double)3), learntsize_inc(1.1)

    // Parameters (experimental):
    //
  , learntsize_adjust_start_confl (100)
  , learntsize_adjust_inc         (1.5)

    // Statistics: (formerly in 'SolverStats')
    //
  , solves(0), starts(0), decisions(0), rnd_decisions(0), propagations(0), conflicts(0)
  , dec_vars(0), clauses_literals(0), learnts_literals(0), max_literals(0), tot_literals(0)

  , ok                 (true)
  , cla_inc            (1)
  , var_inc            (1)
  , watches            (WatcherDeleted(ca))
  , qhead              (0)
  , simpDB_assigns     (-1)
  , simpDB_props       (0)
  , order_heap         (VarOrderLt(activity))
  , progress_estimate  (0)
  , remove_satisfied   (true)

    // Resource constraints:
    //
  , conflict_budget    (-1)
  , propagation_budget (-1)
  , asynch_interrupt   (false)
{}


Solver::~Solver()
{
}


//=================================================================================================
// Minor methods:


// Creates a new SAT variable in the solver. If 'decision' is cleared, variable will not be
// used as a decision variable (NOTE! This has effects on the meaning of a SATISFIABLE result).
//
Var Solver::newVar(bool sign, bool dvar)
{
    int v = nVars();
    watches  .init(mkLit(v, false));
    watches  .init(mkLit(v, true ));
    assigns  .push(l_Undef);
    vardata  .push(mkVarData(CRef_Undef, 0));
    //activity .push(0);
    activity .push(rnd_init_act ? drand(random_seed) * 0.00001 : 0);
    seen     .push(0);
    polarity .push(sign);
    decision .push();
    trail    .capacity(v+1);
    setDecisionVar(v, dvar);
    return v;
}


bool Solver::addClause_(vec<Lit>& ps)
{
    assert(decisionLevel() == 0);
    if (!ok) return false;

    // Check if clause is satisfied and remove false/duplicate literals:
    sort(ps);
    Lit p; int i, j;
    for (i = j = 0, p = lit_Undef; i < ps.size(); i++)
        if (value(ps[i]) == l_True || ps[i] == ~p)
            return true;
        else if (value(ps[i]) != l_False && ps[i] != p)
            ps[j++] = p = ps[i];
    ps.shrink(i - j);

    if (ps.size() == 0)
        return ok = false;
    else if (ps.size() == 1){
        uncheckedEnqueue(ps[0]);
        return ok = (propagate() == CRef_Undef);
    }else{
        CRef cr = ca.alloc(ps, false);
        clauses.push(cr);
        attachClause(cr);
    }

    return true;
}


void Solver::attachClause(CRef cr) {
    const Clause& c = ca[cr];
    assert(c.size() > 1);
    watches[~c[0]].push(Watcher(cr, c[1]));
    watches[~c[1]].push(Watcher(cr, c[0]));
    if (c.learnt()) learnts_literals += c.size();
    else            clauses_literals += c.size(); }


void Solver::detachClause(CRef cr, bool strict) {
    const Clause& c = ca[cr];
    assert(c.size() > 1);
    
    if (strict){
        remove(watches[~c[0]], Watcher(cr, c[1]));
        remove(watches[~c[1]], Watcher(cr, c[0]));
    }else{
        // Lazy detaching: (NOTE! Must clean all watcher lists before garbage collecting this clause)
        watches.smudge(~c[0]);
        watches.smudge(~c[1]);
    }

    if (c.learnt()) learnts_literals -= c.size();
    else            clauses_literals -= c.size(); }


void Solver::removeClause(CRef cr) {
    Clause& c = ca[cr];
    detachClause(cr);
    // Don't leave pointers to free'd memory!
    if (locked(c)) vardata[var(c[0])].reason = CRef_Undef;
    c.mark(1); 
    ca._free(cr);
}


bool Solver::satisfied(const Clause& c) const {
    for (int i = 0; i < c.size(); i++)
        if (value(c[i]) == l_True)
            return true;
    return false; }


// Revert to the state at given level (keeping all assignment at 'level' but not beyond).
//
void Solver::cancelUntil(int level) {
    if (decisionLevel() > level){
        for (int c = trail.size()-1; c >= trail_lim[level]; c--){
            Var      x  = var(trail[c]);
            assigns [x] = l_Undef;
            if (phase_saving > 1 || (phase_saving == 1) && c > trail_lim.last())
                polarity[x] = sign(trail[c]);
            insertVarOrder(x); }
        qhead = trail_lim[level];
        trail.shrink(trail.size() - trail_lim[level]);
        trail_lim.shrink(trail_lim.size() - level);
    } }


