opo.c 16.6 KB
Newer Older
Alan Mishchenko committed
1 2 3 4 5 6 7 8 9 10 11
/*
 * Revision Control Information
 *
 * $Source$
 * $Author$
 * $Revision$
 * $Date$
 *
 */
#include "espresso.h"

12 13 14
ABC_NAMESPACE_IMPL_START


Alan Mishchenko committed
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
/*
 *   Phase assignment technique (T. Sasao):
 *
 *      1. create a function with 2*m outputs which implements the
 *      original function and its complement for each output
 *
 *      2. minimize this function
 *
 *      3. choose the minimum number of prime implicants from the
 *      result of step 2 which are needed to realize either a function
 *      or its complement for each output
 *
 *  Step 3 is performed in a rather crude way -- by simply multiplying
 *  out a large expression of the form:
 *
 *      I = (ab + cdef)(acd + bgh) ...
 *
 *  which is a product of m expressions where each expression has two
 *  product terms -- one representing which primes are needed for the
 *  function, and one representing which primes are needed for the
 *  complement.  The largest product term resulting shows which primes
 *  to keep to implement one function or the other for each output.
 *  For problems with many outputs, this may grind to a
 *  halt.
 *
 *  Untried: form complement of I and use unate_complement ...
 *
 *  I have unsuccessfully tried several modifications to the basic
 *  algorithm.  The first is quite simple: use Sasao's technique, but
 *  only commit to a single output at a time (rather than all
 *  outputs).  The goal would be that the later minimizations can "take
 *  into account" the partial assignment at each step.  This is
 *  expensive (m+1 minimizations rather than 2), and the results are
 *  discouraging.
 *
 *  The second modification is rather complicated.  The result from the
 *  minimization in step 2 is guaranteed to be minimal.  Hence, for
 *  each output, the set of primes with a 1 in that output are both
 *  necessary and sufficient to implement the function.  Espresso
 *  achieves the minimality using the routine MAKE_SPARSE.  The
 *  modification is to prevent MAKE_SPARSE from running.  Hence, there
 *  are potentially many subsets of the set of primes with a 1 in a
 *  column which can be used to implement that output.  We use
 *  IRREDUNDANT to enumerate all possible subsets and then proceed as
 *  before.
 */

static int opo_no_make_sparse;
static int opo_repeated;
static int opo_exact;
static void minimize();

void phase_assignment(PLA, opo_strategy)
pPLA PLA;
int opo_strategy;
{
    opo_no_make_sparse = opo_strategy % 2;
    skip_make_sparse = opo_no_make_sparse;
    opo_repeated = (opo_strategy / 2) % 2;
    opo_exact = (opo_strategy / 4) % 2;

    /* Determine a phase assignment */
    if (PLA->phase != NULL) {
    FREE(PLA->phase);
    }

    if (opo_repeated) {
    PLA->phase = set_save(cube.fullset);
    repeated_phase_assignment(PLA);
    } else {
    PLA->phase = find_phase(PLA, 0, (pcube) NULL);
    }

    /* Now minimize with this assignment */
    skip_make_sparse = FALSE;
    (void) set_phase(PLA);
    minimize(PLA);
}

/*
 *  repeated_phase_assignment -- an alternate strategy which commits
 *  to a single phase assignment a step at a time.  Performs m + 1
 *  minimizations !
 */
void repeated_phase_assignment(PLA)
pPLA PLA;
{
    int i;
    pcube phase;

    for(i = 0; i < cube.part_size[cube.output]; i++) {

    /* Find best assignment for all undecided outputs */
    phase = find_phase(PLA, i, PLA->phase);

    /* Commit for only a single output ... */
    if (! is_in_set(phase, cube.first_part[cube.output] + i)) {
        set_remove(PLA->phase, cube.first_part[cube.output] + i);
    }

    if (trace || summary) {
        printf("\nOPO loop for output #%d\n", i);
        printf("PLA->phase is %s\n", pc1(PLA->phase));
        printf("phase      is %s\n", pc1(phase));
    }
    set_free(phase);
    }
}


