expand.c 21 KB
Newer Older
Alan Mishchenko committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/*
 * Revision Control Information
 *
 * $Source$
 * $Author$
 * $Revision$
 * $Date$
 *
 */
/*
    module: expand.c
    purpose: Perform the Espresso-II Expansion Step

    The idea is to take each nonprime cube of the on-set and expand it
    into a prime implicant such that we can cover as many other cubes
    of the on-set.  If no cube of the on-set can be covered, then we
    expand each cube into a large prime implicant by transforming the
    problem into a minimum covering problem which is solved by the
    heuristics of minimum_cover.

    These routines revolve around having a representation of the
    OFF-set.  (In contrast to the Espresso-II manuscript, we do NOT
    require an "unwrapped" version of the OFF-set).

    Some conventions on variable names:

    SUPER_CUBE is the supercube of all cubes which can be covered
    by an expansion of the cube being expanded

    OVEREXPANDED_CUBE is the cube which would result from expanding
    all parts which can expand individually of the cube being expanded

    RAISE is the current expansion of the current cube

    FREESET is the set of parts which haven't been raised or lowered yet.

    INIT_LOWER is a set of parts to be removed from the free parts before
    starting the expansion
*/

#include "espresso.h"
42 43 44

ABC_NAMESPACE_IMPL_START

Alan Mishchenko committed
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

/*
    expand -- expand each nonprime cube of F into a prime implicant

    If nonsparse is true, only the non-sparse variables will be expanded;
    this is done by forcing all of the sparse variables out of the free set.
*/

pcover expand(F, R, nonsparse)
INOUT pcover F;
IN pcover R;
IN bool nonsparse;              /* expand non-sparse variables only */
{
    register pcube last, p;
    pcube RAISE, FREESET, INIT_LOWER, SUPER_CUBE, OVEREXPANDED_CUBE;
    int var, num_covered;
    bool change;

    /* Order the cubes according to "chewing-away from the edges" of mini */
    if (use_random_order)
    F = random_order(F);
    else
    F = mini_sort(F, ascend);

    /* Allocate memory for variables needed by expand1() */
    RAISE = new_cube();
    FREESET = new_cube();
    INIT_LOWER = new_cube();
    SUPER_CUBE = new_cube();
    OVEREXPANDED_CUBE = new_cube();

    /* Setup the initial lowering set (differs only for nonsparse) */
    if (nonsparse)
    for(var = 0; var < cube.num_vars; var++)
        if (cube.sparse[var])
        (void) set_or(INIT_LOWER, INIT_LOWER, cube.var_mask[var]);

    /* Mark all cubes as not covered, and maybe essential */
    foreach_set(F, last, p) {
    RESET(p, COVERED);
    RESET(p, NONESSEN);
    }

    /* Try to expand each nonprime and noncovered cube */
    foreach_set(F, last, p) {
    /* do not expand if PRIME or if covered by previous expansion */
    if (! TESTP(p, PRIME) && ! TESTP(p, COVERED)) {

        /* expand the cube p, result is RAISE */
        expand1(R, F, RAISE, FREESET, OVEREXPANDED_CUBE, SUPER_CUBE,
        INIT_LOWER, &num_covered, p);
        if (debug & EXPAND)
        printf("EXPAND: %s (covered %d)\n", pc1(p), num_covered);
        (void) set_copy(p, RAISE);
        SET(p, PRIME);
        RESET(p, COVERED);        /* not really necessary */

        /* See if we generated an inessential prime */
        if (num_covered == 0 && ! setp_equal(p, OVEREXPANDED_CUBE)) {
        SET(p, NONESSEN);
        }
    }
    }

    /* Delete any cubes of F which became covered during the expansion */
    F->active_count = 0;
    change = FALSE;
    foreach_set(F, last, p) {
    if (TESTP(p, COVERED)) {
        RESET(p, ACTIVE);
        change = TRUE;
    } else {
        SET(p, ACTIVE);
        F->active_count++;
    }
    }
    if (change)
    F = sf_inactive(F);

    free_cube(RAISE);
    free_cube(FREESET);
    free_cube(INIT_LOWER);
    free_cube(SUPER_CUBE);
    free_cube(OVEREXPANDED_CUBE);
    return F;
}

