AbcGlucose2.cpp 50.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
/**CFile****************************************************************

  FileName    [AbcGlucose.cpp]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [SAT solver Glucose 3.0 by Gilles Audemard and Laurent Simon.]

  Synopsis    [Interface to Glucose.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - September 6, 2017.]

  Revision    [$Id: AbcGlucose.cpp,v 1.00 2005/06/20 00:00:00 alanmi Exp $]

***********************************************************************/

#include "sat/glucose2/System.h"
#include "sat/glucose2/ParseUtils.h"
#include "sat/glucose2/Options.h"
#include "sat/glucose2/Dimacs.h"
#include "sat/glucose2/SimpSolver.h"

#include "sat/glucose2/AbcGlucose2.h"

#include "base/abc/abc.h"
#include "aig/gia/gia.h"
#include "sat/cnf/cnf.h"
#include "misc/extra/extra.h"

ABC_NAMESPACE_IMPL_START

using namespace Gluco2;

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

#define USE_SIMP_SOLVER 1

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

#ifdef USE_SIMP_SOLVER
    
/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
61
SimpSolver * glucose2_solver_start()
62 63 64 65 66 67
{
    SimpSolver * S = new SimpSolver;
    S->setIncrementalMode();
    return S;
}

68
void glucose2_solver_stop(Gluco2::SimpSolver* S)
69 70 71 72
{
    delete S;
}

73
void glucose2_solver_reset(Gluco2::SimpSolver* S)
74 75 76 77
{
    S->reset();
}

78
int glucose2_solver_addclause(Gluco2::SimpSolver* S, int * plits, int nlits)
79 80 81 82 83 84 85 86 87 88 89 90 91 92
{
    vec<Lit> lits;
    for ( int i = 0; i < nlits; i++,plits++)
    {
        // note: Glucose uses the same var->lit conventiaon as ABC
        while ((*plits)/2 >= S->nVars()) S->newVar();
        assert((*plits)/2 < S->nVars()); // NOTE: since we explicitely use new function bmc_add_var
        Lit p;
        p.x = *plits;
        lits.push(p);
    }
    return S->addClause(lits); // returns 0 if the problem is UNSAT
}

93
void glucose2_solver_setcallback(Gluco2::SimpSolver* S, void * pman, int(*pfunc)(void*, int, int*))
94 95 96 97 98 99
{
    S->pCnfMan = pman;
    S->pCnfFunc = pfunc;
    S->nCallConfl = 1000;
}

100
int glucose2_solver_solve(Gluco2::SimpSolver* S, int * plits, int nlits)
101
{
102 103 104 105 106 107 108 109 110 111
//    vec<Lit> lits;
//    for (int i=0;i<nlits;i++,plits++)
//    {
//        Lit p;
//        p.x = *plits;
//        lits.push(p);
//    }
//    Gluco2::lbool res = S->solveLimited(lits, 0);
//    return (res == l_True ? 1 : res == l_False ? -1 : 0);
    return S->solveLimited(plits, nlits, 0);
112 113
}

114
int glucose2_solver_addvar(Gluco2::SimpSolver* S)
115 116 117 118 119
{
    S->newVar();
    return S->nVars() - 1;
}

120
int * glucose2_solver_read_cex(Gluco2::SimpSolver* S )
121 122 123 124
{
    return S->getCex();
}

125
int glucose2_solver_read_cex_varvalue(Gluco2::SimpSolver* S, int ivar)
126 127 128 129
{
    return S->model[ivar] == l_True;
}

130
void glucose2_solver_setstop(Gluco2::SimpSolver* S, int * pstop)
131 132 133 134
{
    S->pstop = pstop;
}

135 136 137 138
void glucose2_markapprox( Gluco2::SimpSolver* S, int v0, int v1, int nlim )
{
    S->markApprox(v0, v1, nlim);
}
139 140 141 142 143 144 145 146 147 148 149 150 151 152

/**Function*************************************************************

  Synopsis    [Wrapper APIs to calling from ABC.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
bmcg2_sat_solver * bmcg2_sat_solver_start() 
{
153
    return (bmcg2_sat_solver *)glucose2_solver_start();
154 155 156
}
void bmcg2_sat_solver_stop(bmcg2_sat_solver* s)
{
157
    glucose2_solver_stop((Gluco2::SimpSolver*)s);
158 159 160
}
void bmcg2_sat_solver_reset(bmcg2_sat_solver* s)
{
161
    glucose2_solver_reset((Gluco2::SimpSolver*)s);
162 163 164 165 166
}


int bmcg2_sat_solver_addclause(bmcg2_sat_solver* s, int * plits, int nlits)
{
167
    return glucose2_solver_addclause((Gluco2::SimpSolver*)s,plits,nlits);
168 169 170 171
}

void bmcg2_sat_solver_setcallback(bmcg2_sat_solver* s, void * pman, int(*pfunc)(void*, int, int*))
{
172
    glucose2_solver_setcallback((Gluco2::SimpSolver*)s,pman,pfunc);
173 174 175 176
}

int bmcg2_sat_solver_solve(bmcg2_sat_solver* s, int * plits, int nlits)
{
177
    return glucose2_solver_solve((Gluco2::SimpSolver*)s,plits,nlits);
178 179 180 181 182 183 184 185 186 187
}

int bmcg2_sat_solver_final(bmcg2_sat_solver* s, int ** ppArray)
{
    *ppArray = (int *)(Lit *)((Gluco2::SimpSolver*)s)->conflict;
    return ((Gluco2::SimpSolver*)s)->conflict.size();
}

int bmcg2_sat_solver_addvar(bmcg2_sat_solver* s)
{
188
    return glucose2_solver_addvar((Gluco2::SimpSolver*)s);
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
}

void bmcg2_sat_solver_set_nvars( bmcg2_sat_solver* s, int nvars )
{
    int i;
    for ( i = bmcg2_sat_solver_varnum(s); i < nvars; i++ )
        bmcg2_sat_solver_addvar(s);
}

int bmcg2_sat_solver_eliminate( bmcg2_sat_solver* s, int turn_off_elim )
{
//    return 1; 
    return ((Gluco2::SimpSolver*)s)->eliminate(turn_off_elim != 0);
}

int bmcg2_sat_solver_var_is_elim( bmcg2_sat_solver* s, int v )
{
//    return 0; 
    return ((Gluco2::SimpSolver*)s)->isEliminated(v);
}