/*
 *  find_phase -- find a phase assignment for the PLA for all outputs starting
 *  with output number first_output.
 */
pcube find_phase(PLA, first_output, phase1)
pPLA PLA;
int first_output;
pcube phase1;
{
    pcube phase;
    pPLA PLA1;

    phase = set_save(cube.fullset);

    /* setup the double-phase characteristic function, resize the cube */
    PLA1 = new_PLA();
    PLA1->F = sf_save(PLA->F);
    PLA1->R = sf_save(PLA->R);
    PLA1->D = sf_save(PLA->D);
    if (phase1 != NULL) {
    PLA1->phase = set_save(phase1);
    (void) set_phase(PLA1);
    }
    EXEC_S(output_phase_setup(PLA1, first_output), "OPO-SETUP ", PLA1->F);

    /* minimize the double-phase function */
    minimize(PLA1);

    /* set the proper phases according to what gives a minimum solution */
    EXEC_S(PLA1->F = opo(phase, PLA1->F, PLA1->D, PLA1->R, first_output),
        "OPO       ", PLA1->F);
    free_PLA(PLA1);

    /* set the cube structure to reflect the old size */
    setdown_cube();
    cube.part_size[cube.output] -=
    (cube.part_size[cube.output] - first_output) / 2;
    cube_setup();

    return phase;
}

/*
 *  opo -- multiply the expression out to determine a minimum subset of
 *  primes.
 */

/*ARGSUSED*/
pcover opo(phase, T, D, R, first_output)
pcube phase;
pcover T, D, R;
int first_output;
{
    int offset, output, i, last_output, ind;
    pset pdest, select, p, p1, last, last1, not_covered, tmp;
    pset_family temp, T1, T2;

    /* must select all primes for outputs [0 .. first_output-1] */
    select = set_full(T->count);
    for(output = 0; output < first_output; output++) {
    ind = cube.first_part[cube.output] + output;
    foreachi_set(T, i, p) {
        if (is_in_set(p, ind)) {
        set_remove(select, i);
        }
    }
    }

    /* Recursively perform the intersections */
    offset = (cube.part_size[cube.output] - first_output) / 2;
    last_output = first_output + offset - 1;
    temp = opo_recur(T, D, select, offset, first_output, last_output);

    /* largest set is on top -- select primes which are inferred from it */
    pdest = temp->data;
    T1 = new_cover(T->count);
    foreachi_set(T, i, p) {
    if (! is_in_set(pdest, i)) {
        T1 = sf_addset(T1, p);
    }
    }

    set_free(select);
    sf_free(temp);

    /* finding phases is difficult -- see which functions are not covered */
    T2 = complement(cube1list(T1));
    not_covered = new_cube();
    tmp = new_cube();
    foreach_set(T, last, p) {
    foreach_set(T2, last1, p1) {
        if (cdist0(p, p1)) {
        (void) set_or(not_covered, not_covered, set_and(tmp, p, p1));
        }
    }
    }
    free_cover(T);
    free_cover(T2);
    set_free(tmp);

    /* Now reflect the phase choice in a single cube */
    for(output = first_output; output <= last_output; output++) {
    ind = cube.first_part[cube.output] + output;
    if (is_in_set(not_covered, ind)) {
        if (is_in_set(not_covered, ind + offset)) {
        fatal("error in output phase assignment");
        } else {
        set_remove(phase, ind);
        }
    }
    }
    set_free(not_covered);
    return T1;
}

pset_family opo_recur(T, D, select, offset, first, last)
pcover T, D;
pcube select;
int offset, first, last;
{
    static int level = 0;
    int middle;
    pset_family sl, sr, temp;