//=================================================================================================
// Major methods:


Lit Solver::pickBranchLit()
{
    Var next = var_Undef;

    // Random decision:
    if (drand(random_seed) < random_var_freq && !order_heap.empty()){
        next = order_heap[irand(random_seed,order_heap.size())];
        if (value(next) == l_Undef && decision[next])
            rnd_decisions++; }

    // Activity based decision:
    while (next == var_Undef || value(next) != l_Undef || !decision[next])
        if (order_heap.empty()){
            next = var_Undef;
            break;
        }else
            next = order_heap.removeMin();

    return next == var_Undef ? lit_Undef : mkLit(next, rnd_pol ? drand(random_seed) < 0.5 : polarity[next]);
}


/*_________________________________________________________________________________________________
|
|  analyze : (confl : Clause*) (out_learnt : vec<Lit>&) (out_btlevel : int&)  ->  [void]
|  
|  Description:
|    Analyze conflict and produce a reason clause.
|  
|    Pre-conditions:
|      * 'out_learnt' is assumed to be cleared.
|      * Current decision level must be greater than root level.
|  
|    Post-conditions:
|      * 'out_learnt[0]' is the asserting literal at level 'out_btlevel'.
|      * If out_learnt.size() > 1 then 'out_learnt[1]' has the greatest decision level of the 
|        rest of literals. There may be others from the same level though.
|  
|________________________________________________________________________________________________@*/
void Solver::analyze(CRef confl, vec<Lit>& out_learnt, int& out_btlevel)
{
    int pathC = 0;
    Lit p     = lit_Undef;

    // Generate conflict clause:
    //
    out_learnt.push();      // (leave room for the asserting literal)
    int index   = trail.size() - 1;

    do{
        assert(confl != CRef_Undef); // (otherwise should be UIP)
        Clause& c = ca[confl];

        if (c.learnt())
            claBumpActivity(c);

        for (int j = (p == lit_Undef) ? 0 : 1; j < c.size(); j++){
            Lit q = c[j];

            if (!seen[var(q)] && level(var(q)) > 0){
                varBumpActivity(var(q));
                seen[var(q)] = 1;
                if (level(var(q)) >= decisionLevel())
                    pathC++;
                else
                    out_learnt.push(q);
            }
        }
        
        // Select next clause to look at:
        while (!seen[var(trail[index--])]);
        p     = trail[index+1];
        confl = reason(var(p));
        seen[var(p)] = 0;
        pathC--;

    }while (pathC > 0);
    out_learnt[0] = ~p;

    // Simplify conflict clause:
    //
    int i, j;
    out_learnt.copyTo(analyze_toclear);
    if (ccmin_mode == 2){
        uint32_t abstract_level = 0;
        for (i = 1; i < out_learnt.size(); i++)
            abstract_level |= abstractLevel(var(out_learnt[i])); // (maintain an abstraction of levels involved in conflict)

        for (i = j = 1; i < out_learnt.size(); i++)
            if (reason(var(out_learnt[i])) == CRef_Undef || !litRedundant(out_learnt[i], abstract_level))
                out_learnt[j++] = out_learnt[i];
        
    }else if (ccmin_mode == 1){
        for (i = j = 1; i < out_learnt.size(); i++){
            Var x = var(out_learnt[i]);

            if (reason(x) == CRef_Undef)
                out_learnt[j++] = out_learnt[i];
            else{
                Clause& c = ca[reason(var(out_learnt[i]))];
                for (int k = 1; k < c.size(); k++)
                    if (!seen[var(c[k])] && level(var(c[k])) > 0){
                        out_learnt[j++] = out_learnt[i];
                        break; }
            }
        }
    }else
        i = j = out_learnt.size();

    max_literals += out_learnt.size();
    out_learnt.shrink(i - j);
    tot_literals += out_learnt.size();

    // Find correct backtrack level:
    //
    if (out_learnt.size() == 1)
        out_btlevel = 0;
    else{
        int max_i = 1;
        // Find the first literal assigned at the next-highest level:
        for (int i = 2; i < out_learnt.size(); i++)
            if (level(var(out_learnt[i])) > level(var(out_learnt[max_i])))
                max_i = i;
        // Swap-in this literal at index 1:
        Lit p             = out_learnt[max_i];
        out_learnt[max_i] = out_learnt[1];
        out_learnt[1]     = p;
        out_btlevel       = level(var(p));
    }

    for (j = 0; j < analyze_toclear.size(); j++) seen[var(analyze_toclear[j])] = 0;    // ('seen[]' is now cleared)
}