void bmcg2_sat_solver_var_set_frozen( bmcg2_sat_solver* s, int v, int freeze )
{
    ((Gluco2::SimpSolver*)s)->setFrozen(v, freeze != 0);
}

int bmcg2_sat_solver_elim_varnum(bmcg2_sat_solver* s)
{
//    return 0; 
    return ((Gluco2::SimpSolver*)s)->eliminated_vars;
}

int * bmcg2_sat_solver_read_cex(bmcg2_sat_solver* s)
{
223
    return glucose2_solver_read_cex((Gluco2::SimpSolver*)s);
224 225 226
}
int bmcg2_sat_solver_read_cex_varvalue(bmcg2_sat_solver* s, int ivar)
{
227
    return glucose2_solver_read_cex_varvalue((Gluco2::SimpSolver*)s, ivar);
228 229 230 231
}

void bmcg2_sat_solver_set_stop(bmcg2_sat_solver* s, int * pstop)
{
232
    glucose2_solver_setstop((Gluco2::SimpSolver*)s, pstop);
233 234
}

235 236 237 238 239
void bmcg2_sat_solver_markapprox(bmcg2_sat_solver* s, int v0, int v1, int nlim)
{
    glucose2_markapprox((Gluco2::SimpSolver*)s, v0, v1, nlim);
}

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
abctime bmcg2_sat_solver_set_runtime_limit(bmcg2_sat_solver* s, abctime Limit)
{
    abctime nRuntimeLimit = ((Gluco2::SimpSolver*)s)->nRuntimeLimit;
    ((Gluco2::SimpSolver*)s)->nRuntimeLimit = Limit;
    return nRuntimeLimit;
}

void bmcg2_sat_solver_set_conflict_budget(bmcg2_sat_solver* s, int Limit)
{
    if ( Limit > 0 ) 
        ((Gluco2::SimpSolver*)s)->setConfBudget( (int64_t)Limit );
    else 
        ((Gluco2::SimpSolver*)s)->budgetOff();
}

int bmcg2_sat_solver_varnum(bmcg2_sat_solver* s)
{
    return ((Gluco2::SimpSolver*)s)->nVars();
}
int bmcg2_sat_solver_clausenum(bmcg2_sat_solver* s)
{
    return ((Gluco2::SimpSolver*)s)->nClauses();
}
int bmcg2_sat_solver_learntnum(bmcg2_sat_solver* s)
{
    return ((Gluco2::SimpSolver*)s)->nLearnts();
}
int bmcg2_sat_solver_conflictnum(bmcg2_sat_solver* s)
{
    return ((Gluco2::SimpSolver*)s)->conflicts;
}

int bmcg2_sat_solver_minimize_assumptions( bmcg2_sat_solver * s, int * plits, int nlits, int pivot )
{
    vec<int>*array = &((Gluco2::SimpSolver*)s)->user_vec;
    int i, nlitsL, nlitsR, nresL, nresR, status;
    assert( pivot >= 0 );
//    assert( nlits - pivot >= 2 );
    assert( nlits - pivot >= 1 );
    if ( nlits - pivot == 1 )
    {
        // since the problem is UNSAT, we try to solve it without assuming the last literal
        // if the result is UNSAT, the last literal can be dropped; otherwise, it is needed
        status = bmcg2_sat_solver_solve( s, plits, pivot );
        return status != GLUCOSE_UNSAT; // return 1 if the problem is not UNSAT
    }
    assert( nlits - pivot >= 2 );
    nlitsL = (nlits - pivot) / 2;
    nlitsR = (nlits - pivot) - nlitsL;
    assert( nlitsL + nlitsR == nlits - pivot );
    // solve with these assumptions
    status = bmcg2_sat_solver_solve( s, plits, pivot + nlitsL );
    if ( status == GLUCOSE_UNSAT ) // these are enough
        return bmcg2_sat_solver_minimize_assumptions( s, plits, pivot + nlitsL, pivot );
    // these are not enough
    // solve for the right lits
//    nResL = nLitsR == 1 ? 1 : sat_solver_minimize_assumptions( s, pLits + nLitsL, nLitsR, nConfLimit );
    nresL = nlitsR == 1 ? 1 : bmcg2_sat_solver_minimize_assumptions( s, plits, nlits, pivot + nlitsL );
    // swap literals
    array->clear();
    for ( i = 0; i < nlitsL; i++ )
        array->push(plits[pivot + i]);
    for ( i = 0; i < nresL; i++ )
        plits[pivot + i] = plits[pivot + nlitsL + i];
    for ( i = 0; i < nlitsL; i++ )
        plits[pivot + nresL + i] = (*array)[i];
    // solve with these assumptions
    status = bmcg2_sat_solver_solve( s, plits, pivot + nresL );
    if ( status == GLUCOSE_UNSAT ) // these are enough
        return nresL;
    // solve for the left lits
//    nResR = nLitsL == 1 ? 1 : sat_solver_minimize_assumptions( s, pLits + nResL, nLitsL, nConfLimit );
    nresR = nlitsL == 1 ? 1 : bmcg2_sat_solver_minimize_assumptions( s, plits, pivot + nresL + nlitsL, pivot + nresL );
    return nresL + nresR;
}

int bmcg2_sat_solver_add_and( bmcg2_sat_solver * s, int iVar, int iVar0, int iVar1, int fCompl0, int fCompl1, int fCompl )
{
    int Lits[3];

    Lits[0] = Abc_Var2Lit( iVar, !fCompl );
    Lits[1] = Abc_Var2Lit( iVar0, fCompl0 );
    if ( !bmcg2_sat_solver_addclause( s, Lits, 2 ) )
        return 0;

    Lits[0] = Abc_Var2Lit( iVar, !fCompl );
    Lits[1] = Abc_Var2Lit( iVar1, fCompl1 );
    if ( !bmcg2_sat_solver_addclause( s, Lits, 2 ) )
        return 0;

