AbcGlucose.cpp 44.7 KB
Newer Older
1 2 3 4 5 6
/**CFile****************************************************************

  FileName    [AbcGlucose.cpp]

  SystemName  [ABC: Logic synthesis and verification system.]

7
  PackageName [SAT solver Glucose 3.0 by Gilles Audemard and Laurent Simon.]
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

  Synopsis    [Interface to Glucose.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - September 6, 2017.]

  Revision    [$Id: AbcGlucose.cpp,v 1.00 2005/06/20 00:00:00 alanmi Exp $]

***********************************************************************/

#include "sat/glucose/System.h"
#include "sat/glucose/ParseUtils.h"
#include "sat/glucose/Options.h"
#include "sat/glucose/Dimacs.h"
#include "sat/glucose/SimpSolver.h"

#include "sat/glucose/AbcGlucose.h"

29
#include "base/abc/abc.h"
30 31
#include "aig/gia/gia.h"
#include "sat/cnf/cnf.h"
32
#include "misc/extra/extra.h"
33 34 35

ABC_NAMESPACE_IMPL_START

36
using namespace Gluco;
37 38 39 40 41

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

42
#define USE_SIMP_SOLVER 1
43

44 45 46 47
////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

48 49
#ifdef USE_SIMP_SOLVER
    
50 51 52 53 54 55 56 57 58 59 60
/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
61
Gluco::SimpSolver * glucose_solver_start()
62
{
63
    SimpSolver * S = new SimpSolver;
64 65 66 67
    S->setIncrementalMode();
    return S;
}

68
void glucose_solver_stop(Gluco::SimpSolver* S)
69 70 71 72
{
    delete S;
}

73 74 75 76 77
void glucose_solver_reset(Gluco::SimpSolver* S)
{
    S->reset();
}

78
int glucose_solver_addclause(Gluco::SimpSolver* S, int * plits, int nlits)
79 80 81 82 83 84 85 86 87 88 89 90 91 92
{
    vec<Lit> lits;
    for ( int i = 0; i < nlits; i++,plits++)
    {
        // note: Glucose uses the same var->lit conventiaon as ABC
        while ((*plits)/2 >= S->nVars()) S->newVar();
        assert((*plits)/2 < S->nVars()); // NOTE: since we explicitely use new function bmc_add_var
        Lit p;
        p.x = *plits;
        lits.push(p);
    }
    return S->addClause(lits); // returns 0 if the problem is UNSAT
}

93
void glucose_solver_setcallback(Gluco::SimpSolver* S, void * pman, int(*pfunc)(void*, int, int*))
94 95 96 97 98 99
{
    S->pCnfMan = pman;
    S->pCnfFunc = pfunc;
    S->nCallConfl = 1000;
}

100
int glucose_solver_solve(Gluco::SimpSolver* S, int * plits, int nlits)
101 102 103 104 105 106 107 108
{
    vec<Lit> lits;
    for (int i=0;i<nlits;i++,plits++)
    {
        Lit p;
        p.x = *plits;
        lits.push(p);
    }
109
    Gluco::lbool res = S->solveLimited(lits, 0);
110 111 112
    return (res == l_True ? 1 : res == l_False ? -1 : 0);
}

113
int glucose_solver_addvar(Gluco::SimpSolver* S)
114 115 116 117 118
{
    S->newVar();
    return S->nVars() - 1;
}

119
int glucose_solver_read_cex_varvalue(Gluco::SimpSolver* S, int ivar)
120 121 122 123
{
    return S->model[ivar] == l_True;
}

124
void glucose_solver_setstop(Gluco::SimpSolver* S, int * pstop)
125 126 127 128 129 130 131
{
    S->pstop = pstop;
}


/**Function*************************************************************

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
  Synopsis    [Wrapper APIs to calling from ABC.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
bmcg_sat_solver * bmcg_sat_solver_start() 
{
    return (bmcg_sat_solver *)glucose_solver_start();
}
void bmcg_sat_solver_stop(bmcg_sat_solver* s)
{
147
    glucose_solver_stop((Gluco::SimpSolver*)s);
148
}
149 150 151 152 153
void bmcg_sat_solver_reset(bmcg_sat_solver* s)
{
    glucose_solver_reset((Gluco::SimpSolver*)s);
}

154 155 156

int bmcg_sat_solver_addclause(bmcg_sat_solver* s, int * plits, int nlits)
{
157
    return glucose_solver_addclause((Gluco::SimpSolver*)s,plits,nlits);
158 159 160 161
}

void bmcg_sat_solver_setcallback(bmcg_sat_solver* s, void * pman, int(*pfunc)(void*, int, int*))
{
162
    glucose_solver_setcallback((Gluco::SimpSolver*)s,pman,pfunc);
163 164 165 166
}

int bmcg_sat_solver_solve(bmcg_sat_solver* s, int * plits, int nlits)
{
167
    return glucose_solver_solve((Gluco::SimpSolver*)s,plits,nlits);
168 169 170 171
}

int bmcg_sat_solver_final(bmcg_sat_solver* s, int ** ppArray)
{
172 173
    *ppArray = (int *)(Lit *)((Gluco::SimpSolver*)s)->conflict;
    return ((Gluco::SimpSolver*)s)->conflict.size();
174 175 176 177
}

int bmcg_sat_solver_addvar(bmcg_sat_solver* s)
{
178
    return glucose_solver_addvar((Gluco::SimpSolver*)s);
179 180 181 182 183 184 185 186 187 188 189
}

void bmcg_sat_solver_set_nvars( bmcg_sat_solver* s, int nvars )
{
    int i;
    for ( i = bmcg_sat_solver_varnum(s); i < nvars; i++ )
        bmcg_sat_solver_addvar(s);
}

int bmcg_sat_solver_eliminate( bmcg_sat_solver* s, int turn_off_elim )
{
190
//    return 1; 
191 192 193 194 195
    return ((Gluco::SimpSolver*)s)->eliminate(turn_off_elim != 0);
}

int bmcg_sat_solver_var_is_elim( bmcg_sat_solver* s, int v )
{
196
//    return 0; 
197
    return ((Gluco::SimpSolver*)s)->isEliminated(v);
198 199
}

200 201 202 203 204 205 206 207 208 209 210
void bmcg_sat_solver_var_set_frozen( bmcg_sat_solver* s, int v, int freeze )
{
    ((Gluco::SimpSolver*)s)->setFrozen(v, freeze != 0);
}

int bmcg_sat_solver_elim_varnum(bmcg_sat_solver* s)
{
//    return 0; 
    return ((Gluco::SimpSolver*)s)->eliminated_vars;
}

211 212
int bmcg_sat_solver_read_cex_varvalue(bmcg_sat_solver* s, int ivar)
{
213
    return glucose_solver_read_cex_varvalue((Gluco::SimpSolver*)s, ivar);
214 215
}

216
void bmcg_sat_solver_set_stop(bmcg_sat_solver* s, int * pstop)
217
{
218
    glucose_solver_setstop((Gluco::SimpSolver*)s, pstop);
219 220
}

221 222
abctime bmcg_sat_solver_set_runtime_limit(bmcg_sat_solver* s, abctime Limit)
{
223 224
    abctime nRuntimeLimit = ((Gluco::SimpSolver*)s)->nRuntimeLimit;
    ((Gluco::SimpSolver*)s)->nRuntimeLimit = Limit;
225 226 227 228 229 230
    return nRuntimeLimit;
}

void bmcg_sat_solver_set_conflict_budget(bmcg_sat_solver* s, int Limit)
{
    if ( Limit > 0 ) 
231
        ((Gluco::SimpSolver*)s)->setConfBudget( (int64_t)Limit );
232
    else 
233
        ((Gluco::SimpSolver*)s)->budgetOff();
234 235
}