// Check if 'p' can be removed. 'abstract_levels' is used to abort early if the algorithm is
// visiting literals at levels that cannot be removed later.
bool Solver::litRedundant(Lit p, uint32_t abstract_levels)
{
    analyze_stack.clear(); analyze_stack.push(p);
    int top = analyze_toclear.size();
    while (analyze_stack.size() > 0){
        assert(reason(var(analyze_stack.last())) != CRef_Undef);
        Clause& c = ca[reason(var(analyze_stack.last()))]; analyze_stack.pop();

        for (int i = 1; i < c.size(); i++){
            Lit p  = c[i];
            if (!seen[var(p)] && level(var(p)) > 0){
                if (reason(var(p)) != CRef_Undef && (abstractLevel(var(p)) & abstract_levels) != 0){
                    seen[var(p)] = 1;
                    analyze_stack.push(p);
                    analyze_toclear.push(p);
                }else{
                    for (int j = top; j < analyze_toclear.size(); j++)
                        seen[var(analyze_toclear[j])] = 0;
                    analyze_toclear.shrink(analyze_toclear.size() - top);
                    return false;
                }
            }
        }
    }

    return true;
}


/*_________________________________________________________________________________________________
|
|  analyzeFinal : (p : Lit)  ->  [void]
|  
|  Description:
|    Specialized analysis procedure to express the final conflict in terms of assumptions.
|    Calculates the (possibly empty) set of assumptions that led to the assignment of 'p', and
|    stores the result in 'out_conflict'.
|________________________________________________________________________________________________@*/
void Solver::analyzeFinal(Lit p, vec<Lit>& out_conflict)
{
    out_conflict.clear();
    out_conflict.push(p);

    if (decisionLevel() == 0)
        return;

    seen[var(p)] = 1;

    for (int i = trail.size()-1; i >= trail_lim[0]; i--){
        Var x = var(trail[i]);
        if (seen[x]){
            if (reason(x) == CRef_Undef){
                assert(level(x) > 0);
                out_conflict.push(~trail[i]);
            }else{
                Clause& c = ca[reason(x)];
                for (int j = 1; j < c.size(); j++)
                    if (level(var(c[j])) > 0)
                        seen[var(c[j])] = 1;
            }
            seen[x] = 0;
        }
    }

    seen[var(p)] = 0;
}


void Solver::uncheckedEnqueue(Lit p, CRef from)
{
    assert(value(p) == l_Undef);
    assigns[var(p)] = lbool(!sign(p));
    vardata[var(p)] = mkVarData(from, decisionLevel());
    trail.push_(p);
}


/*_________________________________________________________________________________________________
|
|  propagate : [void]  ->  [Clause*]
|  
|  Description:
|    Propagates all enqueued facts. If a conflict arises, the conflicting clause is returned,
|    otherwise CRef_Undef.
|  
|    Post-conditions:
|      * the propagation queue is empty, even if there was a conflict.
|________________________________________________________________________________________________@*/
CRef Solver::propagate()
{
    CRef    confl     = CRef_Undef;
    int     num_props = 0;
    watches.cleanAll();

    while (qhead < trail.size()){
        Lit            p   = trail[qhead++];     // 'p' is enqueued fact to propagate.
        vec<Watcher>&  ws  = watches[p];
        Watcher        *i, *j, *end;
        num_props++;

        for (i = j = (Watcher*)ws, end = i + ws.size();  i != end;){
            // Try to avoid inspecting the clause:
            Lit blocker = i->blocker;
            if (value(blocker) == l_True){
                *j++ = *i++; continue; }

            // Make sure the false literal is data[1]:
            CRef     cr        = i->cref;
            Clause&  c         = ca[cr];
            Lit      false_lit = ~p;
            if (c[0] == false_lit)
                c[0] = c[1], c[1] = false_lit;
            assert(c[1] == false_lit);
            i++;

            // If 0th watch is true, then clause is already satisfied.
            Lit     first = c[0];
            Watcher w     = Watcher(cr, first);
            if (first != blocker && value(first) == l_True){
                *j++ = w; continue; }

            // Look for new watch:
            for (int k = 2; k < c.size(); k++)
                if (value(c[k]) != l_False){
                    c[1] = c[k]; c[k] = false_lit;
                    watches[~c[1]].push(w);
                    goto NextClause; }