    Lits[0] = Abc_Var2Lit( iVar,   fCompl );
    Lits[1] = Abc_Var2Lit( iVar0, !fCompl0 );
    Lits[2] = Abc_Var2Lit( iVar1, !fCompl1 );
    if ( !bmcg2_sat_solver_addclause( s, Lits, 3 ) )
        return 0;

    return 1;
}

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
int bmcg2_sat_solver_add_xor( bmcg2_sat_solver * pSat, int iVarA, int iVarB, int iVarC, int fCompl )
{
    int Lits[3];
    int Cid;
    assert( iVarA >= 0 && iVarB >= 0 && iVarC >= 0 );

    Lits[0] = Abc_Var2Lit( iVarA, !fCompl );
    Lits[1] = Abc_Var2Lit( iVarB, 1 );
    Lits[2] = Abc_Var2Lit( iVarC, 1 );
    Cid = bmcg2_sat_solver_addclause( pSat, Lits, 3 );
    assert( Cid );

    Lits[0] = Abc_Var2Lit( iVarA, !fCompl );
    Lits[1] = Abc_Var2Lit( iVarB, 0 );
    Lits[2] = Abc_Var2Lit( iVarC, 0 );
    Cid = bmcg2_sat_solver_addclause( pSat, Lits, 3 );
    assert( Cid );

    Lits[0] = Abc_Var2Lit( iVarA, fCompl );
    Lits[1] = Abc_Var2Lit( iVarB, 1 );
    Lits[2] = Abc_Var2Lit( iVarC, 0 );
    Cid = bmcg2_sat_solver_addclause( pSat, Lits, 3 );
    assert( Cid );

    Lits[0] = Abc_Var2Lit( iVarA, fCompl );
    Lits[1] = Abc_Var2Lit( iVarB, 0 );
    Lits[2] = Abc_Var2Lit( iVarC, 1 );
    Cid = bmcg2_sat_solver_addclause( pSat, Lits, 3 );
    assert( Cid );
    return 4;
}

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
int bmcg2_sat_solver_jftr(bmcg2_sat_solver* s)
{
    return ((Gluco2::SimpSolver*)s)->jftr;
}

void bmcg2_sat_solver_set_jftr(bmcg2_sat_solver* s, int jftr)
{
    ((Gluco2::SimpSolver*)s)->jftr = jftr;
}

void bmcg2_sat_solver_set_var_fanin_lit(bmcg2_sat_solver* s, int var, int lit0, int lit1)
{
    ((Gluco2::SimpSolver*)s)->sat_solver_set_var_fanin_lit(var, lit0, lit1);
}

void bmcg2_sat_solver_start_new_round(bmcg2_sat_solver* s)
{
    ((Gluco2::SimpSolver*)s)->sat_solver_start_new_round();
}

void bmcg2_sat_solver_mark_cone(bmcg2_sat_solver* s, int var)
{
    ((Gluco2::SimpSolver*)s)->sat_solver_mark_cone(var);
}

396 397 398 399
void bmcg2_sat_solver_prelocate( bmcg2_sat_solver * s, int var_num ){
    ((Gluco2::SimpSolver*)s)->prelocate(var_num);
}

400 401 402 403 404 405 406 407 408 409 410 411 412
#else

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
413
Solver * glucose2_solver_start()
414 415 416 417 418 419
{
    Solver * S = new Solver;
    S->setIncrementalMode();
    return S;
}

420
void glucose2_solver_stop(Gluco2::Solver* S)
421 422 423 424
{
    delete S;
}

425 426 427 428 429
void glucose2_solver_reset(Gluco2::Solver* S)
{
    S->reset();
}

430
int glucose2_solver_addclause(Gluco2::Solver* S, int * plits, int nlits)
431 432 433 434 435 436 437 438 439 440 441 442 443 444
{
    vec<Lit> lits;
    for ( int i = 0; i < nlits; i++,plits++)
    {
        // note: Glucose uses the same var->lit conventiaon as ABC
        while ((*plits)/2 >= S->nVars()) S->newVar();
        assert((*plits)/2 < S->nVars()); // NOTE: since we explicitely use new function bmc_add_var
        Lit p;
        p.x = *plits;
        lits.push(p);
    }
    return S->addClause(lits); // returns 0 if the problem is UNSAT
}

445
void glucose2_solver_setcallback(Gluco2::Solver* S, void * pman, int(*pfunc)(void*, int, int*))
446 447 448 449 450 451
{
    S->pCnfMan = pman;
    S->pCnfFunc = pfunc;
    S->nCallConfl = 1000;
}

452
int glucose2_solver_solve(Gluco2::Solver* S, int * plits, int nlits)
453 454 455 456 457 458 459 460 461 462 463 464
{
    vec<Lit> lits;
    for (int i=0;i<nlits;i++,plits++)
    {
        Lit p;
        p.x = *plits;
        lits.push(p);
    }
    Gluco2::lbool res = S->solveLimited(lits);
    return (res == l_True ? 1 : res == l_False ? -1 : 0);
}

465
int glucose2_solver_addvar(Gluco2::Solver* S)
466 467 468 469 470
{
    S->newVar();
    return S->nVars() - 1;
}

471
int * glucose2_solver_read_cex(Gluco2::Solver* S )
472 473 474 475
{
    return S->getCex();
}

476
int glucose2_solver_read_cex_varvalue(Gluco2::Solver* S, int ivar)
477 478 479 480
{
    return S->model[ivar] == l_True;
}

481
void glucose2_solver_setstop(Gluco2::Solver* S, int * pstop)
482 483 484 485
{
    S->pstop = pstop;
}

486 487 488 489 490
void glucose2_markapprox( Gluco2::Solver* S, int v0, int v1, int nlim )
{
    S->markApprox(v0, v1, nlim);
}