236 237
int bmcg_sat_solver_varnum(bmcg_sat_solver* s)
{
238
    return ((Gluco::SimpSolver*)s)->nVars();
239 240 241
}
int bmcg_sat_solver_clausenum(bmcg_sat_solver* s)
{
242
    return ((Gluco::SimpSolver*)s)->nClauses();
243 244 245
}
int bmcg_sat_solver_learntnum(bmcg_sat_solver* s)
{
246
    return ((Gluco::SimpSolver*)s)->nLearnts();
247 248 249
}
int bmcg_sat_solver_conflictnum(bmcg_sat_solver* s)
{
250
    return ((Gluco::SimpSolver*)s)->conflicts;
251 252
}

253
int bmcg_sat_solver_minimize_assumptions( bmcg_sat_solver * s, int * plits, int nlits, int pivot )
254
{
255
    vec<int>*array = &((Gluco::SimpSolver*)s)->user_vec;
256
    int i, nlitsL, nlitsR, nresL, nresR, status;
257 258 259 260
    assert( pivot >= 0 );
//    assert( nlits - pivot >= 2 );
    assert( nlits - pivot >= 1 );
    if ( nlits - pivot == 1 )
261 262 263
    {
        // since the problem is UNSAT, we try to solve it without assuming the last literal
        // if the result is UNSAT, the last literal can be dropped; otherwise, it is needed
264 265
        status = bmcg_sat_solver_solve( s, plits, pivot );
        return status != GLUCOSE_UNSAT; // return 1 if the problem is not UNSAT
266
    }
267 268 269 270
    assert( nlits - pivot >= 2 );
    nlitsL = (nlits - pivot) / 2;
    nlitsR = (nlits - pivot) - nlitsL;
    assert( nlitsL + nlitsR == nlits - pivot );
271
    // solve with these assumptions
272 273 274
    status = bmcg_sat_solver_solve( s, plits, pivot + nlitsL );
    if ( status == GLUCOSE_UNSAT ) // these are enough
        return bmcg_sat_solver_minimize_assumptions( s, plits, pivot + nlitsL, pivot );
275 276
    // these are not enough
    // solve for the right lits
277 278
//    nResL = nLitsR == 1 ? 1 : sat_solver_minimize_assumptions( s, pLits + nLitsL, nLitsR, nConfLimit );
    nresL = nlitsR == 1 ? 1 : bmcg_sat_solver_minimize_assumptions( s, plits, nlits, pivot + nlitsL );
279 280 281
    // swap literals
    array->clear();
    for ( i = 0; i < nlitsL; i++ )
282
        array->push(plits[pivot + i]);
283
    for ( i = 0; i < nresL; i++ )
284
        plits[pivot + i] = plits[pivot + nlitsL + i];
285
    for ( i = 0; i < nlitsL; i++ )
286
        plits[pivot + nresL + i] = (*array)[i];
287
    // solve with these assumptions
288 289
    status = bmcg_sat_solver_solve( s, plits, pivot + nresL );
    if ( status == GLUCOSE_UNSAT ) // these are enough
290 291
        return nresL;
    // solve for the left lits
292 293
//    nResR = nLitsL == 1 ? 1 : sat_solver_minimize_assumptions( s, pLits + nResL, nLitsL, nConfLimit );
    nresR = nlitsL == 1 ? 1 : bmcg_sat_solver_minimize_assumptions( s, plits, pivot + nresL + nlitsL, pivot + nresL );
294 295 296
    return nresL + nresR;
}

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
int bmcg_sat_solver_add_and( bmcg_sat_solver * s, int iVar, int iVar0, int iVar1, int fCompl0, int fCompl1, int fCompl )
{
    int Lits[3];

    Lits[0] = Abc_Var2Lit( iVar, !fCompl );
    Lits[1] = Abc_Var2Lit( iVar0, fCompl0 );
    if ( !bmcg_sat_solver_addclause( s, Lits, 2 ) )
        return 0;

    Lits[0] = Abc_Var2Lit( iVar, !fCompl );
    Lits[1] = Abc_Var2Lit( iVar1, fCompl1 );
    if ( !bmcg_sat_solver_addclause( s, Lits, 2 ) )
        return 0;

    Lits[0] = Abc_Var2Lit( iVar,   fCompl );
    Lits[1] = Abc_Var2Lit( iVar0, !fCompl0 );
    Lits[2] = Abc_Var2Lit( iVar1, !fCompl1 );
    if ( !bmcg_sat_solver_addclause( s, Lits, 3 ) )
        return 0;

    return 1;
}
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452

#else

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Gluco::Solver * glucose_solver_start()
{
    Solver * S = new Solver;
    S->setIncrementalMode();
    return S;
}

void glucose_solver_stop(Gluco::Solver* S)
{
    delete S;
}

int glucose_solver_addclause(Gluco::Solver* S, int * plits, int nlits)
{
    vec<Lit> lits;
    for ( int i = 0; i < nlits; i++,plits++)
    {
        // note: Glucose uses the same var->lit conventiaon as ABC
        while ((*plits)/2 >= S->nVars()) S->newVar();
        assert((*plits)/2 < S->nVars()); // NOTE: since we explicitely use new function bmc_add_var
        Lit p;
        p.x = *plits;
        lits.push(p);
    }
    return S->addClause(lits); // returns 0 if the problem is UNSAT
}

void glucose_solver_setcallback(Gluco::Solver* S, void * pman, int(*pfunc)(void*, int, int*))
{
    S->pCnfMan = pman;
    S->pCnfFunc = pfunc;
    S->nCallConfl = 1000;
}

int glucose_solver_solve(Gluco::Solver* S, int * plits, int nlits)
{
    vec<Lit> lits;
    for (int i=0;i<nlits;i++,plits++)
    {
        Lit p;
        p.x = *plits;
        lits.push(p);
    }
    Gluco::lbool res = S->solveLimited(lits);
    return (res == l_True ? 1 : res == l_False ? -1 : 0);
}

int glucose_solver_addvar(Gluco::Solver* S)
{
    S->newVar();
    return S->nVars() - 1;
}

int glucose_solver_read_cex_varvalue(Gluco::Solver* S, int ivar)
{
    return S->model[ivar] == l_True;
}

void glucose_solver_setstop(Gluco::Solver* S, int * pstop)
{
    S->pstop = pstop;
}


/**Function*************************************************************

  Synopsis    [Wrapper APIs to calling from ABC.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
bmcg_sat_solver * bmcg_sat_solver_start() 
{
    return (bmcg_sat_solver *)glucose_solver_start();
}
void bmcg_sat_solver_stop(bmcg_sat_solver* s)
{
    glucose_solver_stop((Gluco::Solver*)s);
}

int bmcg_sat_solver_addclause(bmcg_sat_solver* s, int * plits, int nlits)
{
    return glucose_solver_addclause((Gluco::Solver*)s,plits,nlits);
}

void bmcg_sat_solver_setcallback(bmcg_sat_solver* s, void * pman, int(*pfunc)(void*, int, int*))
{
    glucose_solver_setcallback((Gluco::Solver*)s,pman,pfunc);
}

int bmcg_sat_solver_solve(bmcg_sat_solver* s, int * plits, int nlits)
{
    return glucose_solver_solve((Gluco::Solver*)s,plits,nlits);
}

int bmcg_sat_solver_final(bmcg_sat_solver* s, int ** ppArray)
{
    *ppArray = (int *)(Lit *)((Gluco::Solver*)s)->conflict;
    return ((Gluco::Solver*)s)->conflict.size();
}