            // Did not find watch -- clause is unit under assignment:
            *j++ = w;
            if (value(first) == l_False){
                confl = cr;
                qhead = trail.size();
                // Copy the remaining watches:
                while (i < end)
                    *j++ = *i++;
            }else
                uncheckedEnqueue(first, cr);

        NextClause:;
        }
        ws.shrink(i - j);
    }
    propagations += num_props;
    simpDB_props -= num_props;

    return confl;
}


/*_________________________________________________________________________________________________
|
|  reduceDB : ()  ->  [void]
|  
|  Description:
|    Remove half of the learnt clauses, minus the clauses locked by the current assignment. Locked
|    clauses are clauses that are reason to some assignment. Binary clauses are never removed.
|________________________________________________________________________________________________@*/
struct reduceDB_lt { 
    ClauseAllocator& ca;
    reduceDB_lt(ClauseAllocator& ca_) : ca(ca_) {}
    bool operator () (CRef x, CRef y) { 
        return ca[x].size() > 2 && (ca[y].size() == 2 || ca[x].activity() < ca[y].activity()); } 
};
void Solver::reduceDB()
{
    int     i, j;
    double  extra_lim = cla_inc / learnts.size();    // Remove any clause below this activity

    sort(learnts, reduceDB_lt(ca));
    // Don't delete binary or locked clauses. From the rest, delete clauses from the first half
    // and clauses with activity smaller than 'extra_lim':
    for (i = j = 0; i < learnts.size(); i++){
        Clause& c = ca[learnts[i]];
        if (c.size() > 2 && !locked(c) && (i < learnts.size() / 2 || c.activity() < extra_lim))
            removeClause(learnts[i]);
        else
            learnts[j++] = learnts[i];
    }
    learnts.shrink(i - j);
    checkGarbage();
}


void Solver::removeSatisfied(vec<CRef>& cs)
{
    int i, j;
    for (i = j = 0; i < cs.size(); i++){
        Clause& c = ca[cs[i]];
        if (satisfied(c))
            removeClause(cs[i]);
        else
            cs[j++] = cs[i];
    }
    cs.shrink(i - j);
}


void Solver::rebuildOrderHeap()
{
    vec<Var> vs;
    for (Var v = 0; v < nVars(); v++)
        if (decision[v] && value(v) == l_Undef)
            vs.push(v);
    order_heap.build(vs);
}


/*_________________________________________________________________________________________________
|
|  simplify : [void]  ->  [bool]
|  
|  Description:
|    Simplify the clause database according to the current top-level assigment. Currently, the only
|    thing done here is the removal of satisfied clauses, but more things can be put here.
|________________________________________________________________________________________________@*/
bool Solver::simplify()
{
    assert(decisionLevel() == 0);

    if (!ok || propagate() != CRef_Undef)
        return ok = false;

    if (nAssigns() == simpDB_assigns || (simpDB_props > 0))
        return true;

    // Remove satisfied clauses:
    removeSatisfied(learnts);
    if (remove_satisfied)        // Can be turned off.
        removeSatisfied(clauses);
    checkGarbage();
    rebuildOrderHeap();

    simpDB_assigns = nAssigns();
    simpDB_props   = clauses_literals + learnts_literals;   // (shouldn't depend on stats really, but it will do for now)

    return true;
}


/*_________________________________________________________________________________________________
|
|  search : (nof_conflicts : int) (params : const SearchParams&)  ->  [lbool]
|  
|  Description:
|    Search for a model the specified number of conflicts. 
|    NOTE! Use negative value for 'nof_conflicts' indicate infinity.
|  
|  Output:
|    'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If
|    all variables are decision variables, this means that the clause set is satisfiable. 'l_False'
|    if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached.
|________________________________________________________________________________________________@*/
lbool Solver::search(int nof_conflicts)
{
    assert(ok);
    int         backtrack_level;
    int         conflictC = 0;
    vec<Lit>    learnt_clause;
    starts++;

    for (;;){
        CRef confl = propagate();
        if (confl != CRef_Undef){
            // CONFLICT
            conflicts++; conflictC++;
            if (decisionLevel() == 0) return l_False;

            learnt_clause.clear();
            analyze(confl, learnt_clause, backtrack_level);
            cancelUntil(backtrack_level);