/*
    expand1 -- Expand a single cube against the OFF-set
*/
void expand1(BB, CC, RAISE, FREESET, OVEREXPANDED_CUBE, SUPER_CUBE,
        INIT_LOWER, num_covered, c)
pcover BB;            /* Blocking matrix (OFF-set) */
pcover CC;            /* Covering matrix (ON-set) */
pcube RAISE;            /* The current parts which have been raised */
pcube FREESET;            /* The current parts which are free */
pcube OVEREXPANDED_CUBE;    /* Overexpanded cube of c */
pcube SUPER_CUBE;        /* Supercube of all cubes of CC we cover */
pcube INIT_LOWER;        /* Parts to initially remove from FREESET */
int *num_covered;        /* Number of cubes of CC which are covered */
pcube c;            /* The cube to be expanded */
{
    int bestindex;

    if (debug & EXPAND1)
    printf("\nEXPAND1:    \t%s\n", pc1(c));

    /* initialize BB and CC */
    SET(c, PRIME);        /* don't try to cover ourself */
    setup_BB_CC(BB, CC);

    /* initialize count of # cubes covered, and the supercube of them */
    *num_covered = 0;
    (void) set_copy(SUPER_CUBE, c);

    /* Initialize the lowering, raising and unassigned sets */
    (void) set_copy(RAISE, c);
    (void) set_diff(FREESET, cube.fullset, RAISE);

    /* If some parts are forced into lowering set, remove them */
    if (! setp_empty(INIT_LOWER)) {
    (void) set_diff(FREESET, FREESET, INIT_LOWER);
    elim_lowering(BB, CC, RAISE, FREESET);
    }

    /* Determine what can be raised, and return the over-expanded cube */
    essen_parts(BB, CC, RAISE, FREESET);
    (void) set_or(OVEREXPANDED_CUBE, RAISE, FREESET);

    /* While there are still cubes which can be covered, cover them ! */
    if (CC->active_count > 0) {
    select_feasible(BB, CC, RAISE, FREESET, SUPER_CUBE, num_covered);
    }

    /* While there are still cubes covered by the overexpanded cube ... */
    while (CC->active_count > 0) {
    bestindex = most_frequent(CC, FREESET);
    set_insert(RAISE, bestindex);
    set_remove(FREESET, bestindex);
    essen_parts(BB, CC, RAISE, FREESET);
    }

    /* Finally, when all else fails, choose the largest possible prime */
    /* We will loop only if we decide unravelling OFF-set is too expensive */
    while (BB->active_count > 0) {
    mincov(BB, RAISE, FREESET);
    }

    /* Raise any remaining free coordinates */
    (void) set_or(RAISE, RAISE, FREESET);
}

/*
    essen_parts -- determine which parts are forced into the lowering
    set to insure that the cube be orthognal to the OFF-set.

    If any cube of the OFF-set is distance 1 from the raising cube,
    then we must lower all parts of the conflicting variable.  (If the
    cube is distance 0, we detect this error here.)

    If there are essentially lowered parts, we can remove from consideration
    any cubes of the OFF-set which are more than distance 1 from the
    overexpanded cube of RAISE.
*/

void essen_parts(BB, CC, RAISE, FREESET)
pcover BB, CC;
pcube RAISE, FREESET;
{
    register pcube p, r = RAISE;
    pcube lastp, xlower = cube.temp[0];
    int dist;

    (void) set_copy(xlower, cube.emptyset);

    foreach_active_set(BB, lastp, p) {
#ifdef NO_INLINE
    if ((dist = cdist01(p, r)) > 1) goto exit_if;
#else
 {register int w,last;register unsigned int x;dist=0;if((last=cube.inword)!=-1)
Alan Mishchenko committed
225 226
{x=p[last]&r[last];if((x=~(x|x>>1)&cube.inmask))if((dist=count_ones(x))>1)goto
exit_if;for(w=1;w<last;w++){x=p[w]&r[w];if((x=~(x|x>>1)&DISJOINT))if(dist==1||(
Alan Mishchenko committed
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
dist+=count_ones(x))>1)goto exit_if;}}}{register int w,var,last;register pcube
mask;for(var=cube.num_binary_vars;var<cube.num_vars;var++){mask=cube.var_mask[
var];last=cube.last_word[var];for(w=cube.first_word[var];w<=last;w++)if(p[w]&r[
w]&mask[w])goto nextvar;if(++dist>1)goto exit_if;nextvar:;}}
#endif
    if (dist == 0) {
        fatal("ON-set and OFF-set are not orthogonal");
    } else {
        (void) force_lower(xlower, p, r);
        BB->active_count--;
        RESET(p, ACTIVE);
    }
exit_if: ;
    }