491 492 493 494 495 496 497 498 499 500 501 502 503 504

/**Function*************************************************************

  Synopsis    [Wrapper APIs to calling from ABC.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
bmcg2_sat_solver * bmcg2_sat_solver_start() 
{
505
    return (bmcg2_sat_solver *)glucose2_solver_start();
506 507 508
}
void bmcg2_sat_solver_stop(bmcg2_sat_solver* s)
{
509
    glucose2_solver_stop((Gluco2::Solver*)s);
510
}
511 512 513 514
void bmcg2_sat_solver_reset(bmcg2_sat_solver* s)
{
    glucose2_solver_reset((Gluco2::Solver*)s);
}
515 516 517

int bmcg2_sat_solver_addclause(bmcg2_sat_solver* s, int * plits, int nlits)
{
518
    return glucose2_solver_addclause((Gluco2::Solver*)s,plits,nlits);
519 520 521 522
}

void bmcg2_sat_solver_setcallback(bmcg2_sat_solver* s, void * pman, int(*pfunc)(void*, int, int*))
{
523
    glucose2_solver_setcallback((Gluco2::Solver*)s,pman,pfunc);
524 525 526 527
}

int bmcg2_sat_solver_solve(bmcg2_sat_solver* s, int * plits, int nlits)
{
528
    return glucose2_solver_solve((Gluco2::Solver*)s,plits,nlits);
529 530 531 532 533 534 535 536 537 538
}

int bmcg2_sat_solver_final(bmcg2_sat_solver* s, int ** ppArray)
{
    *ppArray = (int *)(Lit *)((Gluco2::Solver*)s)->conflict;
    return ((Gluco2::Solver*)s)->conflict.size();
}

int bmcg2_sat_solver_addvar(bmcg2_sat_solver* s)
{
539
    return glucose2_solver_addvar((Gluco2::Solver*)s);
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
}

void bmcg2_sat_solver_set_nvars( bmcg2_sat_solver* s, int nvars )
{
    int i;
    for ( i = bmcg2_sat_solver_varnum(s); i < nvars; i++ )
        bmcg2_sat_solver_addvar(s);
}

int bmcg2_sat_solver_eliminate( bmcg2_sat_solver* s, int turn_off_elim )
{
    return 1; 
//    return ((Gluco2::SimpSolver*)s)->eliminate(turn_off_elim != 0);
}

int bmcg2_sat_solver_var_is_elim( bmcg2_sat_solver* s, int v )
{
    return 0; 
//    return ((Gluco2::SimpSolver*)s)->isEliminated(v);
}

void bmcg2_sat_solver_var_set_frozen( bmcg2_sat_solver* s, int v, int freeze )
{
//    ((Gluco2::SimpSolver*)s)->setFrozen(v, freeze);
}

int bmcg2_sat_solver_elim_varnum(bmcg2_sat_solver* s)
{
    return 0;
//    return ((Gluco2::SimpSolver*)s)->eliminated_vars;
}

int * bmcg2_sat_solver_read_cex(bmcg2_sat_solver* s)
{
574
    return glucose2_solver_read_cex((Gluco2::Solver*)s);
575 576 577 578
}

int bmcg2_sat_solver_read_cex_varvalue(bmcg2_sat_solver* s, int ivar)
{
579
    return glucose2_solver_read_cex_varvalue((Gluco2::Solver*)s, ivar);
580 581 582 583
}

void bmcg2_sat_solver_set_stop(bmcg2_sat_solver* s, int * pstop)
{
584
    glucose2_solver_setstop((Gluco2::Solver*)s, pstop);
585 586
}

587 588 589 590 591
void bmcg2_sat_solver_markapprox(bmcg2_sat_solver* s, int v0, int v1, int nlim)
{
    glucose2_markapprox((Gluco2::Solver*)s, v0, v1, nlim);
}

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
abctime bmcg2_sat_solver_set_runtime_limit(bmcg2_sat_solver* s, abctime Limit)
{
    abctime nRuntimeLimit = ((Gluco2::Solver*)s)->nRuntimeLimit;
    ((Gluco2::Solver*)s)->nRuntimeLimit = Limit;
    return nRuntimeLimit;
}

void bmcg2_sat_solver_set_conflict_budget(bmcg2_sat_solver* s, int Limit)
{
    if ( Limit > 0 ) 
        ((Gluco2::Solver*)s)->setConfBudget( (int64_t)Limit );
    else 
        ((Gluco2::Solver*)s)->budgetOff();
}

int bmcg2_sat_solver_varnum(bmcg2_sat_solver* s)
{
    return ((Gluco2::Solver*)s)->nVars();
}
int bmcg2_sat_solver_clausenum(bmcg2_sat_solver* s)
{
    return ((Gluco2::Solver*)s)->nClauses();
}
int bmcg2_sat_solver_learntnum(bmcg2_sat_solver* s)
{
    return ((Gluco2::Solver*)s)->nLearnts();
}
int bmcg2_sat_solver_conflictnum(bmcg2_sat_solver* s)
{
    return ((Gluco2::Solver*)s)->conflicts;
}

int bmcg2_sat_solver_minimize_assumptions( bmcg2_sat_solver * s, int * plits, int nlits, int pivot )
{
    vec<int>*array = &((Gluco2::Solver*)s)->user_vec;
    int i, nlitsL, nlitsR, nresL, nresR, status;
    assert( pivot >= 0 );
//    assert( nlits - pivot >= 2 );
    assert( nlits - pivot >= 1 );
    if ( nlits - pivot == 1 )
    {
        // since the problem is UNSAT, we try to solve it without assuming the last literal
        // if the result is UNSAT, the last literal can be dropped; otherwise, it is needed
        status = bmcg2_sat_solver_solve( s, plits, pivot );
        return status != GLUCOSE_UNSAT; // return 1 if the problem is not UNSAT
    }
    assert( nlits - pivot >= 2 );
    nlitsL = (nlits - pivot) / 2;
    nlitsR = (nlits - pivot) - nlitsL;
    assert( nlitsL + nlitsR == nlits - pivot );
    // solve with these assumptions
    status = bmcg2_sat_solver_solve( s, plits, pivot + nlitsL );
    if ( status == GLUCOSE_UNSAT ) // these are enough
        return bmcg2_sat_solver_minimize_assumptions( s, plits, pivot + nlitsL, pivot );
    // these are not enough
    // solve for the right lits
//    nResL = nLitsR == 1 ? 1 : sat_solver_minimize_assumptions( s, pLits + nLitsL, nLitsR, nConfLimit );
    nresL = nlitsR == 1 ? 1 : bmcg2_sat_solver_minimize_assumptions( s, plits, nlits, pivot + nlitsL );
    // swap literals
    array->clear();
    for ( i = 0; i < nlitsL; i++ )
        array->push(plits[pivot + i]);
    for ( i = 0; i < nresL; i++ )
        plits[pivot + i] = plits[pivot + nlitsL + i];
    for ( i = 0; i < nlitsL; i++ )
        plits[pivot + nresL + i] = (*array)[i];
    // solve with these assumptions
    status = bmcg2_sat_solver_solve( s, plits, pivot + nresL );
    if ( status == GLUCOSE_UNSAT ) // these are enough
        return nresL;
    // solve for the left lits
//    nResR = nLitsL == 1 ? 1 : sat_solver_minimize_assumptions( s, pLits + nResL, nLitsL, nConfLimit );
    nresR = nlitsL == 1 ? 1 : bmcg2_sat_solver_minimize_assumptions( s, plits, pivot + nresL + nlitsL, pivot + nresL );
    return nresL + nresR;
}

