exorLink.c 28.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
/**CFile****************************************************************

  FileName    [exorLink.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Exclusive sum-of-product minimization.]

  Synopsis    [Cube iterators.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 20, 2005.]

  Revision    [$Id: exorLink.c,v 1.0 2005/06/20 00:00:00 alanmi Exp $]

***********************************************************************/

////////////////////////////////////////////////////////////////////////
///                                                                  ///
///                  Implementation of EXORCISM - 4                  ///
///              An Exclusive Sum-of-Product Minimizer               ///
///                                                                  ///
///               Alan Mishchenko  <alanmi@ee.pdx.edu>               ///
///                                                                  ///
////////////////////////////////////////////////////////////////////////
///                                                                  ///
///                 Generation of ExorLinked Cubes                   ///
///                                                                  ///
///  Ver. 1.0. Started - July 26, 2000. Last update - July 29, 2000  ///
///  Ver. 1.4. Started -  Aug 10, 2000. Last update -  Aug 12, 2000  ///
///                                                                  ///
////////////////////////////////////////////////////////////////////////
///   This software was tested with the BDD package "CUDD", v.2.3.0  ///
///                          by Fabio Somenzi                        ///
///                  http://vlsi.colorado.edu/~fabio/                ///
////////////////////////////////////////////////////////////////////////

#include "exor.h"

ABC_NAMESPACE_IMPL_START

////////////////////////////////////////////////////////////////////////
///                       MACRO DEFINITIONS                          ///
////////////////////////////////////////////////////////////////////////

#define LARGE_NUM 1000000

////////////////////////////////////////////////////////////////////////
///                 EXTERNAL FUNCTION DECLARATIONS                   ///
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                    FUNCTIONS OF THIS MODULE                      ///
////////////////////////////////////////////////////////////////////////

int ExorLinkCubeIteratorStart( Cube** pGroup, Cube* pC1, Cube* pC2, cubedist Dist );
// this function starts the Exor-Link iterator, which iterates
// through the cube groups starting from the group with min literals
// returns 1 on success, returns 0 if the cubes have wrong distance

int ExorLinkCubeIteratorNext( Cube** pGroup );
// give the next group in the decreasing order of sum of literals
// returns 1 on success, returns 0 if there are no more groups

int ExorLinkCubeIteratorPick( Cube** pGroup, int g );
// gives the group #g in the order in which the groups were given
// during iteration
// returns 1 on success, returns 0 if something g is too large

void ExorLinkCubeIteratorCleanUp( int fTakeLastGroup );
// removes the cubes from the store back into the list of free cubes
// if fTakeLastGroup is 0, removes all cubes
// if fTakeLastGroup is 1, does not store the last group

////////////////////////////////////////////////////////////////////////
///                       EXTERNAL VARIABLES                         ///
////////////////////////////////////////////////////////////////////////

// information about the cube cover before
extern cinfo g_CoverInfo;
// new IDs are assigned only when it is known that the cubes are useful
// this is done in ExorLinkCubeIteratorCleanUp();

// the head of the list of free cubes
extern Cube* g_CubesFree;

extern byte BitCount[];

////////////////////////////////////////////////////////////////////////
///                         EXORLINK INFO                            ///
////////////////////////////////////////////////////////////////////////

const int s_ELMax = 4;

// ExorLink-2: there are 4 cubes,  2 literals each, combined into 2 groups
// ExorLink-3: there are 12 cubes, 3 literals each, combined into 6 groups
// ExorLink-4: there are 32 cubes, 4 literals each, combined into 24 groups
// ExorLink-5: there are 80 cubes, 5 literals each, combined into 120 groups
// Exorlink-n: there are n*2^(n-1) cubes, n literals each, combined into n! groups
const int s_ELnCubes[4]  = { 4, 12, 32, 80 };
const int s_ELnGroups[4] = { 2,  6, 24, 120 };

// value sets of cubes X{a0}Y{b0}Z{c0}U{d0} and X{a1}Y{b1}Z{c1}U{d1}
// used to represent the ExorLink cube generation rules
enum { vs0, vs1, vsX };
// vs0 = 0, // the value set of the first cube 
// vs1 = 1, // the value set of the second cube
// vsX = 2  // EXOR of the value sets of the first and second cubes