    if (! setp_empty(xlower)) {
    (void) set_diff(FREESET, FREESET, xlower);/* remove from free set */
    elim_lowering(BB, CC, RAISE, FREESET);
    }

    if (debug & EXPAND1)
    printf("ESSEN_PARTS:\tRAISE=%s FREESET=%s\n", pc1(RAISE), pc2(FREESET));
}

/*
    essen_raising -- determine which parts may always be added to
    the raising set without restricting further expansions

    General rule: if some part is not blocked by any cube of BB, then
    this part can always be raised.
*/

void essen_raising(BB, RAISE, FREESET)
register pcover BB;
pcube RAISE, FREESET;
{
    register pcube last, p, xraise = cube.temp[0];

    /* Form union of all cubes of BB, and then take complement wrt FREESET */
    (void) set_copy(xraise, cube.emptyset);
    foreach_active_set(BB, last, p)
    INLINEset_or(xraise, xraise, p);
    (void) set_diff(xraise, FREESET, xraise);

    (void) set_or(RAISE, RAISE, xraise);         /* add to raising set */
    (void) set_diff(FREESET, FREESET, xraise);       /* remove from free set */

    if (debug & EXPAND1)
    printf("ESSEN_RAISING:\tRAISE=%s FREESET=%s\n",
        pc1(RAISE), pc2(FREESET));
}

/*
    elim_lowering -- after removing parts from FREESET, we can reduce the
    size of both BB and CC.

    We mark as inactive any cube of BB which does not intersect the
    overexpanded cube (i.e., RAISE + FREESET).  Likewise, we remove
    from CC any cube which is not covered by the overexpanded cube.
*/

void elim_lowering(BB, CC, RAISE, FREESET)
pcover BB, CC;
pcube RAISE, FREESET;
{
    register pcube p, r = set_or(cube.temp[0], RAISE, FREESET);
    pcube last;

    /*
     *  Remove sets of BB which are orthogonal to future expansions
     */
    foreach_active_set(BB, last, p) {
#ifdef NO_INLINE
    if (! cdist0(p, r))
#else
 {register int w,lastw;register unsigned int x;if((lastw=cube.inword)!=-1){x=p[
lastw]&r[lastw];if(~(x|x>>1)&cube.inmask)goto false;for(w=1;w<lastw;w++){x=p[w]
&r[w];if(~(x|x>>1)&DISJOINT)goto false;}}}{register int w,var,lastw;register
pcube mask;for(var=cube.num_binary_vars;var<cube.num_vars;var++){mask=cube.
var_mask[var];lastw=cube.last_word[var];for(w=cube.first_word[var];w<=lastw;w++)
if(p[w]&r[w]&mask[w])goto nextvar;goto false;nextvar:;}}continue;false:
#endif
        BB->active_count--, RESET(p, ACTIVE);
    }


    /*
     *  Remove sets of CC which cannot be covered by future expansions
     */
    if (CC != (pcover) NULL) {
    foreach_active_set(CC, last, p) {
#ifdef NO_INLINE
        if (! setp_implies(p, r))
#else
        INLINEsetp_implies(p, r, /* when false => */ goto false1);
        /* when true => go to end of loop */ continue;
        false1:
#endif
        CC->active_count--, RESET(p, ACTIVE);
    }
    }
}

/*
    most_frequent -- When all else fails, select a reasonable part to raise
    The active cubes of CC are the cubes which are covered by the
    overexpanded cube of the original cube (however, we know that none
    of them can actually be covered by a feasible expansion of the
    original cube).  We resort to the MINI strategy of selecting to
    raise the part which will cover the same part in the most cubes of CC.
*/
int most_frequent(CC, FREESET)
pcover CC;
pcube FREESET;
{
    register int i, best_part, best_count, *count;
    register pset p, last;