int bmcg_sat_solver_addvar(bmcg_sat_solver* s)
{
    return glucose_solver_addvar((Gluco::Solver*)s);
}

void bmcg_sat_solver_set_nvars( bmcg_sat_solver* s, int nvars )
{
    int i;
    for ( i = bmcg_sat_solver_varnum(s); i < nvars; i++ )
        bmcg_sat_solver_addvar(s);
}

int bmcg_sat_solver_eliminate( bmcg_sat_solver* s, int turn_off_elim )
{
    return 1; 
453
//    return ((Gluco::SimpSolver*)s)->eliminate(turn_off_elim != 0);
454 455 456 457 458
}

int bmcg_sat_solver_var_is_elim( bmcg_sat_solver* s, int v )
{
    return 0; 
459 460 461 462 463 464 465 466 467 468 469 470
//    return ((Gluco::SimpSolver*)s)->isEliminated(v);
}

void bmcg_sat_solver_var_set_frozen( bmcg_sat_solver* s, int v, int freeze )
{
//    ((Gluco::SimpSolver*)s)->setFrozen(v, freeze);
}

int bmcg_sat_solver_elim_varnum(bmcg_sat_solver* s)
{
    return 0;
//    return ((Gluco::SimpSolver*)s)->eliminated_vars;
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
}

int bmcg_sat_solver_read_cex_varvalue(bmcg_sat_solver* s, int ivar)
{
    return glucose_solver_read_cex_varvalue((Gluco::Solver*)s, ivar);
}

void bmcg_sat_solver_set_stop(bmcg_sat_solver* s, int * pstop)
{
    glucose_solver_setstop((Gluco::Solver*)s, pstop);
}

abctime bmcg_sat_solver_set_runtime_limit(bmcg_sat_solver* s, abctime Limit)
{
    abctime nRuntimeLimit = ((Gluco::Solver*)s)->nRuntimeLimit;
    ((Gluco::Solver*)s)->nRuntimeLimit = Limit;
    return nRuntimeLimit;
}

void bmcg_sat_solver_set_conflict_budget(bmcg_sat_solver* s, int Limit)
{
    if ( Limit > 0 ) 
        ((Gluco::Solver*)s)->setConfBudget( (int64_t)Limit );
    else 
        ((Gluco::Solver*)s)->budgetOff();
}

int bmcg_sat_solver_varnum(bmcg_sat_solver* s)
{
    return ((Gluco::Solver*)s)->nVars();
}
int bmcg_sat_solver_clausenum(bmcg_sat_solver* s)
{
    return ((Gluco::Solver*)s)->nClauses();
}
int bmcg_sat_solver_learntnum(bmcg_sat_solver* s)
{
    return ((Gluco::Solver*)s)->nLearnts();
}
int bmcg_sat_solver_conflictnum(bmcg_sat_solver* s)
{
    return ((Gluco::Solver*)s)->conflicts;
}

515
int bmcg_sat_solver_minimize_assumptions( bmcg_sat_solver * s, int * plits, int nlits, int pivot )
516 517 518
{
    vec<int>*array = &((Gluco::Solver*)s)->user_vec;
    int i, nlitsL, nlitsR, nresL, nresR, status;
519 520 521 522
    assert( pivot >= 0 );
//    assert( nlits - pivot >= 2 );
    assert( nlits - pivot >= 1 );
    if ( nlits - pivot == 1 )
523 524 525
    {
        // since the problem is UNSAT, we try to solve it without assuming the last literal
        // if the result is UNSAT, the last literal can be dropped; otherwise, it is needed
526 527
        status = bmcg_sat_solver_solve( s, plits, pivot );
        return status != GLUCOSE_UNSAT; // return 1 if the problem is not UNSAT
528
    }
529 530 531 532
    assert( nlits - pivot >= 2 );
    nlitsL = (nlits - pivot) / 2;
    nlitsR = (nlits - pivot) - nlitsL;
    assert( nlitsL + nlitsR == nlits - pivot );
533
    // solve with these assumptions
534 535 536
    status = bmcg_sat_solver_solve( s, plits, pivot + nlitsL );
    if ( status == GLUCOSE_UNSAT ) // these are enough
        return bmcg_sat_solver_minimize_assumptions( s, plits, pivot + nlitsL, pivot );
537 538
    // these are not enough
    // solve for the right lits
539 540
//    nResL = nLitsR == 1 ? 1 : sat_solver_minimize_assumptions( s, pLits + nLitsL, nLitsR, nConfLimit );
    nresL = nlitsR == 1 ? 1 : bmcg_sat_solver_minimize_assumptions( s, plits, nlits, pivot + nlitsL );
541 542 543
    // swap literals
    array->clear();
    for ( i = 0; i < nlitsL; i++ )
544
        array->push(plits[pivot + i]);
545
    for ( i = 0; i < nresL; i++ )
546
        plits[pivot + i] = plits[pivot + nlitsL + i];
547
    for ( i = 0; i < nlitsL; i++ )
548
        plits[pivot + nresL + i] = (*array)[i];
549
    // solve with these assumptions
550 551
    status = bmcg_sat_solver_solve( s, plits, pivot + nresL );
    if ( status == GLUCOSE_UNSAT ) // these are enough
552 553
        return nresL;
    // solve for the left lits
554 555
//    nResR = nLitsL == 1 ? 1 : sat_solver_minimize_assumptions( s, pLits + nResL, nLitsL, nConfLimit );
    nresR = nlitsL == 1 ? 1 : bmcg_sat_solver_minimize_assumptions( s, plits, pivot + nresL + nlitsL, pivot + nresL );
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
    return nresL + nresR;
}

#endif


/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void glucose_print_stats(SimpSolver& s, abctime clk)
{
    double cpu_time = (double)(unsigned)clk / CLOCKS_PER_SEC;
    double mem_used = memUsed();
    printf("c restarts              : %d (%d conflicts on average)\n",         (int)s.starts, s.starts > 0 ? (int)(s.conflicts/s.starts) : 0);
    printf("c blocked restarts      : %d (multiple: %d) \n",                   (int)s.nbstopsrestarts, (int)s.nbstopsrestartssame);
    printf("c last block at restart : %d\n",                                   (int)s.lastblockatrestart);
    printf("c nb ReduceDB           : %-12d\n",                                (int)s.nbReduceDB);
    printf("c nb removed Clauses    : %-12d\n",                                (int)s.nbRemovedClauses);
    printf("c nb learnts DL2        : %-12d\n",                                (int)s.nbDL2);
    printf("c nb learnts size 2     : %-12d\n",                                (int)s.nbBin);
    printf("c nb learnts size 1     : %-12d\n",                                (int)s.nbUn);
    printf("c conflicts             : %-12d  (%.0f /sec)\n",                   (int)s.conflicts,    s.conflicts   /cpu_time);
    printf("c decisions             : %-12d  (%4.2f %% random) (%.0f /sec)\n", (int)s.decisions,    (float)s.rnd_decisions*100 / (float)s.decisions, s.decisions   /cpu_time);
    printf("c propagations          : %-12d  (%.0f /sec)\n",                   (int)s.propagations, s.propagations/cpu_time);
    printf("c conflict literals     : %-12d  (%4.2f %% deleted)\n",            (int)s.tot_literals, (s.max_literals - s.tot_literals)*100 / (double)s.max_literals);
    printf("c nb reduced Clauses    : %-12d\n", (int)s.nbReducedClauses);
    if (mem_used != 0) printf("Memory used           : %.2f MB\n", mem_used);
    //printf("c CPU time              : %.2f sec\n", cpu_time);
}