    level++;
    if (first == last) {
#if 0
    if (opo_no_make_sparse) {
        temp = form_cover_table(T, D, select, first, first + offset);
    } else {
        temp = opo_leaf(T, select, first, first + offset);
    }
#else
    temp = opo_leaf(T, select, first, first + offset);
#endif
    } else {
    middle = (first + last) / 2;
    sl = opo_recur(T, D, select, offset, first, middle);
    sr = opo_recur(T, D, select, offset, middle+1, last);
    temp = unate_intersect(sl, sr, level == 1);
    if (trace) {
        printf("# OPO[%d]: %4d = %4d x %4d, time = %s\n", level - 1,
        temp->count, sl->count, sr->count, print_time(ptime()));
        (void) fflush(stdout);
    }
    free_cover(sl);
    free_cover(sr);
    }
    level--;
    return temp;
}


pset_family opo_leaf(T, select, out1, out2)
register pcover T;
pset select;
int out1, out2;
{
    register pset_family temp;
    register pset p, pdest;
    register int i;

    out1 += cube.first_part[cube.output];
    out2 += cube.first_part[cube.output];

    /* Allocate space for the result */
    temp = sf_new(2, T->count);

    /* Find which primes are needed for the ON-set of this fct */
    pdest = GETSET(temp, temp->count++);
    (void) set_copy(pdest, select);
    foreachi_set(T, i, p) {
    if (is_in_set(p, out1)) {
        set_remove(pdest, i);
    }
    }

    /* Find which primes are needed for the OFF-set of this fct */
    pdest = GETSET(temp, temp->count++);
    (void) set_copy(pdest, select);
    foreachi_set(T, i, p) {
    if (is_in_set(p, out2)) {
        set_remove(pdest, i);
    }
    }

    return temp;
}

#if 0
pset_family form_cover_table(F, D, select, f, fbar)
pcover F, D;
pset select;
int f, fbar;        /* indices of f and fbar in the output part */
{
    register int i;
    register pcube p;
    pset_family f_table, fbar_table;

    /* setup required for fcube_is_covered */
    Rp_size = F->count;
    Rp_start = set_new(Rp_size);
    foreachi_set(F, i, p) {
    PUTSIZE(p, i);
    }
    foreachi_set(D, i, p) {
    RESET(p, REDUND);
    }

    f_table = find_covers(F, D, select, f);
    fbar_table = find_covers(F, D, select, fbar);
    f_table = sf_append(f_table, fbar_table);

    set_free(Rp_start);
    return f_table;
}


pset_family find_covers(F, D, select, n)
pcover F, D;
register pset select;
int n;
{
    register pset p, last, new;
    pcover F1;
    pcube *Flist;
    pset_family f_table, table;
    int i;

    n += cube.first_part[cube.output];

    /* save cubes in this output, and remove the output variable */
    F1 = new_cover(F->count);
    foreach_set(F, last, p)
    if (is_in_set(p, n)) {
        new = GETSET(F1, F1->count++);
        set_or(new, p, cube.var_mask[cube.output]);
        PUTSIZE(new, SIZE(p));
        SET(new, REDUND);
    }

    /* Find ways (sop form) to fail to cover output indexed by n */
    Flist = cube2list(F1, D);
    table = sf_new(10, Rp_size);
    foreach_set(F1, last, p) {
    set_fill(Rp_start, Rp_size);
    set_remove(Rp_start, SIZE(p));
    table = sf_append(table, fcube_is_covered(Flist, p));
    RESET(p, REDUND);
    }
    set_fill(Rp_start, Rp_size);
    foreach_set(table, last, p) {
    set_diff(p, Rp_start, p);
    }

    /* complement this to get possible ways to cover the function */
    for(i = 0; i < Rp_size; i++) {
    if (! is_in_set(select, i)) {
        p = set_new(Rp_size);
        set_insert(p, i);
        table = sf_addset(table, p);
        set_free(p);
    }
    }
    f_table = unate_compl(table);