    /* Count occurences of each variable */
    count = ALLOC(int, cube.size);
    for(i = 0; i < cube.size; i++)
    count[i] = 0;
    if (CC != (pcover) NULL)
    foreach_active_set(CC, last, p)
        set_adjcnt(p, count, 1);

    /* Now find which free part occurs most often */
    best_count = best_part = -1;
    for(i = 0; i < cube.size; i++)
    if (is_in_set(FREESET,i) && count[i] > best_count) {
        best_part = i;
        best_count = count[i];
    }
    FREE(count);

    if (debug & EXPAND1)
    printf("MOST_FREQUENT:\tbest=%d FREESET=%s\n", best_part, pc2(FREESET));
    return best_part;
}

/*
    setup_BB_CC -- set up the blocking and covering set families;

    Note that the blocking family is merely the set of cubes of R, and
    that CC is the set of cubes of F which might possibly be covered
    (i.e., nonprime cubes, and cubes not already covered)
*/

void setup_BB_CC(BB, CC)
register pcover BB, CC;
{
    register pcube p, last;

    /* Create the block and cover set families */
    BB->active_count = BB->count;
    foreach_set(BB, last, p)
    SET(p, ACTIVE);

    if (CC != (pcover) NULL) {
    CC->active_count = CC->count;
    foreach_set(CC, last, p)
        if (TESTP(p, COVERED) || TESTP(p, PRIME))
        CC->active_count--, RESET(p, ACTIVE);
        else
        SET(p, ACTIVE);
    }
}

/*
    select_feasible -- Determine if there are cubes which can be covered,
    and if so, raise those parts necessary to cover as many as possible.

    We really don't check to maximize the number that can be covered;
    instead, we check, for each fcc, how many other fcc remain fcc
    after expanding to cover the fcc.  (Essentially one-level lookahead).
*/

void select_feasible(BB, CC, RAISE, FREESET, SUPER_CUBE, num_covered)
pcover BB, CC;
pcube RAISE, FREESET, SUPER_CUBE;
int *num_covered;
{
Alan Mishchenko committed
409 410 411
    register pcube p, last;
    register pcube bestfeas = NULL; // Suppress "might be used uninitialized"
    register pcube *feas;
Alan Mishchenko committed
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
    register int i, j;
    pcube *feas_new_lower;
    int bestcount, bestsize, count, size, numfeas, lastfeas;
    pcover new_lower;

    /*  Start out with all cubes covered by the over-expanded cube as
     *  the "possibly" feasibly-covered cubes (pfcc)
     */
    feas = ALLOC(pcube, CC->active_count);
    numfeas = 0;
    foreach_active_set(CC, last, p)
    feas[numfeas++] = p;

    /* Setup extra cubes to record parts forced low after a covering */
    feas_new_lower = ALLOC(pcube, CC->active_count);
    new_lower = new_cover(numfeas);
    for(i = 0; i < numfeas; i++)
    feas_new_lower[i] = GETSET(new_lower, i);


loop:
    /* Find the essentially raised parts -- this might cover some cubes
       for us, without having to find out if they are fcc or not
    */
    essen_raising(BB, RAISE, FREESET);

    /* Now check all "possibly" feasibly covered cubes to check feasibility */
    lastfeas = numfeas;
    numfeas = 0;
    for(i = 0; i < lastfeas; i++) {
    p = feas[i];

    /* Check active because essen_parts might have removed it */
    if (TESTP(p, ACTIVE)) {

        /*  See if the cube is already covered by RAISE --
         *  this can happen because of essen_raising() or because of
         *  the previous "loop"
         */
        if (setp_implies(p, RAISE)) {
        (*num_covered) += 1;
        (void) set_or(SUPER_CUBE, SUPER_CUBE, p);
        CC->active_count--;
        RESET(p, ACTIVE);
        SET(p, COVERED);
        /* otherwise, test if it is feasibly covered */
        } else if (feasibly_covered(BB,p,RAISE,feas_new_lower[numfeas])) {
        feas[numfeas] = p;            /* save the fcc */
        numfeas++;
        }
    }
    }
    if (debug & EXPAND1)
    printf("SELECT_FEASIBLE: started with %d pfcc, ended with %d fcc\n",
        lastfeas, numfeas);