// representation of ExorLinked cubes
static int s_ELCubeRules[3][32][4]  = {
{ // ExorLink-2 Cube Generating Rules
                       // | 0 | 1 | - sections
                       // |-------|
    {vsX,vs0}, // cube 0  |   |   |
    {vsX,vs1}, // cube 1  |   | 0 |
    {vs0,vsX}, // cube 2  |   |   |
    {vs1,vsX}  // cube 3  | 0 |   |
},
{ // ExorLink-3 Cube Generating Rules
                            // | 0 | 1 | 2 | - sections
                            // |-----------|
    {vsX,vs0,vs0}, // cube 0   |   |   |   |
    {vsX,vs0,vs1}, // cube 1   |   |   | 0 |
    {vsX,vs1,vs0}, // cube 2   |   | 0 |   |
    {vsX,vs1,vs1}, // cube 3   |   | 1 | 1 |

    {vs0,vsX,vs0}, // cube 4   |   |   |   |
    {vs0,vsX,vs1}, // cube 5   |   |   | 2 |
    {vs1,vsX,vs0}, // cube 6   | 0 |   |   |
    {vs1,vsX,vs1}, // cube 7   | 1 |   | 3 |

    {vs0,vs0,vsX}, // cube 8   |   |   |   |
    {vs0,vs1,vsX}, // cube 9   |   | 2 |   |
    {vs1,vs0,vsX}, // cube 10  | 2 |   |   |
    {vs1,vs1,vsX}  // cube 11  | 3 | 3 |   |
},
{ // ExorLink-4 Rules Generating Rules
                                // | 0 | 1 | 2 | 4 | - sections
                                // |---------------|
    {vsX,vs0,vs0,vs0}, // cube 0   |   |   |   |   |
    {vsX,vs0,vs0,vs1}, // cube 1   |   |   |   | 0 |
    {vsX,vs0,vs1,vs0}, // cube 2   |   |   | 0 |   |
    {vsX,vs0,vs1,vs1}, // cube 3   |   |   | 1 | 1 |
    {vsX,vs1,vs0,vs0}, // cube 4   |   | 0 |   |   |
    {vsX,vs1,vs0,vs1}, // cube 5   |   | 1 |   | 2 |
    {vsX,vs1,vs1,vs0}, // cube 6   |   | 2 | 2 |   |
    {vsX,vs1,vs1,vs1}, // cube 7   |   | 3 | 3 | 3 |

    {vs0,vsX,vs0,vs0}, // cube 8   |   |   |   |   |
    {vs0,vsX,vs0,vs1}, // cube 9   |   |   |   | 4 |
    {vs0,vsX,vs1,vs0}, // cube 10  |   |   | 4 |   |
    {vs0,vsX,vs1,vs1}, // cube 11  |   |   | 5 | 5 |
    {vs1,vsX,vs0,vs0}, // cube 12  | 0 |   |   |   |
    {vs1,vsX,vs0,vs1}, // cube 13  | 1 |   |   | 6 |
    {vs1,vsX,vs1,vs0}, // cube 14  | 2 |   | 6 |   |
    {vs1,vsX,vs1,vs1}, // cube 15  | 3 |   | 7 | 7 |

    {vs0,vs0,vsX,vs0}, // cube 16  |   |   |   |   |
    {vs0,vs0,vsX,vs1}, // cube 17  |   |   |   | 8 |
    {vs0,vs1,vsX,vs0}, // cube 18  |   | 4 |   |   |
    {vs0,vs1,vsX,vs1}, // cube 19  |   | 5 |   | 9 |
    {vs1,vs0,vsX,vs0}, // cube 20  | 4 |   |   |   |
    {vs1,vs0,vsX,vs1}, // cube 21  | 5 |   |   | 10|
    {vs1,vs1,vsX,vs0}, // cube 22  | 6 | 6 |   |   |
    {vs1,vs1,vsX,vs1}, // cube 23  | 7 | 7 |   | 11|

    {vs0,vs0,vs0,vsX}, // cube 24  |   |   |   |   |
    {vs0,vs0,vs1,vsX}, // cube 25  |   |   | 8 |   |
    {vs0,vs1,vs0,vsX}, // cube 26  |   | 8 |   |   |
    {vs0,vs1,vs1,vsX}, // cube 27  |   | 9 | 9 |   |
    {vs1,vs0,vs0,vsX}, // cube 28  | 8 |   |   |   |
    {vs1,vs0,vs1,vsX}, // cube 29  | 9 |   | 10|   |
    {vs1,vs1,vs0,vsX}, // cube 30  | 10| 10|   |   |
    {vs1,vs1,vs1,vsX}  // cube 31  | 11| 11| 11|   |
}
};