            if (learnt_clause.size() == 1){
                uncheckedEnqueue(learnt_clause[0]);
            }else{
                CRef cr = ca.alloc(learnt_clause, true);
                learnts.push(cr);
                attachClause(cr);
                claBumpActivity(ca[cr]);
                uncheckedEnqueue(learnt_clause[0], cr);
            }

            varDecayActivity();
            claDecayActivity();

            if (--learntsize_adjust_cnt == 0){
                learntsize_adjust_confl *= learntsize_adjust_inc;
                learntsize_adjust_cnt    = (int)learntsize_adjust_confl;
                max_learnts             *= learntsize_inc;

                if (verbosity >= 1)
                    printf("| %9d | %7d %8d %8d | %8d %8d %6.0f | %6.3f %% |\n", 
                           (int)conflicts, 
                           (int)dec_vars - (trail_lim.size() == 0 ? trail.size() : trail_lim[0]), nClauses(), (int)clauses_literals, 
                           (int)max_learnts, nLearnts(), ((double)((int64_t)learnts_literals))/nLearnts(), progressEstimate()*100);
            }

        }else{
            // NO CONFLICT
            if (nof_conflicts >= 0 && conflictC >= nof_conflicts || !withinBudget()){
                // Reached bound on number of conflicts:
                progress_estimate = progressEstimate();
                cancelUntil(0);
                return l_Undef; }

            // Simplify the set of problem clauses:
            if (decisionLevel() == 0 && !simplify())
                return l_False;

            if (learnts.size()-nAssigns() >= max_learnts)
                // Reduce the set of learnt clauses:
                reduceDB();

            Lit next = lit_Undef;
            while (decisionLevel() < assumptions.size()){
                // Perform user provided assumption:
                Lit p = assumptions[decisionLevel()];
                if (value(p) == l_True){
                    // Dummy decision level:
                    newDecisionLevel();
                }else if (value(p) == l_False){
                    analyzeFinal(~p, conflict);
                    return l_False;
                }else{
                    next = p;
                    break;
                }
            }

            if (next == lit_Undef){
                // New variable decision:
                decisions++;
                next = pickBranchLit();

                if (next == lit_Undef)
                    // Model found:
                    return l_True;
            }

            // Increase decision level and enqueue 'next'
            newDecisionLevel();
            uncheckedEnqueue(next);
        }
    }
}


double Solver::progressEstimate() const
{
    double  progress = 0;
    double  F = 1.0 / nVars();

    for (int i = 0; i <= decisionLevel(); i++){
        int beg = i == 0 ? 0 : trail_lim[i - 1];
        int end = i == decisionLevel() ? trail.size() : trail_lim[i];
        progress += pow(F, i) * (end - beg);
    }

    return progress / nVars();
}

/*
  Finite subsequences of the Luby-sequence:

  0: 1
  1: 1 1 2
  2: 1 1 2 1 1 2 4
  3: 1 1 2 1 1 2 4 1 1 2 1 1 2 4 8
  ...


 */

static double luby(double y, int x){

    // Find the finite subsequence that contains index 'x', and the
    // size of that subsequence:
    int size, seq;
    for (size = 1, seq = 0; size < x+1; seq++, size = 2*size+1);

    while (size-1 != x){
        size = (size-1)>>1;
        seq--;
        x = x % size;
    }

    return pow(y, seq);
}

// NOTE: assumptions passed in member-variable 'assumptions'.
lbool Solver::solve_()
{
    model.clear();
    conflict.clear();
    if (!ok) return l_False;

    solves++;

    max_learnts               = nClauses() * learntsize_factor;
    learntsize_adjust_confl   = learntsize_adjust_start_confl;
    learntsize_adjust_cnt     = (int)learntsize_adjust_confl;
    lbool   status            = l_Undef;

    if (verbosity >= 1){
        printf("============================[ Search Statistics ]==============================\n");
        printf("| Conflicts |          ORIGINAL         |          LEARNT          | Progress |\n");
        printf("|           |    Vars  Clauses Literals |    Limit  Clauses Lit/Cl |          |\n");
        printf("===============================================================================\n");
    }

    // Search:
    int curr_restarts = 0;
    while (status == l_Undef){
        double rest_base = luby_restart ? luby(restart_inc, curr_restarts) : pow(restart_inc, curr_restarts);
        status = search(rest_base * restart_first);
        if (!withinBudget()) break;
        curr_restarts++;
    }

    if (verbosity >= 1)
        printf("===============================================================================\n");


    if (status == l_True){
        // Extend & copy model:
        model.growTo(nVars());
        for (int i = 0; i < nVars(); i++) model[i] = value(i);
    }else if (status == l_False && conflict.size() == 0)
        ok = false;

    cancelUntil(0);
    return status;
}

//=================================================================================================
// Writing CNF to DIMACS:
// 
// FIXME: this needs to be rewritten completely.

