fxuHeapD.c 12.4 KB
Newer Older
Alan Mishchenko committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/**CFile****************************************************************

  FileName    [fxuHeapD.c]

  PackageName [MVSIS 2.0: Multi-valued logic synthesis system.]

  Synopsis    [The priority queue for double cube divisors.]

  Author      [MVSIS Group]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - February 1, 2003.]

  Revision    [$Id: fxuHeapD.c,v 1.0 2003/02/01 00:00:00 alanmi Exp $]

***********************************************************************/

#include "fxuInt.h"

21 22 23
ABC_NAMESPACE_IMPL_START


Alan Mishchenko committed
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

#define FXU_HEAP_DOUBLE_WEIGHT(pDiv)           ((pDiv)->Weight)
#define FXU_HEAP_DOUBLE_CURRENT(p, pDiv)       ((p)->pTree[(pDiv)->HNum])
#define FXU_HEAP_DOUBLE_PARENT_EXISTS(p, pDiv) ((pDiv)->HNum > 1)
#define FXU_HEAP_DOUBLE_CHILD1_EXISTS(p, pDiv) (((pDiv)->HNum << 1) <= p->nItems)
#define FXU_HEAP_DOUBLE_CHILD2_EXISTS(p, pDiv) ((((pDiv)->HNum << 1)+1) <= p->nItems)
#define FXU_HEAP_DOUBLE_PARENT(p, pDiv)        ((p)->pTree[(pDiv)->HNum >> 1])
#define FXU_HEAP_DOUBLE_CHILD1(p, pDiv)        ((p)->pTree[(pDiv)->HNum << 1])
#define FXU_HEAP_DOUBLE_CHILD2(p, pDiv)        ((p)->pTree[((pDiv)->HNum << 1)+1])
#define FXU_HEAP_DOUBLE_ASSERT(p, pDiv)        assert( (pDiv)->HNum >= 1 && (pDiv)->HNum <= p->nItemsAlloc )

static void Fxu_HeapDoubleResize( Fxu_HeapDouble * p );                  
static void Fxu_HeapDoubleSwap( Fxu_Double ** pDiv1, Fxu_Double ** pDiv2 );  
static void Fxu_HeapDoubleMoveUp( Fxu_HeapDouble * p, Fxu_Double * pDiv );  
static void Fxu_HeapDoubleMoveDn( Fxu_HeapDouble * p, Fxu_Double * pDiv );  

////////////////////////////////////////////////////////////////////////
Alan Mishchenko committed
44
///                     FUNCTION DEFINITIONS                         ///
Alan Mishchenko committed
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Fxu_HeapDouble * Fxu_HeapDoubleStart()
{
    Fxu_HeapDouble * p;
Alan Mishchenko committed
61
    p = ABC_ALLOC( Fxu_HeapDouble, 1 );
Alan Mishchenko committed
62 63 64
    memset( p, 0, sizeof(Fxu_HeapDouble) );
    p->nItems      = 0;
    p->nItemsAlloc = 10000;
Alan Mishchenko committed
65
    p->pTree       = ABC_ALLOC( Fxu_Double *, p->nItemsAlloc + 1 );
Alan Mishchenko committed
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    p->pTree[0]    = NULL;
    return p;
}


/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fxu_HeapDoubleResize( Fxu_HeapDouble * p )
{
    p->nItemsAlloc *= 2;
Alan Mishchenko committed
85
    p->pTree = ABC_REALLOC( Fxu_Double *, p->pTree, p->nItemsAlloc + 1 );
Alan Mishchenko committed
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fxu_HeapDoubleStop( Fxu_HeapDouble * p )
{
Alan Mishchenko committed
101 102
    ABC_FREE( p->pTree );
    ABC_FREE( p );
Alan Mishchenko committed
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
}


/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fxu_HeapDoublePrint( FILE * pFile, Fxu_HeapDouble * p )
{
    Fxu_Double * pDiv;
    int Counter = 1;
    int Degree  = 1;