// these cubes are combined into groups
static int s_ELGroupRules[3][24][4] = { 
{ // ExorLink-2 Group Forming Rules
    {0,3},  // group 0 - section 0
    {2,1}   // group 1 - section 1
},
{ // ExorLink-3 Group Forming Rules
    {0,6,11}, // group 0 - section 0 
    {0,7,10}, // group 1
    {4,2,11}, // group 2 - section 1 
    {4,3,9},  // group 3
    {8,1,7},  // group 4 - section 2 
    {8,3,5}   // group 5
},
{ // ExorLink-4 Group Forming Rules 
// section 0: (0-12)(1-13)(2-14)(3-15)(4-20)(5-21)(6-22)(7-23)(8-28)(9-29)(10-30)(11-31)
    {0,12,22,31},  // group 0       // {0,6,11}, // group 0  - section 0
    {0,12,23,30},  // group 1       // {0,7,10}, // group 1
    {0,20,14,31},  // group 2       // {4,2,11}, // group 2
    {0,20,15,29},  // group 3       // {4,3,9},  // group 3
    {0,28,13,23},  // group 4       // {8,1,7},  // group 4
    {0,28,15,21},  // group 5       // {8,3,5}   // group 5
// section 1: (0-4)(1-5)(2-6)(3-7)(4-18)(5-19)(6-22)(7-23)(8-26)(9-27)(10-30)(11-31)
    {8,4,22,31},   // group 6
    {8,4,23,30},   // group 7
    {8,18,6,31},   // group 8
    {8,18,7,27},   // group 9
    {8,26,5,23},   // group 10
    {8,26,7,19},   // group 11
// section 2: (0-2)(1-3)(2-6)(3-7)(4-10)(5-11)(6-14)(7-15)(8-25)(9-27)(10-29)(11-31)
    {16,2,14,31},  // group 12
    {16,2,15,29},  // group 13
    {16,10,6,31},  // group 14
    {16,10,7,27},  // group 15
    {16,25,3,15},  // group 16
    {16,25,7,11},  // group 17
// section 3: (0-1)(1-3)(2-5)(3-7)(4-9)(5-11)(6-13)(7-15)(8-17)(9-19)(10-21)(11-23)
    {24,1,13,23},  // group 18
    {24,1,15,21},  // group 19
    {24,9, 5,23},  // group 20
    {24,9, 7,19},  // group 21
    {24,17,3,15},  // group 22
    {24,17,7,11}   // group 23
}
};

// it is assumed that if literals in the first cube, second cube 
// and their EXOR are 0 or 1 (as opposed to -), they are written
// into a mask, which is used to count the number of literals in 
// the cube groups cubes
//
// below is the set of masks selecting literals belonging
// to the given cube of the group