594 595
/**Function*************************************************************

596 597 598 599 600 601 602 603 604
  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
void Glucose_ReadDimacs( char * pFileName, SimpSolver& s )
{
    vec<Lit> * lits = &s.user_lits;
    char * pBuffer = Extra_FileReadContents( pFileName );
    char * pTemp; int fComp, Var, VarMax = 0;
    lits->clear();
    for ( pTemp = pBuffer; *pTemp; pTemp++ )
    {
        if ( *pTemp == 'c' || *pTemp == 'p' ) {
            while ( *pTemp != '\n' )
                pTemp++;
            continue;
        }
        while ( *pTemp == ' ' || *pTemp == '\t' || *pTemp == '\r' || *pTemp == '\n' )
            pTemp++;
        fComp = 0;
        if ( *pTemp == '-' )
            fComp = 1, pTemp++;
        if ( *pTemp == '+' )
            pTemp++;
        Var = atoi( pTemp );
        if ( Var == 0 ) {
            if ( lits->size() > 0 ) {
                s.addVar( VarMax );
                s.addClause(*lits);
                lits->clear();
            }
        }
        else {
            Var--;
            VarMax = Abc_MaxInt( VarMax, Var );
            lits->push( toLit(Abc_Var2Lit(Var, fComp)) );
        }
        while ( *pTemp >= '0' && *pTemp <= '9' )
            pTemp++;
    }
    ABC_FREE( pBuffer );
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Glucose_SolveCnf( char * pFileName, Glucose_Pars * pPars )
656 657
{
    abctime clk = Abc_Clock();
658

659 660 661 662
    SimpSolver  S;
    S.verbosity = pPars->verb;
    S.setConfBudget( pPars->nConfls > 0 ? (int64_t)pPars->nConfls : -1 );

663 664 665 666
//    gzFile in = gzopen(pFilename, "rb");
//    parse_DIMACS(in, S);
//    gzclose(in);
    Glucose_ReadDimacs( pFileName, S );
667

668 669 670 671 672 673 674
    if ( pPars->verb )
    {
        printf("c ============================[ Problem Statistics ]=============================\n");
        printf("c |                                                                             |\n");
        printf("c |  Number of variables:  %12d                                         |\n", S.nVars());
        printf("c |  Number of clauses:    %12d                                         |\n", S.nClauses());
    }
675
    
676 677 678 679 680 681
    if ( pPars->pre ) 
    {
        S.eliminate(true);
        printf( "c Simplication removed %d variables and %d clauses.  ", S.eliminated_vars, S.eliminated_clauses );
        Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
    }
682 683

    vec<Lit> dummy;
684
    lbool ret = S.solveLimited(dummy, 0);
685 686
    if ( pPars->verb ) glucose_print_stats(S, Abc_Clock() - clk);
    printf(ret == l_True ? "SATISFIABLE" : ret == l_False ? "UNSATISFIABLE" : "INDETERMINATE");
687
    Abc_PrintTime( 1, "      Time", Abc_Clock() - clk );
688 689 690 691 692 693 694 695 696 697 698 699 700
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
701
Vec_Int_t * Glucose_SolverFromAig( Gia_Man_t * p, SimpSolver& s )
702
{
703
    abctime clk = Abc_Clock();
704
    vec<Lit> * lits = &s.user_lits;
705
    Cnf_Dat_t * pCnf = (Cnf_Dat_t *)Mf_ManGenerateCnf( p, 8 /*nLutSize*/, 0 /*fCnfObjIds*/, 1/*fAddOrCla*/, 0, 0/*verbose*/ );
706
    for ( int i = 0; i < pCnf->nClauses; i++ )
707
    {
708 709 710 711
        lits->clear();
        for ( int * pLit = pCnf->pClauses[i]; pLit < pCnf->pClauses[i+1]; pLit++ )
            lits->push( toLit(*pLit) ), s.addVar( *pLit >> 1 );
        s.addClause(*lits);
712 713
    }
    Vec_Int_t * vCnfIds = Vec_IntAllocArrayCopy(pCnf->pVarNums,pCnf->nVars);
714 715 716 717 718 719 720 721 722 723 724 725 726 727
    printf( "CNF stats: Vars = %6d. Clauses = %7d. Literals = %8d. ", pCnf->nVars, pCnf->nClauses, pCnf->nLiterals );
    Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
    Cnf_DataFree(pCnf);
    return vCnfIds;
}

// procedure below does not work because glucose_solver_addclause() expects Solver
Vec_Int_t * Glucose_SolverFromAig2( Gia_Man_t * p, SimpSolver& S ) 
{
    Cnf_Dat_t * pCnf = (Cnf_Dat_t *)Mf_ManGenerateCnf( p, 8 /*nLutSize*/, 0 /*fCnfObjIds*/, 1/*fAddOrCla*/, 0, 0/*verbose*/ );
    for ( int i = 0; i < pCnf->nClauses; i++ )
        if ( !glucose_solver_addclause( &S, pCnf->pClauses[i], pCnf->pClauses[i+1]-pCnf->pClauses[i] ) )
            assert( 0 );
    Vec_Int_t * vCnfIds = Vec_IntAllocArrayCopy(pCnf->pVarNums,pCnf->nVars);
728 729 730 731 732 733
    //printf( "CNF stats: Vars = %6d. Clauses = %7d. Literals = %8d. ", pCnf->nVars, pCnf->nClauses, pCnf->nLiterals );
    //Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
    Cnf_DataFree(pCnf);
    return vCnfIds;
}

734 735 736 737 738 739 740 741 742 743 744 745 746


/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
747
Vec_Str_t * Glucose_GenerateCubes( bmcg_sat_solver * pSat[2], Vec_Int_t * vCiSatVars, Vec_Int_t * vVar2Index, int CubeLimit )
748
{
749
    int fCreatePrime = 1;
750
    int nCubes, nSupp = Vec_IntSize(vCiSatVars);
751
    Vec_Str_t * vSop  = Vec_StrAlloc( 1000 );
752 753 754
    Vec_Int_t * vLits = Vec_IntAlloc( nSupp );
    Vec_Str_t * vCube = Vec_StrAlloc( nSupp + 4 );
    Vec_StrFill( vCube, nSupp, '-' );
755
    Vec_StrPrintF( vCube, " 1\n\0" );
756
    for ( nCubes = 0; !CubeLimit || nCubes < CubeLimit; nCubes++ )
757
    {
758
        int * pFinal, nFinal, iVar, i, k = 0;
759 760
        // generate onset minterm
        int status = bmcg_sat_solver_solve( pSat[1], NULL, 0 );
761
        if ( status == GLUCOSE_UNSAT )
762
            break;
763
        assert( status == GLUCOSE_SAT );
764
        Vec_IntClear( vLits );
765
        Vec_IntForEachEntry( vCiSatVars, iVar, i )
766
            Vec_IntPush( vLits, Abc_Var2Lit(iVar, !bmcg_sat_solver_read_cex_varvalue(pSat[1], iVar)) );
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
        // expand against offset
        if ( fCreatePrime )
        {
            nFinal = bmcg_sat_solver_minimize_assumptions( pSat[0], Vec_IntArray(vLits), Vec_IntSize(vLits), 0 );
            Vec_IntShrink( vLits, nFinal );
            pFinal = Vec_IntArray( vLits );
            for ( i = 0; i < nFinal; i++ )
                pFinal[i] = Abc_LitNot(pFinal[i]);
        }
        else
        {
            status = bmcg_sat_solver_solve( pSat[0], Vec_IntArray(vLits), Vec_IntSize(vLits) );
            assert( status == GLUCOSE_UNSAT );
            nFinal = bmcg_sat_solver_final( pSat[0], &pFinal );
        }
782
        // print cube
783
        Vec_StrFill( vCube, nSupp, '-' );
784
        for ( i = 0; i < nFinal; i++ )
785
        {
786 787
            int Index = Vec_IntEntry(vVar2Index, Abc_Lit2Var(pFinal[i]));
            if ( Index == -1 )
788 789
                continue;
            pFinal[k++] = pFinal[i];
790 791
            assert( Index >= 0 && Index < nSupp );
            Vec_StrWriteEntry( vCube, Index, (char)('0' + Abc_LitIsCompl(pFinal[i])) );
792
        }
793
        nFinal = k;
794
        Vec_StrAppend( vSop, Vec_StrArray(vCube) );
795
        //printf( "%s\n", Vec_StrArray(vCube) );
796 797 798 799 800 801
        // add blocking clause
        if ( !bmcg_sat_solver_addclause( pSat[1], pFinal, nFinal ) )
            break;
    }
    Vec_IntFree( vLits );
    Vec_StrFree( vCube );
802 803 804
    Vec_StrPush( vSop, '\0' );
    return vSop;
}
805
Vec_Str_t * bmcg_sat_solver_sop( Gia_Man_t * p, int CubeLimit )
806 807 808 809 810
{
    bmcg_sat_solver * pSat[2] = { bmcg_sat_solver_start(), bmcg_sat_solver_start() };