    Fxu_HeapDoubleCheck( p );
    fprintf( pFile, "The contents of the heap:\n" );
    fprintf( pFile, "Level %d:  ", Degree );
    Fxu_HeapDoubleForEachItem( p, pDiv )
    {
        assert( Counter == p->pTree[Counter]->HNum );
        fprintf( pFile, "%2d=%3d  ", Counter, FXU_HEAP_DOUBLE_WEIGHT(p->pTree[Counter]) );
        if ( ++Counter == (1 << Degree) )
        {
            fprintf( pFile, "\n" );
            Degree++;
            fprintf( pFile, "Level %d:  ", Degree );
        }
    }
    fprintf( pFile, "\n" );
    fprintf( pFile, "End of the heap printout.\n" );
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fxu_HeapDoubleCheck( Fxu_HeapDouble * p )
{
    Fxu_Double * pDiv;
    Fxu_HeapDoubleForEachItem( p, pDiv )
    {
        assert( pDiv->HNum == p->i );
        Fxu_HeapDoubleCheckOne( p, pDiv );
    }
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fxu_HeapDoubleCheckOne( Fxu_HeapDouble * p, Fxu_Double * pDiv )
{
    int Weight1, Weight2;
    if ( FXU_HEAP_DOUBLE_CHILD1_EXISTS(p,pDiv) )
    {
        Weight1 = FXU_HEAP_DOUBLE_WEIGHT(pDiv);
        Weight2 = FXU_HEAP_DOUBLE_WEIGHT( FXU_HEAP_DOUBLE_CHILD1(p,pDiv) );
        assert( Weight1 >= Weight2 );
    }
    if ( FXU_HEAP_DOUBLE_CHILD2_EXISTS(p,pDiv) )
    {
        Weight1 = FXU_HEAP_DOUBLE_WEIGHT(pDiv);
        Weight2 = FXU_HEAP_DOUBLE_WEIGHT( FXU_HEAP_DOUBLE_CHILD2(p,pDiv) );
        assert( Weight1 >= Weight2 );
    }
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fxu_HeapDoubleInsert( Fxu_HeapDouble * p, Fxu_Double * pDiv )
{
    if ( p->nItems == p->nItemsAlloc )
        Fxu_HeapDoubleResize( p );
    // put the last entry to the last place and move up
    p->pTree[++p->nItems] = pDiv;
    pDiv->HNum = p->nItems;
    // move the last entry up if necessary
    Fxu_HeapDoubleMoveUp( p, pDiv );
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fxu_HeapDoubleUpdate( Fxu_HeapDouble * p, Fxu_Double * pDiv )
{
//printf( "Updating divisor %d.\n", pDiv->Num );

    FXU_HEAP_DOUBLE_ASSERT(p,pDiv);
    if ( FXU_HEAP_DOUBLE_PARENT_EXISTS(p,pDiv) && 
         FXU_HEAP_DOUBLE_WEIGHT(pDiv) > FXU_HEAP_DOUBLE_WEIGHT( FXU_HEAP_DOUBLE_PARENT(p,pDiv) ) )
        Fxu_HeapDoubleMoveUp( p, pDiv );
    else if ( FXU_HEAP_DOUBLE_CHILD1_EXISTS(p,pDiv) && 
        FXU_HEAP_DOUBLE_WEIGHT(pDiv) < FXU_HEAP_DOUBLE_WEIGHT( FXU_HEAP_DOUBLE_CHILD1(p,pDiv) ) )
        Fxu_HeapDoubleMoveDn( p, pDiv );
    else if ( FXU_HEAP_DOUBLE_CHILD2_EXISTS(p,pDiv) && 
        FXU_HEAP_DOUBLE_WEIGHT(pDiv) < FXU_HEAP_DOUBLE_WEIGHT( FXU_HEAP_DOUBLE_CHILD2(p,pDiv) ) )
        Fxu_HeapDoubleMoveDn( p, pDiv );
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fxu_HeapDoubleDelete( Fxu_HeapDouble * p, Fxu_Double * pDiv )
{
    FXU_HEAP_DOUBLE_ASSERT(p,pDiv);
    // put the last entry to the deleted place
    // decrement the number of entries
    p->pTree[pDiv->HNum] = p->pTree[p->nItems--];
    p->pTree[pDiv->HNum]->HNum = pDiv->HNum;
    // move the top entry down if necessary
    Fxu_HeapDoubleUpdate( p, p->pTree[pDiv->HNum] );
    pDiv->HNum = 0;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Fxu_Double * Fxu_HeapDoubleReadMax( Fxu_HeapDouble * p )
{
    if ( p->nItems == 0 )
        return NULL;
    return p->pTree[1];     
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Fxu_Double * Fxu_HeapDoubleGetMax( Fxu_HeapDouble * p )
{
    Fxu_Double * pDiv;
    if ( p->nItems == 0 )
        return NULL;
    // prepare the return value
    pDiv = p->pTree[1];
    pDiv->HNum = 0;
    // put the last entry on top
    // decrement the number of entries
    p->pTree[1] = p->pTree[p->nItems--];
    p->pTree[1]->HNum = 1;
    // move the top entry down if necessary
    Fxu_HeapDoubleMoveDn( p, p->pTree[1] );
    return pDiv;     
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int  Fxu_HeapDoubleReadMaxWeight( Fxu_HeapDouble * p )
{
    if ( p->nItems == 0 )
        return -1;
    else
        return FXU_HEAP_DOUBLE_WEIGHT(p->pTree[1]);
}