static drow s_CubeLitMasks[3][32] = { 
{  // ExorLink-2 Literal Counting Masks
//                      v3   v2   v1   v0
//                     -xBA -xBA -xBA -xBA  
//                     -------------------
    0x14,  // cube 0  <0000 0000 0001 0100> {vsX,vs0}
    0x24,  // cube 1  <0000 0000 0010 0100> {vsX,vs1}
    0x41,  // cube 2  <0000 0000 0100 0001> {vs0,vsX}
    0x42,  // cube 3  <0000 0000 0100 0010> {vs1,vsX}
},
{  // ExorLink-3 Literal Counting Masks
    0x114, // cube 0  <0000 0001 0001 0100> {vsX,vs0,vs0}
    0x214, // cube 1  <0000 0010 0001 0100> {vsX,vs0,vs1}
    0x124, // cube 2  <0000 0001 0010 0100> {vsX,vs1,vs0}
    0x224, // cube 3  <0000 0010 0010 0100> {vsX,vs1,vs1}
    0x141, // cube 4  <0000 0001 0100 0001> {vs0,vsX,vs0}
    0x241, // cube 5  <0000 0010 0100 0001> {vs0,vsX,vs1}
    0x142, // cube 6  <0000 0001 0100 0010> {vs1,vsX,vs0}
    0x242, // cube 7  <0000 0010 0100 0010> {vs1,vsX,vs1}
    0x411, // cube 8  <0000 0100 0001 0001> {vs0,vs0,vsX}
    0x421, // cube 9  <0000 0100 0010 0001> {vs0,vs1,vsX}
    0x412, // cube 10 <0000 0100 0001 0010> {vs1,vs0,vsX}
    0x422, // cube 11 <0000 0100 0010 0010> {vs1,vs1,vsX}
},
{  // ExorLink-4 Literal Counting Masks
    0x1114, // cube 0   <0001 0001 0001 0100> {vsX,vs0,vs0,vs0}
    0x2114, // cube 1   <0010 0001 0001 0100> {vsX,vs0,vs0,vs1}
    0x1214, // cube 2   <0001 0010 0001 0100> {vsX,vs0,vs1,vs0}
    0x2214, // cube 3   <0010 0010 0001 0100> {vsX,vs0,vs1,vs1}
    0x1124, // cube 4   <0001 0001 0010 0100> {vsX,vs1,vs0,vs0}
    0x2124, // cube 5   <0010 0001 0010 0100> {vsX,vs1,vs0,vs1}
    0x1224, // cube 6   <0001 0010 0010 0100> {vsX,vs1,vs1,vs0}
    0x2224, // cube 7   <0010 0010 0010 0100> {vsX,vs1,vs1,vs1}
    0x1141, // cube 8   <0001 0001 0100 0001> {vs0,vsX,vs0,vs0}
    0x2141, // cube 9   <0010 0001 0100 0001> {vs0,vsX,vs0,vs1}
    0x1241, // cube 10  <0001 0010 0100 0001> {vs0,vsX,vs1,vs0}
    0x2241, // cube 11  <0010 0010 0100 0001> {vs0,vsX,vs1,vs1}
    0x1142, // cube 12  <0001 0001 0100 0010> {vs1,vsX,vs0,vs0}
    0x2142, // cube 13  <0010 0001 0100 0010> {vs1,vsX,vs0,vs1}
    0x1242, // cube 14  <0001 0010 0100 0010> {vs1,vsX,vs1,vs0}
    0x2242, // cube 15  <0010 0010 0100 0010> {vs1,vsX,vs1,vs1}
    0x1411, // cube 16  <0001 0100 0001 0001> {vs0,vs0,vsX,vs0}
    0x2411, // cube 17  <0010 0100 0001 0001> {vs0,vs0,vsX,vs1}
    0x1421, // cube 18  <0001 0100 0010 0001> {vs0,vs1,vsX,vs0}
    0x2421, // cube 19  <0010 0100 0010 0001> {vs0,vs1,vsX,vs1}
    0x1412, // cube 20  <0001 0100 0001 0010> {vs1,vs0,vsX,vs0}
    0x2412, // cube 21  <0010 0100 0001 0010> {vs1,vs0,vsX,vs1}
    0x1422, // cube 22  <0001 0100 0010 0010> {vs1,vs1,vsX,vs0}
    0x2422, // cube 23  <0010 0100 0010 0010> {vs1,vs1,vsX,vs1}
    0x4111, // cube 24  <0100 0001 0001 0001> {vs0,vs0,vs0,vsX}
    0x4211, // cube 25  <0100 0010 0001 0001> {vs0,vs0,vs1,vsX}
    0x4121, // cube 26  <0100 0001 0010 0001> {vs0,vs1,vs0,vsX}
    0x4221, // cube 27  <0100 0010 0010 0001> {vs0,vs1,vs1,vsX}
    0x4112, // cube 28  <0100 0001 0001 0010> {vs1,vs0,vs0,vsX}
    0x4212, // cube 29  <0100 0010 0001 0010> {vs1,vs0,vs1,vsX}
    0x4122, // cube 30  <0100 0001 0010 0010> {vs1,vs1,vs0,vsX}
    0x4222, // cube 31  <0100 0010 0010 0010> {vs1,vs1,vs1,vsX}
}
};

static drow s_BitMasks[32] = 
{
    0x00000001,0x00000002,0x00000004,0x00000008,
    0x00000010,0x00000020,0x00000040,0x00000080,
    0x00000100,0x00000200,0x00000400,0x00000800,
    0x00001000,0x00002000,0x00004000,0x00008000,
    0x00010000,0x00020000,0x00040000,0x00080000,
    0x00100000,0x00200000,0x00400000,0x00800000,
    0x01000000,0x02000000,0x04000000,0x08000000,
    0x10000000,0x20000000,0x40000000,0x80000000
};