    // generate CNF for the on-set and off-set
    Cnf_Dat_t * pCnf = (Cnf_Dat_t *)Mf_ManGenerateCnf( p, 8 /*nLutSize*/, 0 /*fCnfObjIds*/, 0/*fAddOrCla*/, 0, 0/*verbose*/ );
811
    int i, n, nVars = Gia_ManCiNum(p), Lit;//, Count = 0;
812 813 814 815 816 817 818 819 820 821
    int iFirstVar = pCnf->nVars - nVars;
    assert( Gia_ManCoNum(p) == 1 );
    for ( n = 0; n < 2; n++ )
    {
        bmcg_sat_solver_set_nvars( pSat[n], pCnf->nVars );
        Lit = Abc_Var2Lit( 1, !n );  // output variable is 1
        for ( i = 0; i < pCnf->nClauses; i++ )
            if ( !bmcg_sat_solver_addclause( pSat[n], pCnf->pClauses[i], pCnf->pClauses[i+1]-pCnf->pClauses[i] ) )
                assert( 0 );
        if ( !bmcg_sat_solver_addclause( pSat[n], &Lit, 1 ) )
822 823 824 825 826 827
        {
            Vec_Str_t * vSop = Vec_StrAlloc( 10 );
            Vec_StrPrintF( vSop, " %d\n\0", !n );
            Cnf_DataFree( pCnf );
            return vSop;
        }
828 829 830 831 832 833 834 835 836 837 838 839
    }
    Cnf_DataFree( pCnf );

    // collect cube vars and map SAT vars into them
    Vec_Int_t * vVars = Vec_IntAlloc( 100 ); 
    Vec_Int_t * vVarMap = Vec_IntStartFull( iFirstVar + nVars ); 
    for ( i = 0; i < nVars; i++ )
    {
        Vec_IntPush( vVars, iFirstVar+i );
        Vec_IntWriteEntry( vVarMap, iFirstVar+i, i );
    }

840
    Vec_Str_t * vSop = Glucose_GenerateCubes( pSat, vVars, vVarMap, CubeLimit );
841 842 843
    Vec_IntFree( vVarMap );
    Vec_IntFree( vVars );

844 845 846 847
    bmcg_sat_solver_stop( pSat[0] );
    bmcg_sat_solver_stop( pSat[1] );
    return vSop;
}
848
void bmcg_sat_solver_print_sop( Gia_Man_t * p )
849
{
850
    Vec_Str_t * vSop = bmcg_sat_solver_sop( p, 0 );
851 852
    printf( "%s", Vec_StrArray(vSop) );
    Vec_StrFree( vSop );
853
}
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
void bmcg_sat_solver_print_sop_lit( Gia_Man_t * p, int Lit )
{
    Vec_Int_t * vCisUsed = Vec_IntAlloc( 100 );
    int i, ObjId, iNode = Abc_Lit2Var( Lit );
    Gia_ManCollectCis( p, &iNode, 1, vCisUsed );
    Vec_IntSort( vCisUsed, 0 );
    Vec_IntForEachEntry( vCisUsed, ObjId, i )
        Vec_IntWriteEntry( vCisUsed, i, Gia_ManIdToCioId(p, ObjId) );
    Vec_IntPrint( vCisUsed );
    Gia_Man_t * pNew = Gia_ManDupConeSupp( p, Lit, vCisUsed );
    Vec_IntFree( vCisUsed );
    bmcg_sat_solver_print_sop( pNew );
    Gia_ManStop( pNew );
    printf( "\n" );
}
869

870 871
/**Function*************************************************************

872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
  Synopsis    [Computing d-literals.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
#define Gia_CubeForEachVar( pCube, Value, i )                                                      \
    for ( i = 0; (pCube[i] != ' ') && (Value = pCube[i]); i++ )           
#define Gia_SopForEachCube( pSop, nFanins, pCube )                                                 \
    for ( pCube = (pSop); *pCube; pCube += (nFanins) + 3 )

void bmcg_sat_generate_dvars( Vec_Int_t * vCiVars, Vec_Str_t * vSop, Vec_Int_t * vDLits )
{
    int i, Lit, Counter, nCubes = 0;
    char Value, * pCube, * pSop = Vec_StrArray( vSop );
    Vec_Int_t * vCounts = Vec_IntStart( 2*Vec_IntSize(vCiVars) );
    Vec_IntClear( vDLits );
    Gia_SopForEachCube( pSop, Vec_IntSize(vCiVars), pCube )
    {
        nCubes++;
        Gia_CubeForEachVar( pCube, Value, i )
        {
            if ( Value == '1' )
                Vec_IntAddToEntry( vCounts, 2*i, 1 );
            else if ( Value == '0' )
                Vec_IntAddToEntry( vCounts, 2*i+1, 1 );
        }
    }
    Vec_IntForEachEntry( vCounts, Counter, Lit )
        if ( Counter == nCubes )
            Vec_IntPush( vDLits, Abc_Var2Lit(Vec_IntEntry(vCiVars, Abc_Lit2Var(Lit)), Abc_LitIsCompl(Lit)) );
    Vec_IntSort( vDLits, 0 );
    Vec_IntFree( vCounts );
}

/**Function*************************************************************

912 913 914 915 916 917 918 919 920
  Synopsis    [Performs SAT-based quantification.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
921
int bmcg_sat_solver_quantify2( Gia_Man_t * p, int iLit, int fHash, int(*pFuncCiToKeep)(void *, int), void * pData, Vec_Int_t * vDLits )
922
{
923
    int fSynthesize = 0;
924 925
    extern Gia_Man_t * Abc_SopSynthesizeOne( char * pSop, int fClp );
    Gia_Man_t * pMan, * pNew, * pTemp;  Vec_Str_t * vSop;
926
    int i, CiId, ObjId, Res, nCubes = 0, nNodes, Count = 0, iNode = Abc_Lit2Var(iLit);
927 928
    Vec_Int_t * vCisUsed = Vec_IntAlloc( 100 );
    Gia_ManCollectCis( p, &iNode, 1, vCisUsed );
929 930 931 932
    Vec_IntSort( vCisUsed, 0 );
    if ( vDLits ) Vec_IntClear( vDLits );
    if ( iLit < 2 )
        return iLit;
933 934 935 936 937 938
    // remap into CI Ids
    Vec_IntForEachEntry( vCisUsed, ObjId, i )
        Vec_IntWriteEntry( vCisUsed, i, Gia_ManIdToCioId(p, ObjId) );
    // duplicate cone
    pNew = Gia_ManDupConeSupp( p, iLit, vCisUsed );
    assert( Gia_ManCiNum(pNew) == Vec_IntSize(vCisUsed) );
939
    nNodes = Gia_ManAndNum(pNew);
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958