/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fxu_HeapDoubleSwap( Fxu_Double ** pDiv1, Fxu_Double ** pDiv2 )
{
    Fxu_Double * pDiv;
    int Temp;
    pDiv   = *pDiv1;
    *pDiv1 = *pDiv2;
    *pDiv2 = pDiv;
    Temp          = (*pDiv1)->HNum;
    (*pDiv1)->HNum = (*pDiv2)->HNum;
    (*pDiv2)->HNum = Temp;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fxu_HeapDoubleMoveUp( Fxu_HeapDouble * p, Fxu_Double * pDiv )
{
    Fxu_Double ** ppDiv, ** ppPar;
    ppDiv = &FXU_HEAP_DOUBLE_CURRENT(p, pDiv);
    while ( FXU_HEAP_DOUBLE_PARENT_EXISTS(p,*ppDiv) )
    {
        ppPar = &FXU_HEAP_DOUBLE_PARENT(p,*ppDiv);
        if ( FXU_HEAP_DOUBLE_WEIGHT(*ppDiv) > FXU_HEAP_DOUBLE_WEIGHT(*ppPar) )
        {
            Fxu_HeapDoubleSwap( ppDiv, ppPar );
            ppDiv = ppPar;
        }
        else
            break;
    }
}
 
/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fxu_HeapDoubleMoveDn( Fxu_HeapDouble * p, Fxu_Double * pDiv )
{
    Fxu_Double ** ppChild1, ** ppChild2, ** ppDiv;
    ppDiv = &FXU_HEAP_DOUBLE_CURRENT(p, pDiv);
    while ( FXU_HEAP_DOUBLE_CHILD1_EXISTS(p,*ppDiv) )
    { // if Child1 does not exist, Child2 also does not exists

        // get the children
        ppChild1 = &FXU_HEAP_DOUBLE_CHILD1(p,*ppDiv);
        if ( FXU_HEAP_DOUBLE_CHILD2_EXISTS(p,*ppDiv) )
        {
            ppChild2 = &FXU_HEAP_DOUBLE_CHILD2(p,*ppDiv);

            // consider two cases
            if ( FXU_HEAP_DOUBLE_WEIGHT(*ppDiv) >= FXU_HEAP_DOUBLE_WEIGHT(*ppChild1) &&
                 FXU_HEAP_DOUBLE_WEIGHT(*ppDiv) >= FXU_HEAP_DOUBLE_WEIGHT(*ppChild2) )
            { // Div is larger than both, skip
                break;
            }
            else
            { // Div is smaller than one of them, then swap it with larger 
                if ( FXU_HEAP_DOUBLE_WEIGHT(*ppChild1) >= FXU_HEAP_DOUBLE_WEIGHT(*ppChild2) )
                {
                    Fxu_HeapDoubleSwap( ppDiv, ppChild1 );
                    // update the pointer
                    ppDiv = ppChild1;
                }
                else
                {
                    Fxu_HeapDoubleSwap( ppDiv, ppChild2 );
                    // update the pointer
                    ppDiv = ppChild2;
                }
            }
        }
        else // Child2 does not exist
        {
            // consider two cases
            if ( FXU_HEAP_DOUBLE_WEIGHT(*ppDiv) >= FXU_HEAP_DOUBLE_WEIGHT(*ppChild1) )
            { // Div is larger than Child1, skip
                break;
            }
            else
            { // Div is smaller than Child1, then swap them
                Fxu_HeapDoubleSwap( ppDiv, ppChild1 );
                // update the pointer
                ppDiv = ppChild1;
            }
        }
    }
}


////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


449 450
ABC_NAMESPACE_IMPL_END