    /* what a pain, but we need bitwise complement of this */
    set_fill(Rp_start, Rp_size);
    foreach_set(f_table, last, p) {
    set_diff(p, Rp_start, p);
    }

    free_cubelist(Flist);
    sf_free(F1);
    return f_table;
}
#endif

/*
 *  Take a PLA (ON-set, OFF-set and DC-set) and create the
 *  "double-phase characteristic function" which is merely a new
 *  function which has twice as many outputs and realizes both the
 *  function and the complement.
 *
 *  The cube structure is assumed to represent the PLA upon entering.
 *  It will be modified to represent the double-phase function upon
 *  exit.
 *
 *  Only the outputs numbered starting with "first_output" are
 *  duplicated in the output part
 */

Alan Mishchenko committed
417
void output_phase_setup(PLA, first_output)
Alan Mishchenko committed
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
INOUT pPLA PLA;
int first_output;
{
    pcover F, R, D;
    pcube mask, mask1, last;
    int first_part, offset;
    bool save;
    register pcube p, pr, pf;
    register int i, last_part;

    if (cube.output == -1)
    fatal("output_phase_setup: must have an output");

    F = PLA->F;
    D = PLA->D;
    R = PLA->R;
    first_part = cube.first_part[cube.output] + first_output;
    last_part = cube.last_part[cube.output];
    offset = cube.part_size[cube.output] - first_output;

    /* Change the output size, setup the cube structure */
    setdown_cube();
    cube.part_size[cube.output] += offset;
    cube_setup();

    /* Create a mask to select that part of the cube which isn't changing */
    mask = set_save(cube.fullset);
    for(i = first_part; i < cube.size; i++)
    set_remove(mask, i);
    mask1 = set_save(mask);
    for(i = cube.first_part[cube.output]; i < first_part; i++) {
    set_remove(mask1, i);
    }

    PLA->F = new_cover(F->count + R->count);
    PLA->R = new_cover(F->count + R->count);
    PLA->D = new_cover(D->count);

    foreach_set(F, last, p) {
    pf = GETSET(PLA->F, (PLA->F)->count++);
    pr = GETSET(PLA->R, (PLA->R)->count++);
    INLINEset_and(pf, mask, p);
    INLINEset_and(pr, mask1, p);
    for(i = first_part; i <= last_part; i++)
        if (is_in_set(p, i))
        set_insert(pf, i);
    save = FALSE;
    for(i = first_part; i <= last_part; i++)
        if (is_in_set(p, i))
        save = TRUE, set_insert(pr, i+offset);
    if (! save) PLA->R->count--;
    }

    foreach_set(R, last, p) {
    pf = GETSET(PLA->F, (PLA->F)->count++);
    pr = GETSET(PLA->R, (PLA->R)->count++);
    INLINEset_and(pf, mask1, p);
    INLINEset_and(pr, mask, p);
    save = FALSE;
    for(i = first_part; i <= last_part; i++)
        if (is_in_set(p, i))
        save = TRUE, set_insert(pf, i+offset);
    if (! save) PLA->F->count--;
    for(i = first_part; i <= last_part; i++)
        if (is_in_set(p, i))
        set_insert(pr, i);
    }

    foreach_set(D, last, p) {
    pf = GETSET(PLA->D, (PLA->D)->count++);
    INLINEset_and(pf, mask, p);
    for(i = first_part; i <= last_part; i++)
        if (is_in_set(p, i)) {
        set_insert(pf, i);
        set_insert(pf, i+offset);
        }
    }

    free_cover(F);
    free_cover(D);
    free_cover(R);
    set_free(mask);
    set_free(mask1);
}