    // perform quantification one CI at a time
    assert( pFuncCiToKeep );
    Vec_IntForEachEntry( vCisUsed, CiId, i )
        if ( !pFuncCiToKeep( pData, CiId ) )
        {
            //printf( "Quantifying %d.\n", CiId );
            pNew = Gia_ManDupExist( pTemp = pNew, i );
            Gia_ManStop( pTemp );
            Count++;
        }
    if ( Gia_ManPoIsConst(pNew, 0) )
    {
        int RetValue = Gia_ManPoIsConst1(pNew, 0);
        Vec_IntFree( vCisUsed );
        Gia_ManStop( pNew );
        return RetValue;
    }

959
    if ( fSynthesize )
960
    {
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
        vSop = bmcg_sat_solver_sop( pNew, 0 );
        Gia_ManStop( pNew );
        pMan = Abc_SopSynthesizeOne( Vec_StrArray(vSop), 1 );
        nCubes = Vec_StrCountEntry(vSop, '\n');
        if ( vDLits )
        {
            // convert into object IDs
            Vec_Int_t * vCisObjs = Vec_IntAlloc( Vec_IntSize(vCisUsed) );
            Vec_IntForEachEntry( vCisUsed, CiId, i )
                Vec_IntPush( vCisObjs, CiId + 1 );
            bmcg_sat_generate_dvars( vCisObjs, vSop, vDLits );
            Vec_IntFree( vCisObjs );
        }
        Vec_StrFree( vSop );

        if ( Gia_ManPoIsConst(pMan, 0) )
        {
            int RetValue = Gia_ManPoIsConst1(pMan, 0);
            Vec_IntFree( vCisUsed );
            Gia_ManStop( pMan );
            return RetValue;
        }
983
    }
984
    else
985
    {
986
        pMan = pNew;
987 988 989
    }

    Res = Gia_ManDupConeBack( p, pMan, vCisUsed );
990 991

    // report the result
992 993 994
    //printf( "Performed quantification with %5d nodes, %3d keep-vars, %3d quant-vars, resulting in %5d cubes and %5d nodes. ", 
    //    nNodes, Vec_IntSize(vCisUsed) - Count, Count, nCubes, Gia_ManAndNum(pMan) );
    //Abc_PrintTime( 1, "Time", Abc_Clock() - clkAll );
995

996 997 998
    Vec_IntFree( vCisUsed );
    Gia_ManStop( pMan );
    return Res;
999 1000
}

1001

1002 1003
/**Function*************************************************************

1004 1005 1006 1007 1008 1009 1010 1011 1012
  Synopsis    [Performs SAT-based quantification.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
1013
int Gia_ManSatAndCollect_rec( Gia_Man_t * p, int iObj, Vec_Int_t * vObjsUsed, Vec_Int_t * vCiVars )
1014 1015
{
    Gia_Obj_t * pObj; int iVar;
1016
    if ( (iVar = Gia_ObjCopyArray(p, iObj)) >= 0 )
1017 1018 1019 1020 1021
        return iVar;
    pObj = Gia_ManObj( p, iObj );
    assert( Gia_ObjIsCand(pObj) );
    if ( Gia_ObjIsAnd(pObj) )
    {
1022 1023
        Gia_ManSatAndCollect_rec( p, Gia_ObjFaninId0(pObj, iObj), vObjsUsed, vCiVars );
        Gia_ManSatAndCollect_rec( p, Gia_ObjFaninId1(pObj, iObj), vObjsUsed, vCiVars );
1024
    }
1025 1026 1027 1028 1029
    iVar = Vec_IntSize( vObjsUsed );
    Vec_IntPush( vObjsUsed, iObj );
    Gia_ObjSetCopyArray( p, iObj, iVar );
    if ( vCiVars && Gia_ObjIsCi(pObj) )
        Vec_IntPush( vCiVars, iVar );
1030 1031
    return iVar;
}                             
1032
void Gia_ManQuantLoadCnf( Gia_Man_t * p, Vec_Int_t * vObjsUsed, bmcg_sat_solver * pSats[] )
1033 1034
{
    Gia_Obj_t * pObj; int i;
1035 1036 1037
    bmcg_sat_solver_reset( pSats[0] );
    if ( pSats[1] )
    bmcg_sat_solver_reset( pSats[1] );
1038
    bmcg_sat_solver_set_nvars( pSats[0], Vec_IntSize(vObjsUsed) );
1039
    if ( pSats[1] )
1040 1041 1042 1043 1044 1045 1046 1047 1048
    bmcg_sat_solver_set_nvars( pSats[1], Vec_IntSize(vObjsUsed) );
    Gia_ManForEachObjVec( vObjsUsed, p, pObj, i ) 
        if ( Gia_ObjIsAnd(pObj) )
        {
            int iObj  = Gia_ObjId( p, pObj );
            int iVar  = Gia_ObjCopyArray(p, iObj);
            int iVar0 = Gia_ObjCopyArray(p, Gia_ObjFaninId0(pObj, iObj));
            int iVar1 = Gia_ObjCopyArray(p, Gia_ObjFaninId1(pObj, iObj));
            bmcg_sat_solver_add_and( pSats[0], iVar, iVar0, iVar1, Gia_ObjFaninC0(pObj), Gia_ObjFaninC1(pObj), 0 );
1049
            if ( pSats[1] )
1050 1051
            bmcg_sat_solver_add_and( pSats[1], iVar, iVar0, iVar1, Gia_ObjFaninC0(pObj), Gia_ObjFaninC1(pObj), 0 );
        }
1052 1053 1054 1055 1056 1057 1058 1059 1060
        else if ( Gia_ObjIsConst0(pObj) )
        {
            int Lit = Abc_Var2Lit( Gia_ObjCopyArray(p, 0), 1 );
            int RetValue = bmcg_sat_solver_addclause( pSats[0], &Lit, 1 );
            assert( RetValue );
            if ( pSats[1] )
            bmcg_sat_solver_addclause( pSats[1], &Lit, 1 );
            assert( Lit == 1 );
        }
1061 1062 1063
}
int Gia_ManFactorSop( Gia_Man_t * p, Vec_Int_t * vCiObjIds, Vec_Str_t * vSop, int fHash )
{
1064 1065
    extern Gia_Man_t * Abc_SopSynthesizeOne( char * pSop, int fClp );
    Gia_Man_t * pMan = Abc_SopSynthesizeOne( Vec_StrArray(vSop), 1 );
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
    Gia_Obj_t * pObj; int i, Result;
    assert( Gia_ManPiNum(pMan) == Vec_IntSize(vCiObjIds) );
    Gia_ManConst0(pMan)->Value = 0;
    Gia_ManForEachPi( pMan, pObj, i )
        pObj->Value = Abc_Var2Lit( Vec_IntEntry(vCiObjIds, i), 0 );
    Gia_ManForEachAnd( pMan, pObj, i )
        if ( fHash )
            pObj->Value = Gia_ManHashAnd( p, Gia_ObjFanin0Copy(pObj), Gia_ObjFanin1Copy(pObj) );
        else
            pObj->Value = Gia_ManAppendAnd( p, Gia_ObjFanin0Copy(pObj), Gia_ObjFanin1Copy(pObj) );
    pObj = Gia_ManPo(pMan, 0);
    Result = Gia_ObjFanin0Copy(pObj);
    Gia_ManStop( pMan );
    return Result;
}
1081
int bmcg_sat_solver_quantify( bmcg_sat_solver * pSats[], Gia_Man_t * p, int iLit, int fHash, int(*pFuncCiToKeep)(void *, int), void * pData, Vec_Int_t * vDLits )
1082 1083 1084
{
    Vec_Int_t * vObjsUsed = Vec_IntAlloc( 100 ); // GIA objs
    Vec_Int_t * vCiVars = Vec_IntAlloc( 100 );   // CI SAT vars
1085
    Vec_Int_t * vVarMap = NULL; Vec_Str_t * vSop = NULL; 
1086
    int i, iVar, iVarLast, Lit, RetValue, Count = 0, Result = -1;
1087 1088 1089
    if ( vDLits ) Vec_IntClear( vDLits );
    if ( iLit < 2 )
        return iLit;
1090 1091 1092 1093
    if ( Vec_IntSize(&p->vCopies) < Gia_ManObjNum(p) )
        Vec_IntFillExtra( &p->vCopies, Gia_ManObjNum(p), -1 );
    // assign variable number 0 to const0 node
    iVar = Vec_IntSize(vObjsUsed); 
1094
    Vec_IntPush( vObjsUsed, 0 );
1095 1096
    Gia_ObjSetCopyArray( p, 0, iVar );
    assert( iVar == 0 );    
1097