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
int bmcg2_sat_solver_add_and( bmcg2_sat_solver * s, int iVar, int iVar0, int iVar1, int fCompl0, int fCompl1, int fCompl )
{
    int Lits[3];

    Lits[0] = Abc_Var2Lit( iVar, !fCompl );
    Lits[1] = Abc_Var2Lit( iVar0, fCompl0 );
    if ( !bmcg2_sat_solver_addclause( s, Lits, 2 ) )
        return 0;

    Lits[0] = Abc_Var2Lit( iVar, !fCompl );
    Lits[1] = Abc_Var2Lit( iVar1, fCompl1 );
    if ( !bmcg2_sat_solver_addclause( s, Lits, 2 ) )
        return 0;

    Lits[0] = Abc_Var2Lit( iVar,   fCompl );
    Lits[1] = Abc_Var2Lit( iVar0, !fCompl0 );
    Lits[2] = Abc_Var2Lit( iVar1, !fCompl1 );
    if ( !bmcg2_sat_solver_addclause( s, Lits, 3 ) )
        return 0;

    return 1;
}

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
int bmcg2_solver_add_xor( bmcg2_sat_solver * pSat, int iVarA, int iVarB, int iVarC, int fCompl )
{
    int Lits[3];
    int Cid;
    assert( iVarA >= 0 && iVarB >= 0 && iVarC >= 0 );

    Lits[0] = Abc_Var2Lit( iVarA, !fCompl );
    Lits[1] = Abc_Var2Lit( iVarB, 1 );
    Lits[2] = Abc_Var2Lit( iVarC, 1 );
    Cid = bmcg2_sat_solver_addclause( pSat, Lits, 3 );
    assert( Cid );

    Lits[0] = Abc_Var2Lit( iVarA, !fCompl );
    Lits[1] = Abc_Var2Lit( iVarB, 0 );
    Lits[2] = Abc_Var2Lit( iVarC, 0 );
    Cid = bmcg2_sat_solver_addclause( pSat, Lits, 3 );
    assert( Cid );

    Lits[0] = Abc_Var2Lit( iVarA, fCompl );
    Lits[1] = Abc_Var2Lit( iVarB, 1 );
    Lits[2] = Abc_Var2Lit( iVarC, 0 );
    Cid = bmcg2_sat_solver_addclause( pSat, Lits, 3 );
    assert( Cid );

    Lits[0] = Abc_Var2Lit( iVarA, fCompl );
    Lits[1] = Abc_Var2Lit( iVarB, 0 );
    Lits[2] = Abc_Var2Lit( iVarC, 1 );
    Cid = bmcg2_sat_solver_addclause( pSat, Lits, 3 );
    assert( Cid );
    return 4;
}

723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
int bmcg2_sat_solver_jftr(bmcg2_sat_solver* s)
{
    return ((Gluco2::Solver*)s)->jftr;
}

void bmcg2_sat_solver_set_jftr(bmcg2_sat_solver* s, int jftr)
{
    ((Gluco2::Solver*)s)->jftr = jftr;
}

void bmcg2_sat_solver_set_var_fanin_lit(bmcg2_sat_solver* s, int var, int lit0, int lit1)
{
    ((Gluco2::Solver*)s)->sat_solver_set_var_fanin_lit(var, lit0, lit1);
}

void bmcg2_sat_solver_start_new_round(bmcg2_sat_solver* s)
{
    ((Gluco2::Solver*)s)->sat_solver_start_new_round();
}

void bmcg2_sat_solver_mark_cone(bmcg2_sat_solver* s, int var)
{
    ((Gluco2::Solver*)s)->sat_solver_mark_cone(var);
}

748 749 750 751
void bmcg2_sat_solver_prelocate( bmcg2_sat_solver * s, int var_num ){
    ((Gluco2::Solver*)s)->prelocate(var_num);
}

752 753 754 755 756 757 758 759 760 761 762 763 764 765
#endif


/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
766
void glucose2_print_stats(SimpSolver& s, abctime clk)
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
{
    double cpu_time = (double)(unsigned)clk / CLOCKS_PER_SEC;
    double mem_used = memUsed();
    printf("c restarts              : %d (%d conflicts on average)\n",         (int)s.starts, s.starts > 0 ? (int)(s.conflicts/s.starts) : 0);
    printf("c blocked restarts      : %d (multiple: %d) \n",                   (int)s.nbstopsrestarts, (int)s.nbstopsrestartssame);
    printf("c last block at restart : %d\n",                                   (int)s.lastblockatrestart);
    printf("c nb ReduceDB           : %-12d\n",                                (int)s.nbReduceDB);
    printf("c nb removed Clauses    : %-12d\n",                                (int)s.nbRemovedClauses);
    printf("c nb learnts DL2        : %-12d\n",                                (int)s.nbDL2);
    printf("c nb learnts size 2     : %-12d\n",                                (int)s.nbBin);
    printf("c nb learnts size 1     : %-12d\n",                                (int)s.nbUn);
    printf("c conflicts             : %-12d  (%.0f /sec)\n",                   (int)s.conflicts,    s.conflicts   /cpu_time);
    printf("c decisions             : %-12d  (%4.2f %% random) (%.0f /sec)\n", (int)s.decisions,    (float)s.rnd_decisions*100 / (float)s.decisions, s.decisions   /cpu_time);
    printf("c propagations          : %-12d  (%.0f /sec)\n",                   (int)s.propagations, s.propagations/cpu_time);
    printf("c conflict literals     : %-12d  (%4.2f %% deleted)\n",            (int)s.tot_literals, (s.max_literals - s.tot_literals)*100 / (double)s.max_literals);
    printf("c nb reduced Clauses    : %-12d\n", (int)s.nbReducedClauses);
    if (mem_used != 0) printf("Memory used           : %.2f MB\n", mem_used);
    //printf("c CPU time              : %.2f sec\n", cpu_time);
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Glucose_ReadDimacs( char * pFileName, SimpSolver& s )
{
    vec<Lit> * lits = &s.user_lits;
    char * pBuffer = Extra_FileReadContents( pFileName );
    char * pTemp; int fComp, Var, VarMax = 0;
    lits->clear();
    for ( pTemp = pBuffer; *pTemp; pTemp++ )
    {
        if ( *pTemp == 'c' || *pTemp == 'p' ) {
            while ( *pTemp != '\n' )
                pTemp++;
            continue;
        }
        while ( *pTemp == ' ' || *pTemp == '\t' || *pTemp == '\r' || *pTemp == '\n' )
            pTemp++;
        fComp = 0;
        if ( *pTemp == '-' )
            fComp = 1, pTemp++;
        if ( *pTemp == '+' )
            pTemp++;
        Var = atoi( pTemp );
        if ( Var == 0 ) {
            if ( lits->size() > 0 ) {
                s.addVar( VarMax );
                s.addClause(*lits);
                lits->clear();
            }
        }
        else {
            Var--;
            VarMax = Abc_MaxInt( VarMax, Var );
            lits->push( toLit(Abc_Var2Lit(Var, fComp)) );
        }
        while ( *pTemp >= '0' && *pTemp <= '9' )
            pTemp++;
    }
    ABC_FREE( pBuffer );
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Glucose2_SolveCnf( char * pFileName, Glucose2_Pars * pPars )
{
    abctime clk = Abc_Clock();