////////////////////////////////////////////////////////////////////////
///                        STATIC VARIABLES                          ///
////////////////////////////////////////////////////////////////////////

// this flag is TRUE as long as the storage is allocated
static int fWorking;

// set these flags to have minimum literal groups generated first
static int fMinLitGroupsFirst[4] = { 0 /*dist2*/, 0 /*dist3*/, 0 /*dist4*/};

static int nDist;
static int nCubes;
static int nCubesInGroup;
static int nGroups;
static Cube *pCA, *pCB;

// storage for variable numbers that are different in the cubes
static int DiffVars[5];
static int* pDiffVars;
static int nDifferentVars;

// storage for the bits and words of different input variables
static int nDiffVarsIn;
static int DiffVarWords[5];
static int DiffVarBits[5];

// literal mask used to count the number of literals in the cubes
static drow MaskLiterals;
// the base for counting literals
static int StartingLiterals;
// the number of literals in each cube
static int CubeLiterals[32];
static int BitShift;
static int DiffVarValues[4][3];
static int Value;

// the sorted array of groups in the increasing order of costs
static int GroupCosts[32];
static int GroupCostBest;
static int GroupCostBestNum;

static int CubeNum;
static int NewZ;
static drow Temp;

// the cubes currently created
static Cube* ELCubes[32];

// the bit string with 1's corresponding to cubes in ELCubes[] 
// that constitute the last group
static drow LastGroup;

static int  GroupOrder[24];
static drow VisitedGroups;
static int  nVisitedGroups;

//int RemainderBits = (nVars*2)%(sizeof(drow)*8);
//int TotalWords    = (nVars*2)/(sizeof(drow)*8) + (RemainderBits > 0);
static drow DammyBitData[(MAXVARS*2)/(sizeof(drow)*8)+(MAXVARS*2)%(sizeof(drow)*8)];

////////////////////////////////////////////////////////////////////////
///                       FUNCTION DEFINTIONS                        ///
////////////////////////////////////////////////////////////////////////

// IDEA! if we already used a cube to count distances and it did not improve
// there is no need to try it again with other group
// (this idea works only for ExorLink-2 and -3)

int ExorLinkCubeIteratorStart( Cube** pGroup, Cube* pC1, Cube* pC2, cubedist Dist )
// this function starts the Exor-Link iterator, which iterates
// through the cube groups starting from the group with min literals
// returns 1 on success, returns 0 if the cubes have wrong distance
{
    int i, c;

    // check that everything is okey
    assert( pC1 != NULL );
    assert( pC2 != NULL );
    assert( !fWorking );

    nDist = Dist;
    nCubes = Dist + 2;
    nCubesInGroup = s_ELnCubes[nDist];
    nGroups = s_ELnGroups[Dist];
    pCA = pC1;
    pCB = pC2;
    // find what variables are different in these two cubes
    // FindDiffVars returns DiffVars[0] < 0, if the output is different
    nDifferentVars = FindDiffVars( DiffVars, pCA, pCB );
    if ( nCubes != nDifferentVars )
    {
//      cout << "ExorLinkCubeIterator(): Distance mismatch";
//      cout << " nCubes = " << nCubes << " nDiffVars = " << nDifferentVars << endl;
        fWorking = 0;
        return 0;
    }

    // copy the input variable cube data into DammyBitData[]
    for ( i = 0; i < g_CoverInfo.nWordsIn; i++ )
        DammyBitData[i] = pCA->pCubeDataIn[i];

    // find the number of different input variables
    nDiffVarsIn = ( DiffVars[0] >= 0 )? nCubes: nCubes-1;
    // assign the pointer to the place where the number of diff input vars is stored
    pDiffVars   = ( DiffVars[0] >= 0 )? DiffVars: DiffVars+1;
    // find the bit offsets and remove different variables
    for ( i = 0; i < nDiffVarsIn; i++ )
    {
        DiffVarWords[i] = ((2*pDiffVars[i]) >> LOGBPI) ;
        DiffVarBits[i]  = ((2*pDiffVars[i]) & BPIMASK);
        // clear this position
        DammyBitData[ DiffVarWords[i] ] &= ~( 3 << DiffVarBits[i] );
    }

