wlcAbs2.c 15.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/**CFile****************************************************************

  FileName    [wlcAbs2.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Verilog parser.]

  Synopsis    [Abstraction for word-level networks.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - August 22, 2014.]

  Revision    [$Id: wlcAbs2.c,v 1.00 2014/09/12 00:00:00 alanmi Exp $]

***********************************************************************/

#include "wlc.h"
22 23 24
#include "proof/pdr/pdr.h"
#include "aig/gia/giaAig.h"
#include "sat/bmc/bmc.h"
25 26 27 28 29 30 31 32 33 34 35 36 37

ABC_NAMESPACE_IMPL_START

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

38
  Synopsis    [Mark operators that meet the abstraction criteria.]
39

40 41 42
  Description [This procedure returns the array of objects (vLeaves) that 
  should be abstracted because of their high bit-width. It uses input array (vUnmark)
  to not abstract those objects that have been refined in the previous rounds.]
43 44 45 46 47 48
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
49
static Vec_Bit_t * Wlc_NtkAbsMarkOpers( Wlc_Ntk_t * p, Wlc_Par_t * pPars, Vec_Bit_t * vUnmark, int fVerbose )
50 51
{
    Vec_Bit_t * vLeaves = Vec_BitStart( Wlc_NtkObjNumMax(p) );
52
    Wlc_Obj_t * pObj; int i, Count[4] = {0};
53 54
    Wlc_NtkForEachObj( p, pObj, i )
    {
55 56
        if ( vUnmark && Vec_BitEntry(vUnmark, i) ) // not allow this object to be abstracted away
            continue;
57 58 59
        if ( pObj->Type == WLC_OBJ_ARI_ADD || pObj->Type == WLC_OBJ_ARI_SUB || pObj->Type == WLC_OBJ_ARI_MINUS )
        {
            if ( Wlc_ObjRange(pObj) >= pPars->nBitsAdd )
60
                Vec_BitWriteEntry( vLeaves, Wlc_ObjId(p, pObj), 1 ), Count[0]++;
61 62 63 64 65
            continue;
        }
        if ( pObj->Type == WLC_OBJ_ARI_MULTI || pObj->Type == WLC_OBJ_ARI_DIVIDE || pObj->Type == WLC_OBJ_ARI_REM || pObj->Type == WLC_OBJ_ARI_MODULUS )
        {
            if ( Wlc_ObjRange(pObj) >= pPars->nBitsMul )
66
                Vec_BitWriteEntry( vLeaves, Wlc_ObjId(p, pObj), 1 ), Count[1]++;
67 68 69 70 71
            continue;
        }
        if ( pObj->Type == WLC_OBJ_MUX )
        {
            if ( Wlc_ObjRange(pObj) >= pPars->nBitsMux )
72
                Vec_BitWriteEntry( vLeaves, Wlc_ObjId(p, pObj), 1 ), Count[2]++;
73 74 75 76 77
            continue;
        }
        if ( Wlc_ObjIsCi(pObj) && !Wlc_ObjIsPi(pObj) )
        {
            if ( Wlc_ObjRange(pObj) >= pPars->nBitsFlop )
78
                Vec_BitWriteEntry( vLeaves, Wlc_ObjId(p, pObj), 1 ), Count[3]++;
79 80 81
            continue;
        }
    }
82 83
    if ( fVerbose )
        printf( "Abstraction engine marked %d adds/subs, %d muls/divs, %d muxes, and %d flops to be abstracted away.\n", Count[0], Count[1], Count[2], Count[3] );
84 85 86 87 88
    return vLeaves;
}