/*
 *  set_phase -- given a "cube" which describes which phases of the output
 *  are to be implemented, compute the appropriate on-set and off-set
 */
pPLA set_phase(PLA)
INOUT pPLA PLA;
{
    pcover F1, R1;
    register pcube last, p, outmask;
    register pcube temp=cube.temp[0], phase=PLA->phase, phase1=cube.temp[1];

    outmask = cube.var_mask[cube.num_vars - 1];
    set_diff(phase1, outmask, phase);
    set_or(phase1, set_diff(temp, cube.fullset, outmask), phase1);
    F1 = new_cover((PLA->F)->count + (PLA->R)->count);
    R1 = new_cover((PLA->F)->count + (PLA->R)->count);

    foreach_set(PLA->F, last, p) {
    if (! setp_disjoint(set_and(temp, p, phase), outmask))
        set_copy(GETSET(F1, F1->count++), temp);
    if (! setp_disjoint(set_and(temp, p, phase1), outmask))
        set_copy(GETSET(R1, R1->count++), temp);
    }
    foreach_set(PLA->R, last, p) {
    if (! setp_disjoint(set_and(temp, p, phase), outmask))
        set_copy(GETSET(R1, R1->count++), temp);
    if (! setp_disjoint(set_and(temp, p, phase1), outmask))
        set_copy(GETSET(F1, F1->count++), temp);
    }
    free_cover(PLA->F);
    free_cover(PLA->R);
    PLA->F = F1;
    PLA->R = R1;
    return PLA;
}

#define POW2(x)        (1 << (x))

void opoall(PLA, first_output, last_output, opo_strategy)
pPLA PLA;
int first_output, last_output;
int opo_strategy;
{
    pcover F, D, R, best_F, best_D, best_R;
    int i, j, ind, num;
    pcube bestphase;

    opo_exact = opo_strategy;

    if (PLA->phase != NULL) {
    set_free(PLA->phase);
    }

    bestphase = set_save(cube.fullset);
    best_F = sf_save(PLA->F);
    best_D = sf_save(PLA->D);
    best_R = sf_save(PLA->R);

    for(i = 0; i < POW2(last_output - first_output + 1); i++) {

    /* save the initial PLA covers */
    F = sf_save(PLA->F);
    D = sf_save(PLA->D);
    R = sf_save(PLA->R);

    /* compute the phase cube for this iteration */
    PLA->phase = set_save(cube.fullset);
    num = i;
    for(j = last_output; j >= first_output; j--) {
        if (num % 2 == 0) {
        ind = cube.first_part[cube.output] + j;
        set_remove(PLA->phase, ind);
        }
        num /= 2;
    }

    /* set the phase and minimize */
    (void) set_phase(PLA);
    printf("# phase is %s\n", pc1(PLA->phase));
    summary = TRUE;
    minimize(PLA);

    /* see if this is the best so far */
    if (PLA->F->count < best_F->count) {
        /* save new best solution */
        set_copy(bestphase, PLA->phase);
        sf_free(best_F);
        sf_free(best_D);
        sf_free(best_R);
        best_F = PLA->F;
        best_D = PLA->D;
        best_R = PLA->R;
    } else {
        /* throw away the solution */
        free_cover(PLA->F);
        free_cover(PLA->D);
        free_cover(PLA->R);
    }
    set_free(PLA->phase);

    /* restore the initial PLA covers */
    PLA->F = F;
    PLA->D = D;
    PLA->R = R;
    }

    /* one more minimization to restore the best answer */
    PLA->phase = bestphase;
    sf_free(PLA->F);
    sf_free(PLA->D);
    sf_free(PLA->R);
    PLA->F = best_F;
    PLA->D = best_D;
    PLA->R = best_R;
}

static void minimize(PLA)
pPLA PLA;
{
    if (opo_exact) {
    EXEC_S(PLA->F = minimize_exact(PLA->F,PLA->D,PLA->R,1), "EXACT", PLA->F);
    } else {
    EXEC_S(PLA->F = espresso(PLA->F, PLA->D, PLA->R), "ESPRESSO  ",PLA->F);
    }
}
628 629
ABC_NAMESPACE_IMPL_END