1098 1099
    // collect other variables
    iVarLast = Gia_ManSatAndCollect_rec( p, Abc_Lit2Var(iLit), vObjsUsed, vCiVars );
1100
    Gia_ManQuantLoadCnf( p, vObjsUsed, pSats );
1101

1102 1103 1104
    // check constants
    Lit = Abc_Var2Lit( iVarLast, !Abc_LitIsCompl(iLit) ); 
    RetValue = bmcg_sat_solver_addclause( pSats[0], &Lit, 1 ); // offset
1105 1106 1107 1108 1109 1110
    if ( !RetValue || bmcg_sat_solver_solve(pSats[0], NULL, 0) == GLUCOSE_UNSAT )
    {
        Result = 1;
        goto cleanup;
    }
    Lit = Abc_Var2Lit( iVarLast, Abc_LitIsCompl(iLit) );
1111
    RetValue = bmcg_sat_solver_addclause( pSats[1], &Lit, 1 ); // onset
1112 1113 1114 1115 1116
    if ( !RetValue || bmcg_sat_solver_solve(pSats[1], NULL, 0) == GLUCOSE_UNSAT )
    {
        Result = 0;
        goto cleanup;
    }
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
/*
    // reorder CI SAT variables to have keep-vars first
    Vec_Int_t * vCiVars2 = Vec_IntAlloc( 100 );   // CI SAT vars
    Vec_IntForEachEntry( vCiVars, iVar, i )
    {
        Gia_Obj_t * pObj = Gia_ManObj( p, Vec_IntEntry(vObjsUsed, iVar) );
        assert( Gia_ObjIsCi(pObj) );
        if ( pFuncCiToKeep(pData, Gia_ObjCioId(pObj)) )
            Vec_IntPush( vCiVars2, iVar );
    }
    Vec_IntForEachEntry( vCiVars, iVar, i )
    {
        Gia_Obj_t * pObj = Gia_ManObj( p, Vec_IntEntry(vObjsUsed, iVar) );
        assert( Gia_ObjIsCi(pObj) );
        if ( !pFuncCiToKeep(pData, Gia_ObjCioId(pObj)) )
            Vec_IntPush( vCiVars2, iVar );
    }
    ABC_SWAP( Vec_Int_t *, vCiVars2, vCiVars );
    Vec_IntFree( vCiVars2 );
*/
1137
    // map CI SAT variables into their indexes used in the cubes
1138
    vVarMap = Vec_IntStartFull( Vec_IntSize(vObjsUsed) );
1139 1140 1141 1142 1143 1144 1145
    Vec_IntForEachEntry( vCiVars, iVar, i )
    {
        Gia_Obj_t * pObj = Gia_ManObj( p, Vec_IntEntry(vObjsUsed, iVar) );
        assert( Gia_ObjIsCi(pObj) );
        if ( pFuncCiToKeep(pData, Gia_ObjCioId(pObj)) )
            Vec_IntWriteEntry( vVarMap, iVar, i ), Count++;
    }
1146 1147 1148 1149 1150
    if ( Count == 0 || Count == Vec_IntSize(vCiVars) )
    {
        Result = Count == 0 ? 1 : iLit;
        goto cleanup;
    }
1151
    // generate cubes
1152
    vSop = Glucose_GenerateCubes( pSats, vCiVars, vVarMap, 0 );
1153 1154 1155 1156
    //printf( "%s", Vec_StrArray(vSop) );
    // convert into object IDs
    Vec_IntForEachEntry( vCiVars, iVar, i )
        Vec_IntWriteEntry( vCiVars, i, Vec_IntEntry(vObjsUsed, iVar) );
1157 1158 1159
    // generate unate variables
    if ( vDLits )
        bmcg_sat_generate_dvars( vCiVars, vSop, vDLits );
1160
    // convert into an AIG
1161
    RetValue = Gia_ManAndNum(p);
1162
    Result = Gia_ManFactorSop( p, vCiVars, vSop, fHash );
1163 1164

    // report the result
1165 1166 1167
//    printf( "Performed quantification with %5d nodes, %3d keep-vars, %3d quant-vars, resulting in %5d cubes and %5d nodes. ", 
//        Vec_IntSize(vObjsUsed), Count, Vec_IntSize(vCiVars) - Count, Vec_StrCountEntry(vSop, '\n'), Gia_ManAndNum(p)-RetValue );
//    Abc_PrintTime( 1, "Time", Abc_Clock() - clkAll );
1168

1169 1170 1171 1172
cleanup:
    Vec_IntForEachEntry( vObjsUsed, iVar, i )
        Gia_ObjSetCopyArray( p, iVar, -1 );
    Vec_IntFree( vObjsUsed );
1173
    Vec_IntFree( vCiVars );
1174 1175
    Vec_IntFreeP( &vVarMap );
    Vec_StrFreeP( &vSop );
1176
    return Result;
1177
}
1178
int Gia_ManCiIsToKeep( void * pData, int i )
1179
{
1180
    return i % 5 != 0;
1181 1182 1183
}
void Glucose_QuantifyAigTest( Gia_Man_t * p )
{
1184 1185 1186
    bmcg_sat_solver * pSats[3] = { bmcg_sat_solver_start(), bmcg_sat_solver_start(), bmcg_sat_solver_start() };

    abctime clk1 = Abc_Clock();
1187
    int iRes1 = bmcg_sat_solver_quantify( pSats, p, Gia_ObjFaninLit0p(p, Gia_ManPo(p, 0)), 0, Gia_ManCiIsToKeep, NULL, NULL );
1188 1189 1190
    abctime clk1d = Abc_Clock()-clk1;

    abctime clk2 = Abc_Clock();
1191
    int iRes2 = bmcg_sat_solver_quantify2( p, Gia_ObjFaninLit0p(p, Gia_ManPo(p, 0)), 0, Gia_ManCiIsToKeep, NULL, NULL );
1192
    abctime clk2d = Abc_Clock()-clk2;
1193