static Var mapVar(Var x, vec<Var>& map, Var& max)
{
    if (map.size() <= x || map[x] == -1){
        map.growTo(x+1, -1);
        map[x] = max++;
    }
    return map[x];
}


void Solver::toDimacs(FILE* f, Clause& c, vec<Var>& map, Var& max)
{
    if (satisfied(c)) return;

    for (int i = 0; i < c.size(); i++)
        if (value(c[i]) != l_False)
            fprintf(f, "%s%d ", sign(c[i]) ? "-" : "", mapVar(var(c[i]), map, max)+1);
    fprintf(f, "0\n");
}


void Solver::toDimacs(const char *file, const vec<Lit>& assumps)
{
    FILE* f = fopen(file, "wr");
    if (f == NULL)
        fprintf(stderr, "could not open file %s\n", file), exit(1);
    toDimacs(f, assumps);
    fclose(f);
}


void Solver::toDimacs(FILE* f, const vec<Lit>& assumps)
{
    // Handle case when solver is in contradictory state:
    if (!ok){
        fprintf(f, "p cnf 1 2\n1 0\n-1 0\n");
        return; }

    vec<Var> map; Var max = 0;

    // Cannot use removeClauses here because it is not safe
    // to deallocate them at this point. Could be improved.
Alan Mishchenko committed
842 843
    int i, cnt = 0;
    for (i = 0; i < clauses.size(); i++)
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
        if (!satisfied(ca[clauses[i]]))
            cnt++;
        
    for (i = 0; i < clauses.size(); i++)
        if (!satisfied(ca[clauses[i]])){
            Clause& c = ca[clauses[i]];
            for (int j = 0; j < c.size(); j++)
                if (value(c[j]) != l_False)
                    mapVar(var(c[j]), map, max);
        }

    // Assumptions are added as unit clauses:
    cnt += assumptions.size();

    fprintf(f, "p cnf %d %d\n", max, cnt);

    for (i = 0; i < assumptions.size(); i++){
        assert(value(assumptions[i]) != l_False);
        fprintf(f, "%s%d 0\n", sign(assumptions[i]) ? "-" : "", mapVar(var(assumptions[i]), map, max)+1);
    }

    for (i = 0; i < clauses.size(); i++)
        toDimacs(f, ca[clauses[i]], map, max);

    if (verbosity > 0)
        printf("Wrote %d clauses with %d variables.\n", cnt, max);
}


//=================================================================================================
// Garbage Collection methods:

void Solver::relocAll(ClauseAllocator& to)
{
    // All watchers:
    //
    // for (int i = 0; i < watches.size(); i++)
    watches.cleanAll();
    for (int v = 0; v < nVars(); v++)
        for (int s = 0; s < 2; s++){
            Lit p = mkLit(v, s);
            // printf(" >>> RELOCING: %s%d\n", sign(p)?"-":"", var(p)+1);
            vec<Watcher>& ws = watches[p];
            for (int j = 0; j < ws.size(); j++)
                ca.reloc(ws[j].cref, to);
        }

    // All reasons:
    //
Alan Mishchenko committed
893 894
    int i;
    for (i = 0; i < trail.size(); i++){
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
        Var v = var(trail[i]);

        if (reason(v) != CRef_Undef && (ca[reason(v)].reloced() || locked(ca[reason(v)])))
            ca.reloc(vardata[v].reason, to);
    }

    // All learnt:
    //
    for (i = 0; i < learnts.size(); i++)
        ca.reloc(learnts[i], to);

    // All original:
    //
    for (i = 0; i < clauses.size(); i++)
        ca.reloc(clauses[i], to);
}


void Solver::garbageCollect()
{
    // Initialize the next region to a size corresponding to the estimated utilization degree. This
    // is not precise but should avoid some unnecessary reallocations for the new region:
    ClauseAllocator to(ca.size() - ca.wasted()); 

    relocAll(to);
    if (verbosity >= 2)
        printf("|  Garbage collection:   %12d bytes => %12d bytes             |\n", 
               ca.size()*ClauseAllocator::Unit_Size, to.size()*ClauseAllocator::Unit_Size);
    to.moveTo(ca);
}