/**Function*************************************************************

89
  Synopsis    [Marks nodes to be included in the abstracted network.]
90

91 92 93 94
  Description [Marks all objects that will be included in the abstracted model.  
  Stops at the objects (vLeaves) that are abstracted away. Returns three arrays:
  a subset of original PIs (vPisOld), a subset of pseudo-PIs (vPisNew) and the
  set of flops present as flops in the abstracted network.]
95 96 97 98 99 100
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
101
static void Wlc_NtkAbsMarkNodes_rec( Wlc_Ntk_t * p, Wlc_Obj_t * pObj, Vec_Bit_t * vLeaves, Vec_Int_t * vPisOld, Vec_Int_t * vPisNew, Vec_Int_t * vFlops )
102 103 104 105 106 107 108
{
    int i, iFanin;
    if ( pObj->Mark )
        return;
    pObj->Mark = 1;
    if ( Vec_BitEntry(vLeaves, Wlc_ObjId(p, pObj)) )
    {
109
        assert( !Wlc_ObjIsPi(pObj) );
110 111 112 113 114
        Vec_IntPush( vPisNew, Wlc_ObjId(p, pObj) );
        return;
    }
    if ( Wlc_ObjIsCi(pObj) )
    {
115 116 117 118
        if ( Wlc_ObjIsPi(pObj) )
            Vec_IntPush( vPisOld, Wlc_ObjId(p, pObj) );
        else
            Vec_IntPush( vFlops, Wlc_ObjId(p, pObj) );
119 120 121
        return;
    }
    Wlc_ObjForEachFanin( pObj, iFanin, i )
122
        Wlc_NtkAbsMarkNodes_rec( p, Wlc_NtkObj(p, iFanin), vLeaves, vPisOld, vPisNew, vFlops );
123
}
124
static void Wlc_NtkAbsMarkNodes( Wlc_Ntk_t * p, Vec_Bit_t * vLeaves, Vec_Int_t * vPisOld, Vec_Int_t * vPisNew, Vec_Int_t * vFlops )
125 126
{
    Wlc_Obj_t * pObj;
127
    int i, Count = 0;
128 129
    Wlc_NtkCleanMarks( p );
    Wlc_NtkForEachCo( p, pObj, i )
130 131 132 133 134 135 136 137 138 139 140 141
        Wlc_NtkAbsMarkNodes_rec( p, pObj, vLeaves, vPisOld, vPisNew, vFlops );
    Wlc_NtkForEachObjVec( vFlops, p, pObj, i )
        Wlc_NtkAbsMarkNodes_rec( p, Wlc_ObjFo2Fi(p, pObj), vLeaves, vPisOld, vPisNew, vFlops );
    Wlc_NtkForEachObj( p, pObj, i )
        Count += pObj->Mark;
//    printf( "Collected %d old PIs, %d new PIs, %d flops, and %d other objects.\n", 
//        Vec_IntSize(vPisOld), Vec_IntSize(vPisNew), Vec_IntSize(vFlops), 
//        Count - Vec_IntSize(vPisOld) - Vec_IntSize(vPisNew) - Vec_IntSize(vFlops) );
    Vec_IntSort( vPisOld, 0 );
    Vec_IntSort( vPisNew, 0 );
    Vec_IntSort( vFlops, 0 );
    Wlc_NtkCleanMarks( p );
142 143 144 145
}

/**Function*************************************************************

146
  Synopsis    [Derive word-level abstracted model based on the parameter values.]
147

148 149 150 151 152
  Description [Retuns the word-level abstracted network and the set of pseudo-PIs 
  (vPisNew), which were created during abstraction. If the abstraction is
  satisfiable, some of the pseudo-PIs will be un-abstracted. These pseudo-PIs
  and their MFFC cones will be listed in the array (vUnmark), which will
  force the abstraction to not stop at these pseudo-PIs in the future.]
153 154 155 156 157 158
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
159
static Wlc_Ntk_t * Wlc_NtkAbs( Wlc_Ntk_t * p, Wlc_Par_t * pPars, Vec_Bit_t * vUnmark, Vec_Int_t ** pvPisNew, int fVerbose )
160
{
161 162 163 164
    Wlc_Ntk_t * pNtkNew = NULL;
    Vec_Int_t * vPisOld = Vec_IntAlloc( 100 );
    Vec_Int_t * vPisNew = Vec_IntAlloc( 100 );
    Vec_Int_t * vFlops  = Vec_IntAlloc( 100 );
165
    Vec_Bit_t * vLeaves = Wlc_NtkAbsMarkOpers( p, pPars, vUnmark, fVerbose );
166
    Wlc_NtkAbsMarkNodes( p, vLeaves, vPisOld, vPisNew, vFlops );
167
    Vec_BitFree( vLeaves );
168 169 170
    pNtkNew = Wlc_NtkDupDfsAbs( p, vPisOld, vPisNew, vFlops );
    Vec_IntFree( vPisOld );
    Vec_IntFree( vFlops );
171 172 173 174
    if ( pvPisNew )
        *pvPisNew = vPisNew;
    else
        Vec_IntFree( vPisNew );
175 176 177
    return pNtkNew;
}

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
/**Function*************************************************************

  Synopsis    [Find what objects need to be un-abstracted.]