    /* Exit here if there are no feasibly covered cubes */
    if (numfeas == 0) {
    FREE(feas);
    FREE(feas_new_lower);
    free_cover(new_lower);
    return;
    }

    /* Now find which is the best feasibly covered cube */
    bestcount = 0;
    bestsize = 9999;
    for(i = 0; i < numfeas; i++) {
    size = set_dist(feas[i], FREESET);    /* # of newly raised parts */
    count = 0;    /* # of other cubes which remain fcc after raising */

#define NEW
#ifdef NEW
    for(j = 0; j < numfeas; j++)
        if (setp_disjoint(feas_new_lower[i], feas[j]))
        count++;
#else
    for(j = 0; j < numfeas; j++)
        if (setp_implies(feas[j], feas[i]))
        count++;
#endif
    if (count > bestcount) {
        bestcount = count;
        bestfeas = feas[i];
        bestsize = size;
    } else if (count == bestcount && size < bestsize) {
        bestfeas = feas[i];
        bestsize = size;
    }
    }

    /* Add the necessary parts to the raising set */
    (void) set_or(RAISE, RAISE, bestfeas);
    (void) set_diff(FREESET, FREESET, RAISE);
    if (debug & EXPAND1)
    printf("FEASIBLE:  \tRAISE=%s FREESET=%s\n", pc1(RAISE), pc2(FREESET));
    essen_parts(BB, CC, RAISE, FREESET);
    goto loop;
/* NOTREACHED */
}

/*
    feasibly_covered -- determine if the cube c is feasibly covered
    (i.e., if it is possible to raise all of the necessary variables
    while still insuring orthogonality with R).  Also, if c is feasibly
    covered, then compute the new set of parts which are forced into
    the lowering set.
*/

bool feasibly_covered(BB, c, RAISE, new_lower)
pcover BB;
pcube c, RAISE, new_lower;
{
    register pcube p, r = set_or(cube.temp[0], RAISE, c);
    int dist;
    pcube lastp;

    set_copy(new_lower, cube.emptyset);
    foreach_active_set(BB, lastp, p) {
#ifdef NO_INLINE
    if ((dist = cdist01(p, r)) > 1) goto exit_if;
#else
 {register int w,last;register unsigned int x;dist=0;if((last=cube.inword)!=-1)
Alan Mishchenko committed
535 536
{x=p[last]&r[last];if((x=~(x|x>>1)&cube.inmask))if((dist=count_ones(x))>1)goto
exit_if;for(w=1;w<last;w++){x=p[w]&r[w];if((x=~(x|x>>1)&DISJOINT))if(dist==1||(
Alan Mishchenko committed
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
dist+=count_ones(x))>1)goto exit_if;}}}{register int w,var,last;register pcube
mask;for(var=cube.num_binary_vars;var<cube.num_vars;var++){mask=cube.var_mask[
var];last=cube.last_word[var];for(w=cube.first_word[var];w<=last;w++)if(p[w]&r[
w]&mask[w])goto nextvar;if(++dist>1)goto exit_if;nextvar:;}}
#endif
    if (dist == 0)
        return FALSE;
    else
        (void) force_lower(new_lower, p, r);
    exit_if: ;
    }
    return TRUE;
}

/*
    mincov -- transform the problem of expanding a cube to a maximally-
    large prime implicant into the problem of selecting a minimum
    cardinality cover over a family of sets.