    // extract the values from the cubes and create the mask of literals
    MaskLiterals = 0;
    // initialize the base for literal counts
    StartingLiterals = pCA->a;
    for ( i = 0, BitShift = 0; i < nDiffVarsIn; i++, BitShift++ )
    {
        DiffVarValues[i][0] = ( pCA->pCubeDataIn[DiffVarWords[i]] >> DiffVarBits[i] ) & 3;
        if ( DiffVarValues[i][0] != VAR_ABS )
        {
            MaskLiterals |= ( 1 << BitShift );
            // update the base for literal counts
            StartingLiterals--;
        }
        BitShift++;

        DiffVarValues[i][1] = ( pCB->pCubeDataIn[DiffVarWords[i]] >> DiffVarBits[i] ) & 3;
        if ( DiffVarValues[i][1] != VAR_ABS )
            MaskLiterals |= ( 1 << BitShift );
        BitShift++;

        DiffVarValues[i][2] = DiffVarValues[i][0] ^ DiffVarValues[i][1];
        if ( DiffVarValues[i][2] != VAR_ABS )
            MaskLiterals |= ( 1 << BitShift );
        BitShift++;
    }

    // count the number of additional literals in each cube of the group
    for ( i = 0; i < nCubesInGroup; i++ )
        CubeLiterals[i] = BitCount[ MaskLiterals & s_CubeLitMasks[Dist][i] ];

    // compute the costs of all groups
    for ( i = 0; i < nGroups; i++ )
        // go over all cubes in the group
        for ( GroupCosts[i] = 0, c = 0; c < nCubes; c++ )
            GroupCosts[i] += CubeLiterals[ s_ELGroupRules[Dist][i][c] ];

    // find the best cost group
    if ( fMinLitGroupsFirst[Dist] ) 
    { // find the minimum cost group
        GroupCostBest = LARGE_NUM;
        for ( i = 0; i < nGroups; i++ )
            if ( GroupCostBest > GroupCosts[i] )
            {
                GroupCostBest = GroupCosts[i];
                GroupCostBestNum = i;
            }
    }
    else 
    { // find the maximum cost group
        GroupCostBest = -1;
        for ( i = 0; i < nGroups; i++ )
            if ( GroupCostBest < GroupCosts[i] )
            {
                GroupCostBest = GroupCosts[i];
                GroupCostBestNum = i;
            }
    }

    // create the cubes with min number of literals needed for the group
    LastGroup = 0;
    for ( c = 0; c < nCubes; c++ )
    {
        CubeNum = s_ELGroupRules[Dist][GroupCostBestNum][c];
        LastGroup |= s_BitMasks[CubeNum];

        // bring a cube from the free cube list
        ELCubes[CubeNum] = GetFreeCube();

        // copy the input bit data into the cube 
        for ( i = 0; i < g_CoverInfo.nWordsIn; i++ )
            ELCubes[CubeNum]->pCubeDataIn[i] = DammyBitData[i];

        // copy the output bit data into the cube
        NewZ = 0;
        if ( DiffVars[0] >= 0 ) // the output is not involved in ExorLink
        {
            for ( i = 0; i < g_CoverInfo.nWordsOut; i++ )
                ELCubes[CubeNum]->pCubeDataOut[i] = pCA->pCubeDataOut[i];
            NewZ = pCA->z;
        }
        else // the output is involved
        { // determine where the output information comes from
            Value = s_ELCubeRules[Dist][CubeNum][nDiffVarsIn];
            if ( Value == vs0 )
                for ( i = 0; i < g_CoverInfo.nWordsOut; i++ )
                {
                    Temp = pCA->pCubeDataOut[i];
                    ELCubes[CubeNum]->pCubeDataOut[i] = Temp;
                    NewZ += BIT_COUNT(Temp);
                }
            else if ( Value == vs1 )
                for ( i = 0; i < g_CoverInfo.nWordsOut; i++ )
                {
                    Temp = pCB->pCubeDataOut[i];
                    ELCubes[CubeNum]->pCubeDataOut[i] = Temp;
                    NewZ += BIT_COUNT(Temp);
                }
            else if ( Value == vsX )
                for ( i = 0; i < g_CoverInfo.nWordsOut; i++ )
                {
                    Temp = pCA->pCubeDataOut[i] ^ pCB->pCubeDataOut[i];
                    ELCubes[CubeNum]->pCubeDataOut[i] = Temp;
                    NewZ += BIT_COUNT(Temp);
                }
        }