  Description [Returns a subset of pseudo-PIs (vPisNew), which will be 
  prevented from being abstracted in the future rounds of abstraction.
  The AIG manager (pGia) is a bit-level view of the abstracted model.
  The counter-example (pCex) is used to find waht PPIs to refine.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static Vec_Int_t * Wlc_NtkAbsRefinement( Wlc_Ntk_t * p, Gia_Man_t * pGia, Abc_Cex_t * pCex, Vec_Int_t * vPisNew )
{
    Vec_Int_t * vRefine = Vec_IntAlloc( 100 );
    Abc_Cex_t * pCexCare;
    Wlc_Obj_t * pObj; 
    // count the number of bit-level PPIs and map them into word-level objects they were derived from
    int f, i, b, nRealPis, nPpiBits = 0;
    Vec_Int_t * vMap = Vec_IntStartFull( pCex->nPis );
    Wlc_NtkForEachObjVec( vPisNew, p, pObj, i )
        for ( b = 0; b < Wlc_ObjRange(pObj); b++ )
            Vec_IntWriteEntry( vMap, nPpiBits++, Wlc_ObjId(p, pObj) );
    // since PPIs are ordered last, the previous bits are real PIs
    nRealPis = pCex->nPis - nPpiBits;
    // find the care-set
    pCexCare = Bmc_CexCareMinimizeAig( pGia, nRealPis, pCex, 1, 0, 0 );
    assert( pCexCare->nPis == pCex->nPis );
    // detect care PPIs
    for ( f = 0; f <= pCexCare->iFrame; f++ )
        for ( i = nRealPis; i < pCexCare->nPis; i++ )
            if ( Abc_InfoHasBit(pCexCare->pData, pCexCare->nRegs + pCexCare->nPis * f + i) )
                Vec_IntPushUniqueOrder( vRefine, Vec_IntEntry(vMap, i-nRealPis) );
    Abc_CexFree( pCexCare );
    Vec_IntFree( vMap );
    if ( Vec_IntSize(vRefine) == 0 )// real CEX
        Vec_IntFreeP( &vRefine );
    return vRefine;
}

/**Function*************************************************************

  Synopsis    [Mark MFFC cones of the un-abstracted objects.]

  Description [The MFFC cones of the objects in vRefine are traversed
  and all their nodes are marked in vUnmark.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static int Wlc_NtkNodeDeref_rec( Wlc_Ntk_t * p, Wlc_Obj_t * pNode, Vec_Bit_t * vUnmark )
{
    int i, Fanin, Counter = 1;
    if ( Wlc_ObjIsCi(pNode) )
        return 0;
    Vec_BitWriteEntry( vUnmark, Wlc_ObjId(p, pNode), 1 );
    Wlc_ObjForEachFanin( pNode, Fanin, i )
    {
        Vec_IntAddToEntry( &p->vRefs, Fanin, -1 );
        if ( Vec_IntEntry(&p->vRefs, Fanin) == 0 )
            Counter += Wlc_NtkNodeDeref_rec( p, Wlc_NtkObj(p, Fanin), vUnmark );
    }
    return Counter;
}
static int Wlc_NtkNodeRef_rec( Wlc_Ntk_t * p, Wlc_Obj_t * pNode )
{
    int i, Fanin, Counter = 1;
    if ( Wlc_ObjIsCi(pNode) )
        return 0;
    Wlc_ObjForEachFanin( pNode, Fanin, i )
    {
        if ( Vec_IntEntry(&p->vRefs, Fanin) == 0 )
            Counter += Wlc_NtkNodeRef_rec( p, Wlc_NtkObj(p, Fanin) );
        Vec_IntAddToEntry( &p->vRefs, Fanin, 1 );
    }
    return Counter;
}
static int Wlc_NtkMarkMffc( Wlc_Ntk_t * p, Wlc_Obj_t * pNode, Vec_Bit_t * vUnmark )
{
    int Count1, Count2;
    // if this is a flop output, compute MFFC of the corresponding flop input
    while ( Wlc_ObjIsCi(pNode) )
    {
        Vec_BitWriteEntry( vUnmark, Wlc_ObjId(p, pNode), 1 );
        pNode = Wlc_ObjFo2Fi(p, pNode);
    }
    assert( !Wlc_ObjIsCi(pNode) );
    // dereference the node (and set the bits in vUnmark)
    Count1 = Wlc_NtkNodeDeref_rec( p, pNode, vUnmark );
    // reference it back
    Count2 = Wlc_NtkNodeRef_rec( p, pNode );
    assert( Count1 == Count2 );
    return Count1;
}
static int Wlc_NtkRemoveFromAbstraction( Wlc_Ntk_t * p, Vec_Int_t * vRefine, Vec_Bit_t * vUnmark )
{
    Wlc_Obj_t * pObj; int i, nNodes = 0;
    if ( Vec_IntSize(&p->vRefs) == 0 )
        Wlc_NtkSetRefs( p );
    Wlc_NtkForEachObjVec( vRefine, p, pObj, i )
        nNodes += Wlc_NtkMarkMffc( p, pObj, vUnmark );
    return nNodes;
}

/**Function*************************************************************

  Synopsis    [Performs abstraction.]