    SimpSolver  S;
    S.verbosity = pPars->verb;
    S.setConfBudget( pPars->nConfls > 0 ? (int64_t)pPars->nConfls : -1 );

//    gzFile in = gzopen(pFilename, "rb");
//    parse_DIMACS(in, S);
//    gzclose(in);
    Glucose_ReadDimacs( pFileName, S );

    if ( pPars->verb )
    {
        printf("c ============================[ Problem Statistics ]=============================\n");
        printf("c |                                                                             |\n");
        printf("c |  Number of variables:  %12d                                         |\n", S.nVars());
        printf("c |  Number of clauses:    %12d                                         |\n", S.nClauses());
    }
    
    if ( pPars->pre ) 
    {
        S.eliminate(true);
        printf( "c Simplication removed %d variables and %d clauses.  ", S.eliminated_vars, S.eliminated_clauses );
        Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
    }

    vec<Lit> dummy;
    lbool ret = S.solveLimited(dummy, 0);
878
    if ( pPars->verb ) glucose2_print_stats(S, Abc_Clock() - clk);
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
    printf(ret == l_True ? "SATISFIABLE" : ret == l_False ? "UNSATISFIABLE" : "INDETERMINATE");
    Abc_PrintTime( 1, "      Time", Abc_Clock() - clk );
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Int_t * Glucose_SolverFromAig( Gia_Man_t * p, SimpSolver& s )
{
    abctime clk = Abc_Clock();
    vec<Lit> * lits = &s.user_lits;
    Cnf_Dat_t * pCnf = (Cnf_Dat_t *)Mf_ManGenerateCnf( p, 8 /*nLutSize*/, 0 /*fCnfObjIds*/, 1/*fAddOrCla*/, 0, 0/*verbose*/ );
    for ( int i = 0; i < pCnf->nClauses; i++ )
    {
        lits->clear();
        for ( int * pLit = pCnf->pClauses[i]; pLit < pCnf->pClauses[i+1]; pLit++ )
            lits->push( toLit(*pLit) ), s.addVar( *pLit >> 1 );
        s.addClause(*lits);
    }
    Vec_Int_t * vCnfIds = Vec_IntAllocArrayCopy(pCnf->pVarNums,pCnf->nVars);
    printf( "CNF stats: Vars = %6d. Clauses = %7d. Literals = %8d. ", pCnf->nVars, pCnf->nClauses, pCnf->nLiterals );
    Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
    Cnf_DataFree(pCnf);
    return vCnfIds;
}

913
// procedure below does not work because glucose2_solver_addclause() expects Solver
914 915 916 917
Vec_Int_t * Glucose_SolverFromAig2( Gia_Man_t * p, SimpSolver& S ) 
{
    Cnf_Dat_t * pCnf = (Cnf_Dat_t *)Mf_ManGenerateCnf( p, 8 /*nLutSize*/, 0 /*fCnfObjIds*/, 1/*fAddOrCla*/, 0, 0/*verbose*/ );
    for ( int i = 0; i < pCnf->nClauses; i++ )
918
        if ( !glucose2_solver_addclause( &S, pCnf->pClauses[i], pCnf->pClauses[i+1]-pCnf->pClauses[i] ) )
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
            assert( 0 );
    Vec_Int_t * vCnfIds = Vec_IntAllocArrayCopy(pCnf->pVarNums,pCnf->nVars);
    //printf( "CNF stats: Vars = %6d. Clauses = %7d. Literals = %8d. ", pCnf->nVars, pCnf->nClauses, pCnf->nLiterals );
    //Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
    Cnf_DataFree(pCnf);
    return vCnfIds;
}