        // set the variables that should be there
        for ( i = 0; i < nDiffVarsIn; i++ )
        {
            Value = DiffVarValues[i][ s_ELCubeRules[Dist][CubeNum][i] ];
            ELCubes[CubeNum]->pCubeDataIn[ DiffVarWords[i] ] |= ( Value << DiffVarBits[i] );
        }

535 536 537 538 539
        // set the number of literals
        ELCubes[CubeNum]->a = StartingLiterals + CubeLiterals[CubeNum];
        ELCubes[CubeNum]->z = NewZ;
        ELCubes[CubeNum]->q = ComputeQCostBits( ELCubes[CubeNum] );

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
        // assign the ID
        ELCubes[CubeNum]->ID = g_CoverInfo.cIDs++;
        // skip through zero-ID
        if ( g_CoverInfo.cIDs == 256 )
            g_CoverInfo.cIDs = 1;

        // prepare the return array
        pGroup[c] = ELCubes[CubeNum];
    }

    // mark this group as visited 
    VisitedGroups |= s_BitMasks[ GroupCostBestNum ];
    // set the first visited group number
    GroupOrder[0] = GroupCostBestNum;
    // increment the counter of visited groups
    nVisitedGroups = 1;
    fWorking = 1;
    return 1;
}

int ExorLinkCubeIteratorNext( Cube** pGroup )
// give the next group in the decreasing order of sum of literals
// returns 1 on success, returns 0 if there are no more groups
{
    int i, c;

    // check that everything is okey
    assert( fWorking );

    if ( nVisitedGroups == nGroups ) 
    // we have iterated through all groups
        return 0;

    // find the min/max cost group
    if ( fMinLitGroupsFirst[nDist] ) 
//  if ( nCubes == 4 ) 
    { // find the minimum cost
        // go through all groups
        GroupCostBest = LARGE_NUM;
        for ( i = 0; i < nGroups; i++ )
            if ( !(VisitedGroups & s_BitMasks[i]) && GroupCostBest > GroupCosts[i] )
            {
                GroupCostBest = GroupCosts[i];
                GroupCostBestNum = i;
            }
        assert( GroupCostBest != LARGE_NUM );
    }
    else 
    { // find the maximum cost
        // go through all groups
        GroupCostBest = -1;
        for ( i = 0; i < nGroups; i++ )
            if ( !(VisitedGroups & s_BitMasks[i]) && GroupCostBest < GroupCosts[i] )
            {
                GroupCostBest = GroupCosts[i];
                GroupCostBestNum = i;
            }
        assert( GroupCostBest != -1 );
    }

    // create the cubes needed for the group, if they are not created already
    LastGroup = 0;
    for ( c = 0; c < nCubes; c++ )
    {
        CubeNum = s_ELGroupRules[nDist][GroupCostBestNum][c];
        LastGroup |= s_BitMasks[CubeNum];

        if ( ELCubes[CubeNum] == NULL ) // this cube does not exist
        {
            // bring a cube from the free cube list
            ELCubes[CubeNum] = GetFreeCube();

            // copy the input bit data into the cube 
            for ( i = 0; i < g_CoverInfo.nWordsIn; i++ )
                ELCubes[CubeNum]->pCubeDataIn[i] = DammyBitData[i];