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
    Abc_PrintTime( 1, "Time1", clk1d );
    Abc_PrintTime( 1, "Time2", clk2d );

    if ( bmcg_sat_solver_equiv_overlap_check( pSats[2], p, iRes1, iRes2, 1 ) )
        printf( "Verification passed.\n" );
    else
        printf( "Verification FAILED.\n" );

    Gia_ManAppendCo( p, iRes1 );
    Gia_ManAppendCo( p, iRes2 );
1204 1205 1206

    bmcg_sat_solver_stop( pSats[0] );
    bmcg_sat_solver_stop( pSats[1] );
1207
    bmcg_sat_solver_stop( pSats[2] );
1208
}
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
int bmcg_sat_solver_quantify_test( bmcg_sat_solver * pSats[], Gia_Man_t * p, int iLit, int fHash, int(*pFuncCiToKeep)(void *, int), void * pData, Vec_Int_t * vDLits )
{
    extern int Gia_ManQuantExist( Gia_Man_t * p, int iLit, int(*pFuncCiToKeep)(void *, int), void * pData );
    int Res1 = Gia_ManQuantExist( p, iLit, pFuncCiToKeep, pData );
    int Res2 = bmcg_sat_solver_quantify2( p, iLit, 1, pFuncCiToKeep, pData, NULL );

    bmcg_sat_solver * pSat = bmcg_sat_solver_start();
    if ( bmcg_sat_solver_equiv_overlap_check( pSat, p, Res1, Res2, 1 ) )
        printf( "Verification passed.\n" );
    else
    {
        printf( "Verification FAILED.\n" );
        bmcg_sat_solver_print_sop_lit( p, Res1 );
        bmcg_sat_solver_print_sop_lit( p, Res2 );
        printf( "\n" );
    }
    return Res1;
}
1227

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
/**Function*************************************************************

  Synopsis    [Checks equivalence or intersection of two nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int bmcg_sat_solver_equiv_overlap_check( bmcg_sat_solver * pSat, Gia_Man_t * p, int iLit0, int iLit1, int fEquiv )
{
    bmcg_sat_solver * pSats[2] = { pSat, NULL };
    Vec_Int_t * vObjsUsed = Vec_IntAlloc( 100 ); 
    int i, iVar, iSatVar[2], iSatLit[2], Lits[2], status;
1244 1245 1246 1247 1248
    if ( Vec_IntSize(&p->vCopies) < Gia_ManObjNum(p) )
        Vec_IntFillExtra( &p->vCopies, Gia_ManObjNum(p), -1 );

    // assign const0 variable number 0
    iVar = Vec_IntSize(vObjsUsed);
1249
    Vec_IntPush( vObjsUsed, 0 );
1250 1251 1252 1253 1254
    Gia_ObjSetCopyArray( p, 0, iVar );
    assert( iVar == 0 );

    iSatVar[0] = Gia_ManSatAndCollect_rec( p, Abc_Lit2Var(iLit0), vObjsUsed, NULL );
    iSatVar[1] = Gia_ManSatAndCollect_rec( p, Abc_Lit2Var(iLit1), vObjsUsed, NULL );
1255

1256 1257 1258 1259 1260 1261
    iSatLit[0] = Abc_Var2Lit( iSatVar[0], Abc_LitIsCompl(iLit0) );
    iSatLit[1] = Abc_Var2Lit( iSatVar[1], Abc_LitIsCompl(iLit1) );
    Gia_ManQuantLoadCnf( p, vObjsUsed, pSats );
    Vec_IntForEachEntry( vObjsUsed, iVar, i )
        Gia_ObjSetCopyArray( p, iVar, -1 );
    Vec_IntFree( vObjsUsed );
1262

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
    if ( fEquiv )
    {
        Lits[0] = iSatLit[0];
        Lits[1] = Abc_LitNot(iSatLit[1]);
        status  = bmcg_sat_solver_solve( pSats[0], Lits, 2 );
        if ( status == GLUCOSE_UNSAT )
        {
            Lits[0] = Abc_LitNot(iSatLit[0]);
            Lits[1] = iSatLit[1];
            status  = bmcg_sat_solver_solve( pSats[0], Lits, 2 );
        }
        return status == GLUCOSE_UNSAT;
    }
    else
    {
        Lits[0] = iSatLit[0];
        Lits[1] = iSatLit[1];
        status  = bmcg_sat_solver_solve( pSats[0], Lits, 2 );
        return status == GLUCOSE_SAT;
    }
}
void Glucose_CheckTwoNodesTest( Gia_Man_t * p )
{
    int n, Res;
    bmcg_sat_solver * pSat = bmcg_sat_solver_start();
    for ( n = 0; n < 2; n++ )
    {
        Res = bmcg_sat_solver_equiv_overlap_check( 
            pSat, p, 
            Gia_ObjFaninLit0p(p, Gia_ManPo(p, 0)), 
            Gia_ObjFaninLit0p(p, Gia_ManPo(p, 1)), 
            n );
        bmcg_sat_solver_reset( pSat );
        printf( "%s %s.\n", n ? "Equivalence" : "Overlap", Res ? "holds" : "fails" );
    }
    bmcg_sat_solver_stop( pSat );
}
1300 1301 1302

/**Function*************************************************************

1303 1304 1305 1306 1307 1308 1309 1310 1311
  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
1312
int Glucose_SolveAig(Gia_Man_t * p, Glucose_Pars * pPars)
1313 1314 1315 1316 1317 1318 1319
{  
    abctime clk = Abc_Clock();

    SimpSolver S;
    S.verbosity = pPars->verb;
    S.verbEveryConflicts = 50000;
    S.showModel = false;
1320
    //S.verbosity = 2;
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
    S.setConfBudget( pPars->nConfls > 0 ? (int64_t)pPars->nConfls : -1 );

    S.parsing = 1;
    Vec_Int_t * vCnfIds = Glucose_SolverFromAig(p,S);
    S.parsing = 0;

    if (pPars->verb)
    {
        printf("c ============================[ Problem Statistics ]=============================\n");
        printf("c |                                                                             |\n");
        printf("c |  Number of variables:  %12d                                         |\n", S.nVars());
        printf("c |  Number of clauses:    %12d                                         |\n", S.nClauses());
    }

    if (pPars->pre) 
1336
    {
1337
        S.eliminate(true);
1338 1339 1340
        printf( "c Simplication removed %d variables and %d clauses.  ", S.eliminated_vars, S.eliminated_clauses );
        Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
    }
1341 1342
    
    vec<Lit> dummy;
1343
    lbool ret = S.solveLimited(dummy, 0);
1344 1345 1346

    if ( pPars->verb ) glucose_print_stats(S, Abc_Clock() - clk);
    printf(ret == l_True ? "SATISFIABLE" : ret == l_False ? "UNSATISFIABLE" : "INDETERMINATE");
1347
    Abc_PrintTime( 1, "      Time", Abc_Clock() - clk );
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369

    // port counterexample
    if (ret == l_True)
    {
        Gia_Obj_t * pObj;  int i;
        p->pCexComb = Abc_CexAlloc(0,Gia_ManCiNum(p),1);
        Gia_ManForEachCi( p, pObj, i )
        {
            assert(Vec_IntEntry(vCnfIds,Gia_ObjId(p, pObj))!=-1);
            if (S.model[Vec_IntEntry(vCnfIds,Gia_ObjId(p, pObj))] == l_True)
                Abc_InfoSetBit( p->pCexComb->pData, i);
        }
    }
    Vec_IntFree(vCnfIds);
    return (ret == l_True ? 10 : ret == l_False ? 20 : 0);
}

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////

ABC_NAMESPACE_IMPL_END