/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Str_t * Glucose2_GenerateCubes( bmcg2_sat_solver * pSat[2], Vec_Int_t * vCiSatVars, Vec_Int_t * vVar2Index, int CubeLimit )
{
    int fCreatePrime = 1;
    int nCubes, nSupp = Vec_IntSize(vCiSatVars);
    Vec_Str_t * vSop  = Vec_StrAlloc( 1000 );
    Vec_Int_t * vLits = Vec_IntAlloc( nSupp );
    Vec_Str_t * vCube = Vec_StrAlloc( nSupp + 4 );
    Vec_StrFill( vCube, nSupp, '-' );
    Vec_StrPrintF( vCube, " 1\n\0" );
    for ( nCubes = 0; !CubeLimit || nCubes < CubeLimit; nCubes++ )
    {
        int * pFinal, nFinal, iVar, i, k = 0;
        // generate onset minterm
        int status = bmcg2_sat_solver_solve( pSat[1], NULL, 0 );
        if ( status == GLUCOSE_UNSAT )
            break;
        assert( status == GLUCOSE_SAT );
        Vec_IntClear( vLits );
        Vec_IntForEachEntry( vCiSatVars, iVar, i )
            Vec_IntPush( vLits, Abc_Var2Lit(iVar, !bmcg2_sat_solver_read_cex_varvalue(pSat[1], iVar)) );
        // expand against offset
        if ( fCreatePrime )
        {
            nFinal = bmcg2_sat_solver_minimize_assumptions( pSat[0], Vec_IntArray(vLits), Vec_IntSize(vLits), 0 );
            Vec_IntShrink( vLits, nFinal );
            pFinal = Vec_IntArray( vLits );
            for ( i = 0; i < nFinal; i++ )
                pFinal[i] = Abc_LitNot(pFinal[i]);
        }
        else
        {
            status = bmcg2_sat_solver_solve( pSat[0], Vec_IntArray(vLits), Vec_IntSize(vLits) );
            assert( status == GLUCOSE_UNSAT );
            nFinal = bmcg2_sat_solver_final( pSat[0], &pFinal );
        }
        // print cube
        Vec_StrFill( vCube, nSupp, '-' );
        for ( i = 0; i < nFinal; i++ )
        {
            int Index = Vec_IntEntry(vVar2Index, Abc_Lit2Var(pFinal[i]));
            if ( Index == -1 )
                continue;
            pFinal[k++] = pFinal[i];
            assert( Index >= 0 && Index < nSupp );
            Vec_StrWriteEntry( vCube, Index, (char)('0' + Abc_LitIsCompl(pFinal[i])) );
        }
        nFinal = k;
        Vec_StrAppend( vSop, Vec_StrArray(vCube) );
        //printf( "%s\n", Vec_StrArray(vCube) );
        // add blocking clause
        if ( !bmcg2_sat_solver_addclause( pSat[1], pFinal, nFinal ) )
            break;
    }
    Vec_IntFree( vLits );
    Vec_StrFree( vCube );
    Vec_StrPush( vSop, '\0' );
    return vSop;
}
Vec_Str_t * bmcg2_sat_solver_sop( Gia_Man_t * p, int CubeLimit )
{
    bmcg2_sat_solver * pSat[2] = { bmcg2_sat_solver_start(), bmcg2_sat_solver_start() };

    // generate CNF for the on-set and off-set
    Cnf_Dat_t * pCnf = (Cnf_Dat_t *)Mf_ManGenerateCnf( p, 8 /*nLutSize*/, 0 /*fCnfObjIds*/, 0/*fAddOrCla*/, 0, 0/*verbose*/ );
    int i, n, nVars = Gia_ManCiNum(p), Lit;//, Count = 0;
    int iFirstVar = pCnf->nVars - nVars;
    assert( Gia_ManCoNum(p) == 1 );
    for ( n = 0; n < 2; n++ )
    {
        bmcg2_sat_solver_set_nvars( pSat[n], pCnf->nVars );
        Lit = Abc_Var2Lit( 1, !n );  // output variable is 1
        for ( i = 0; i < pCnf->nClauses; i++ )
            if ( !bmcg2_sat_solver_addclause( pSat[n], pCnf->pClauses[i], pCnf->pClauses[i+1]-pCnf->pClauses[i] ) )
                assert( 0 );
        if ( !bmcg2_sat_solver_addclause( pSat[n], &Lit, 1 ) )
        {
            Vec_Str_t * vSop = Vec_StrAlloc( 10 );
            Vec_StrPrintF( vSop, " %d\n\0", !n );
            Cnf_DataFree( pCnf );
            return vSop;
        }
    }
    Cnf_DataFree( pCnf );

    // collect cube vars and map SAT vars into them
    Vec_Int_t * vVars = Vec_IntAlloc( 100 ); 
    Vec_Int_t * vVarMap = Vec_IntStartFull( iFirstVar + nVars ); 
    for ( i = 0; i < nVars; i++ )
    {
        Vec_IntPush( vVars, iFirstVar+i );
        Vec_IntWriteEntry( vVarMap, iFirstVar+i, i );
    }

    Vec_Str_t * vSop = Glucose2_GenerateCubes( pSat, vVars, vVarMap, CubeLimit );
    Vec_IntFree( vVarMap );
    Vec_IntFree( vVars );

    bmcg2_sat_solver_stop( pSat[0] );
    bmcg2_sat_solver_stop( pSat[1] );
    return vSop;
}
void bmcg2_sat_solver_print_sop( Gia_Man_t * p )
{
    Vec_Str_t * vSop = bmcg2_sat_solver_sop( p, 0 );
    printf( "%s", Vec_StrArray(vSop) );
    Vec_StrFree( vSop );
}
void bmcg2_sat_solver_print_sop_lit( Gia_Man_t * p, int Lit )
{
    Vec_Int_t * vCisUsed = Vec_IntAlloc( 100 );
    int i, ObjId, iNode = Abc_Lit2Var( Lit );
    Gia_ManCollectCis( p, &iNode, 1, vCisUsed );
    Vec_IntSort( vCisUsed, 0 );
    Vec_IntForEachEntry( vCisUsed, ObjId, i )
        Vec_IntWriteEntry( vCisUsed, i, Gia_ManIdToCioId(p, ObjId) );
    Vec_IntPrint( vCisUsed );
    Gia_Man_t * pNew = Gia_ManDupConeSupp( p, Lit, vCisUsed );
    Vec_IntFree( vCisUsed );
    bmcg2_sat_solver_print_sop( pNew );
    Gia_ManStop( pNew );
    printf( "\n" );
}

/**Function*************************************************************

  Synopsis    [Computing d-literals.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
#define Gia_CubeForEachVar( pCube, Value, i )                                                      \
    for ( i = 0; (pCube[i] != ' ') && (Value = pCube[i]); i++ )           
#define Gia_SopForEachCube( pSop, nFanins, pCube )                                                 \
    for ( pCube = (pSop); *pCube; pCube += (nFanins) + 3 )

void bmcg2_sat_generate_dvars( Vec_Int_t * vCiVars, Vec_Str_t * vSop, Vec_Int_t * vDLits )
{
    int i, Lit, Counter, nCubes = 0;
    char Value, * pCube, * pSop = Vec_StrArray( vSop );
    Vec_Int_t * vCounts = Vec_IntStart( 2*Vec_IntSize(vCiVars) );
    Vec_IntClear( vDLits );
    Gia_SopForEachCube( pSop, Vec_IntSize(vCiVars), pCube )
    {
        nCubes++;
        Gia_CubeForEachVar( pCube, Value, i )
        {
            if ( Value == '1' )
                Vec_IntAddToEntry( vCounts, 2*i, 1 );
            else if ( Value == '0' )
                Vec_IntAddToEntry( vCounts, 2*i+1, 1 );
        }
    }
    Vec_IntForEachEntry( vCounts, Counter, Lit )
        if ( Counter == nCubes )
            Vec_IntPush( vDLits, Abc_Var2Lit(Vec_IntEntry(vCiVars, Abc_Lit2Var(Lit)), Abc_LitIsCompl(Lit)) );
    Vec_IntSort( vDLits, 0 );
    Vec_IntFree( vCounts );
}