  Description [Derives initial abstraction based on user-specified
  parameter values, which tell what is the smallest bit-width of a
  primitive that is being abstracted away.  Currently only add/sub,
  mul/div, mux, and flop are supported with individual parameters.
  The second step is to refine the initial abstraction until the
  point when the property is proved.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Wlc_NtkAbsCore2( Wlc_Ntk_t * p, Wlc_Par_t * pPars )
{
    abctime clk = Abc_Clock();
    int nIters, nNodes, nDcFlops, RetValue = -1;
    // start the bitmap to mark objects that cannot be abstracted because of refinement
    // currently, this bitmap is empty because abstraction begins without refinement
    Vec_Bit_t * vUnmark = Vec_BitStart( Wlc_NtkObjNumMax(p) );
    // set up parameters to run PDR
    Pdr_Par_t PdrPars, * pPdrPars = &PdrPars;
    Pdr_ManSetDefaultParams( pPdrPars );
    pPdrPars->fUseAbs    = 1;   // use 'pdr -t'  (on-the-fly abstraction)
    pPdrPars->fCtgs      = 1;   // use 'pdr -nc' (improved generalization)
    pPdrPars->fSkipDown  = 0;   // use 'pdr -nc' (improved generalization)
    //pPdrPars->nRestLimit = 500; // reset queue or proof-obligations when it gets larger than this
    pPdrPars->fVerbose   = pPars->fPdrVerbose;
    // perform refinement iterations
    for ( nIters = 1; nIters < pPars->nIterMax; nIters++ )
    {
        Aig_Man_t * pAig;
        Abc_Cex_t * pCex;
        Vec_Int_t * vPisNew, * vRefine;  
        Gia_Man_t * pGia, * pTemp;
        Wlc_Ntk_t * pAbs;

        if ( pPars->fVerbose )
            printf( "\nIteration %d:\n", nIters );

        // get abstracted GIA and the set of pseudo-PIs (vPisNew)
        pAbs = Wlc_NtkAbs( p, pPars, vUnmark, &vPisNew, pPars->fVerbose );
331
        pGia = Wlc_NtkBitBlast( pAbs, NULL, -1, 0, 0, 0, 0, 0, 0, 0 );
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

        // if the abstraction has flops with DC-init state,
        // new PIs were introduced by bit-blasting at the end of the PI list
        // here we move these variables to be *before* PPIs, because
        // PPIs are supposed to be at the end of the PI list for refinement
        nDcFlops = Wlc_NtkDcFlopNum(pAbs);
        if ( nDcFlops > 0 ) // DC-init flops are present
        {
            pGia = Gia_ManPermuteInputs( pTemp = pGia, Wlc_NtkCountObjBits(p, vPisNew), nDcFlops );
            Gia_ManStop( pTemp );
        }
        // if the word-level outputs have to be XORs, this is a place to do it
        if ( pPars->fXorOutput )
        {
            pGia = Gia_ManTransformMiter2( pTemp = pGia );
            Gia_ManStop( pTemp );
        }
        if ( pPars->fVerbose )
        {
            printf( "Derived abstraction with %d objects and %d PPIs. Bit-blasted AIG stats are:\n", Wlc_NtkObjNum(pAbs), Vec_IntSize(vPisNew) ); 
            Gia_ManPrintStats( pGia, NULL );
        }
        Wlc_NtkFree( pAbs );

        // try to prove abstracted GIA by converting it to AIG and calling PDR
        pAig = Gia_ManToAigSimple( pGia );
        RetValue = Pdr_ManSolve( pAig, pPdrPars );
        pCex = pAig->pSeqModel; pAig->pSeqModel = NULL;
        Aig_ManStop( pAig );

        // consider outcomes
        if ( pCex == NULL ) 
        {
            assert( RetValue ); // proved or undecided
            Gia_ManStop( pGia );
            Vec_IntFree( vPisNew );
            break;
        }

        // perform refinement
        vRefine = Wlc_NtkAbsRefinement( p, pGia, pCex, vPisNew );
        Gia_ManStop( pGia );
        Vec_IntFree( vPisNew );
        if ( vRefine == NULL ) // real CEX
        {
            Abc_CexFree( pCex ); // return CEX in the future
            break;
        }

        // update the set of objects to be un-abstracted
        nNodes = Wlc_NtkRemoveFromAbstraction( p, vRefine, vUnmark );
        if ( pPars->fVerbose )
            printf( "Refinement of CEX in frame %d came up with %d un-abstacted PPIs, whose MFFCs include %d objects.\n", pCex->iFrame, Vec_IntSize(vRefine), nNodes );
        Vec_IntFree( vRefine );
        Abc_CexFree( pCex );
    }
    Vec_BitFree( vUnmark );
    // report the result
    if ( pPars->fVerbose )
        printf( "\n" );
    printf( "Abstraction " );
    if ( RetValue == 0 )
        printf( "resulted in a real CEX" );
    else if ( RetValue == 1 )
        printf( "is successfully proved" );
    else 
        printf( "timed out" );
    printf( " after %d iterations. ", nIters );
    Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
    return RetValue;
}

404 405 406 407 408 409 410
////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


ABC_NAMESPACE_IMPL_END