    When we get to this point, we must unravel the remaining off-set.
    This may be painful.
*/

void mincov(BB, RAISE, FREESET)
pcover BB;
pcube RAISE, FREESET;
{
    int expansion, nset, var, dist;
    pset_family B;
    register pcube xraise=cube.temp[0], xlower, p, last, plower;

#ifdef RANDOM_MINCOV
#if defined(_POSIX_SOURCE) || defined(__SVR4)
    dist = rand() % set_ord(FREESET);
#else
    dist = random() % set_ord(FREESET);
#endif
    for(var = 0; var < cube.size && dist >= 0; var++) {
    if (is_in_set(FREESET, var)) {
        dist--;
    }
    }

    set_insert(RAISE, var);
    set_remove(FREESET, var);
    (void) essen_parts(BB, /*CC*/ (pcover) NULL, RAISE, FREESET);
#else

    /* Create B which are those cubes which we must avoid intersecting */
    B = new_cover(BB->active_count);
    foreach_active_set(BB, last, p) {
    plower = set_copy(GETSET(B, B->count++), cube.emptyset);
    (void) force_lower(plower, p, RAISE);
    }

    /* Determine how many sets it will blow up into after the unravel */
    nset = 0;
    foreach_set(B, last, p) {
    expansion = 1;
    for(var = cube.num_binary_vars; var < cube.num_vars; var++) {
        if ((dist=set_dist(p, cube.var_mask[var])) > 1) {
        expansion *= dist;
        if (expansion > 500) goto heuristic_mincov;
        }
    }
    nset += expansion;
    if (nset > 500) goto heuristic_mincov;
    }

    B = unravel(B, cube.num_binary_vars);
    xlower = do_sm_minimum_cover(B);

    /* Add any remaining free parts to the raising set */
    (void) set_or(RAISE, RAISE, set_diff(xraise, FREESET, xlower));
    (void) set_copy(FREESET, cube.emptyset);    /* free set is empty */
    BB->active_count = 0;            /* BB satisfied */
    if (debug & EXPAND1) {
    printf("MINCOV:    \tRAISE=%s FREESET=%s\n", pc1(RAISE), pc2(FREESET));
    }
    sf_free(B);
    set_free(xlower);
    return;

heuristic_mincov:
    sf_free(B);
    /* most_frequent will pick first free part */
    set_insert(RAISE, most_frequent(/*CC*/ (pcover) NULL, FREESET));
    (void) set_diff(FREESET, FREESET, RAISE);
    essen_parts(BB, /*CC*/ (pcover) NULL, RAISE, FREESET);
    return;
#endif
}

/*
    find_all_primes -- find all of the primes which cover the
    currently reduced BB
*/
pcover find_all_primes(BB, RAISE, FREESET)
pcover BB;
register pcube RAISE, FREESET;
{
    register pset last, p, plower;
    pset_family B, B1;

    if (BB->active_count == 0) {
    B1 = new_cover(1);
    p = GETSET(B1, B1->count++);
    (void) set_copy(p, RAISE);
    SET(p, PRIME);
    } else {
    B = new_cover(BB->active_count);
    foreach_active_set(BB, last, p) {
        plower = set_copy(GETSET(B, B->count++), cube.emptyset);
        (void) force_lower(plower, p, RAISE);
    }
    B = sf_rev_contain(unravel(B, cube.num_binary_vars));
    B1 = exact_minimum_cover(B);
    foreach_set(B1, last, p) {
        INLINEset_diff(p, FREESET, p);
        INLINEset_or(p, p, RAISE);
        SET(p, PRIME);
    }
    free_cover(B);
    }
    return B1;
}

/*
    all_primes -- foreach cube in F, generate all of the primes
    which cover the cube.
*/

pcover all_primes(F, R)
pcover F, R;
{
    register pcube last, p, RAISE, FREESET;
    pcover Fall_primes, B1;

    FREESET = new_cube();
    RAISE = new_cube();
    Fall_primes = new_cover(F->count);

    foreach_set(F, last, p) {
    if (TESTP(p, PRIME)) {
        Fall_primes = sf_addset(Fall_primes, p);
    } else {
        /* Setup for call to essential parts */
        (void) set_copy(RAISE, p);
        (void) set_diff(FREESET, cube.fullset, RAISE);
        setup_BB_CC(R, /* CC */ (pcover) NULL);
        essen_parts(R, /* CC */ (pcover) NULL, RAISE, FREESET);

        /* Find all of the primes, and add them to the prime set */
        B1 = find_all_primes(R, RAISE, FREESET);
        Fall_primes = sf_append(Fall_primes, B1);
    }
    }

    set_free(RAISE);
    set_free(FREESET);
    return Fall_primes;
}
699 700
ABC_NAMESPACE_IMPL_END