            // copy the output bit data into the cube
            NewZ = 0;
            if ( DiffVars[0] >= 0 ) // the output is not involved in ExorLink
            {
                for ( i = 0; i < g_CoverInfo.nWordsOut; i++ )
                    ELCubes[CubeNum]->pCubeDataOut[i] = pCA->pCubeDataOut[i];
                NewZ = pCA->z;
            }
            else // the output is involved
            { // determine where the output information comes from
                Value = s_ELCubeRules[nDist][CubeNum][nDiffVarsIn];
                if ( Value == vs0 )
                    for ( i = 0; i < g_CoverInfo.nWordsOut; i++ )
                    {
                        Temp = pCA->pCubeDataOut[i];
                        ELCubes[CubeNum]->pCubeDataOut[i] = Temp;
                        NewZ += BIT_COUNT(Temp);
                    }
                else if ( Value == vs1 )
                    for ( i = 0; i < g_CoverInfo.nWordsOut; i++ )
                    {
                        Temp = pCB->pCubeDataOut[i];
                        ELCubes[CubeNum]->pCubeDataOut[i] = Temp;
                        NewZ += BIT_COUNT(Temp);
                    }
                else if ( Value == vsX )
                    for ( i = 0; i < g_CoverInfo.nWordsOut; i++ )
                    {
                        Temp = pCA->pCubeDataOut[i] ^ pCB->pCubeDataOut[i];
                        ELCubes[CubeNum]->pCubeDataOut[i] = Temp;
                        NewZ += BIT_COUNT(Temp);
                    }
            }

            // set the variables that should be there
            for ( i = 0; i < nDiffVarsIn; i++ )
            {
                Value = DiffVarValues[i][ s_ELCubeRules[nDist][CubeNum][i] ];
                ELCubes[CubeNum]->pCubeDataIn[ DiffVarWords[i] ] |= ( Value << DiffVarBits[i] );
            }

657 658 659 660 661 662
            // set the number of literals and output ones
            ELCubes[CubeNum]->a = StartingLiterals + CubeLiterals[CubeNum];
            ELCubes[CubeNum]->z = NewZ;
            ELCubes[CubeNum]->q = ComputeQCostBits( ELCubes[CubeNum] );
            assert( NewZ != 255 );

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
            // assign the ID
            ELCubes[CubeNum]->ID = g_CoverInfo.cIDs++;
            // skip through zero-ID
            if ( g_CoverInfo.cIDs == 256 )
                g_CoverInfo.cIDs = 1;

        }
        // prepare the return array
        pGroup[c] = ELCubes[CubeNum];
    }

    // mark this group as visited 
    VisitedGroups |= s_BitMasks[ GroupCostBestNum ];
    // set the next visited group number and
    // increment the counter of visited groups
    GroupOrder[ nVisitedGroups++ ] = GroupCostBestNum;
    return 1;
}

int ExorLinkCubeIteratorPick( Cube** pGroup, int g )
// gives the group #g in the order in which the groups were given
// during iteration
// returns 1 on success, returns 0 if something is wrong (g is too large)
{
    int GroupNum, c;

    assert( fWorking );
    assert( g >= 0 && g < nGroups );
    assert( VisitedGroups & s_BitMasks[g] );

    GroupNum = GroupOrder[g];
    // form the group
    LastGroup = 0;
    for ( c = 0; c < nCubes; c++ )
    {
        CubeNum = s_ELGroupRules[nDist][GroupNum][c];

        // remember this group as the last one
        LastGroup |= s_BitMasks[CubeNum];

        assert( ELCubes[CubeNum] != NULL ); // this cube should exist
        // prepare the return array
        pGroup[c] = ELCubes[CubeNum];
    }
    return 1;
}

void ExorLinkCubeIteratorCleanUp( int fTakeLastGroup )
// removes the cubes from the store back into the list of free cubes
// if fTakeLastGroup is 0, removes all cubes
// if fTakeLastGroup is 1, does not store the last group
{
    int c;
    assert( fWorking );

    // put cubes back
    // set the cube pointers to zero
    if ( fTakeLastGroup == 0 )
        for ( c = 0; c < nCubesInGroup; c++ )
        {
            ELCubes[c]->fMark = 0;
            AddToFreeCubes( ELCubes[c] );
            ELCubes[c] = NULL;
        }
    else
        for ( c = 0; c < nCubesInGroup; c++ )
        if ( ELCubes[c] )
        {
            ELCubes[c]->fMark = 0;
            if ( (LastGroup & s_BitMasks[c]) == 0 ) // does not belong to the last group
                AddToFreeCubes( ELCubes[c] );
            ELCubes[c] = NULL;
        }

    // set the cube groups to zero
    VisitedGroups = 0;
    // shut down the iterator
    fWorking = 0;
}

    
///////////////////////////////////////////////////////////////////
////////////              End of File             /////////////////
///////////////////////////////////////////////////////////////////


ABC_NAMESPACE_IMPL_END