/**Function*************************************************************

  Synopsis    [Performs SAT-based quantification.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int bmcg2_sat_solver_quantify2( Gia_Man_t * p, int iLit, int fHash, int(*pFuncCiToKeep)(void *, int), void * pData, Vec_Int_t * vDLits )
{
    int fSynthesize = 0;
    extern Gia_Man_t * Abc_SopSynthesizeOne( char * pSop, int fClp );
    Gia_Man_t * pMan, * pNew, * pTemp;  Vec_Str_t * vSop;
    int i, CiId, ObjId, Res, nCubes = 0, nNodes, Count = 0, iNode = Abc_Lit2Var(iLit);
    Vec_Int_t * vCisUsed = Vec_IntAlloc( 100 );
    Gia_ManCollectCis( p, &iNode, 1, vCisUsed );
    Vec_IntSort( vCisUsed, 0 );
    if ( vDLits ) Vec_IntClear( vDLits );
    if ( iLit < 2 )
        return iLit;
    // remap into CI Ids
    Vec_IntForEachEntry( vCisUsed, ObjId, i )
        Vec_IntWriteEntry( vCisUsed, i, Gia_ManIdToCioId(p, ObjId) );
    // duplicate cone
    pNew = Gia_ManDupConeSupp( p, iLit, vCisUsed );
    assert( Gia_ManCiNum(pNew) == Vec_IntSize(vCisUsed) );
    nNodes = Gia_ManAndNum(pNew);

    // perform quantification one CI at a time
    assert( pFuncCiToKeep );
    Vec_IntForEachEntry( vCisUsed, CiId, i )
        if ( !pFuncCiToKeep( pData, CiId ) )
        {
            //printf( "Quantifying %d.\n", CiId );
            pNew = Gia_ManDupExist( pTemp = pNew, i );
            Gia_ManStop( pTemp );
            Count++;
        }
    if ( Gia_ManPoIsConst(pNew, 0) )
    {
        int RetValue = Gia_ManPoIsConst1(pNew, 0);
        Vec_IntFree( vCisUsed );
        Gia_ManStop( pNew );
        return RetValue;
    }

    if ( fSynthesize )
    {
        vSop = bmcg2_sat_solver_sop( pNew, 0 );
        Gia_ManStop( pNew );
        pMan = Abc_SopSynthesizeOne( Vec_StrArray(vSop), 1 );
        nCubes = Vec_StrCountEntry(vSop, '\n');
        if ( vDLits )
        {
            // convert into object IDs
            Vec_Int_t * vCisObjs = Vec_IntAlloc( Vec_IntSize(vCisUsed) );
            Vec_IntForEachEntry( vCisUsed, CiId, i )
                Vec_IntPush( vCisObjs, CiId + 1 );
            bmcg2_sat_generate_dvars( vCisObjs, vSop, vDLits );
            Vec_IntFree( vCisObjs );
        }
        Vec_StrFree( vSop );

        if ( Gia_ManPoIsConst(pMan, 0) )
        {
            int RetValue = Gia_ManPoIsConst1(pMan, 0);
            Vec_IntFree( vCisUsed );
            Gia_ManStop( pMan );
            return RetValue;
        }
    }
    else
    {
        pMan = pNew;
    }

    Res = Gia_ManDupConeBack( p, pMan, vCisUsed );

    // report the result
    //printf( "Performed quantification with %5d nodes, %3d keep-vars, %3d quant-vars, resulting in %5d cubes and %5d nodes. ", 
    //    nNodes, Vec_IntSize(vCisUsed) - Count, Count, nCubes, Gia_ManAndNum(pMan) );
    //Abc_PrintTime( 1, "Time", Abc_Clock() - clkAll );

    Vec_IntFree( vCisUsed );
    Gia_ManStop( pMan );
    return Res;
}


/**Function*************************************************************

  Synopsis    [Performs SAT-based quantification.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Gia_ManSatAndCollect2_rec( Gia_Man_t * p, int iObj, Vec_Int_t * vObjsUsed, Vec_Int_t * vCiVars )
{
    Gia_Obj_t * pObj; int iVar;
    if ( (iVar = Gia_ObjCopyArray(p, iObj)) >= 0 )
        return iVar;
    pObj = Gia_ManObj( p, iObj );
    assert( Gia_ObjIsCand(pObj) );
    if ( Gia_ObjIsAnd(pObj) )
    {
        Gia_ManSatAndCollect2_rec( p, Gia_ObjFaninId0(pObj, iObj), vObjsUsed, vCiVars );
        Gia_ManSatAndCollect2_rec( p, Gia_ObjFaninId1(pObj, iObj), vObjsUsed, vCiVars );
    }
    iVar = Vec_IntSize( vObjsUsed );
    Vec_IntPush( vObjsUsed, iObj );
    Gia_ObjSetCopyArray( p, iObj, iVar );
    if ( vCiVars && Gia_ObjIsCi(pObj) )
        Vec_IntPush( vCiVars, iVar );
    return iVar;
}                             
void Gia_ManQuantLoadCnf2( Gia_Man_t * p, Vec_Int_t * vObjsUsed, bmcg2_sat_solver * pSats[] )
{
    Gia_Obj_t * pObj; int i;
    bmcg2_sat_solver_reset( pSats[0] );
    if ( pSats[1] )
    bmcg2_sat_solver_reset( pSats[1] );
    bmcg2_sat_solver_set_nvars( pSats[0], Vec_IntSize(vObjsUsed) );
    if ( pSats[1] )
    bmcg2_sat_solver_set_nvars( pSats[1], Vec_IntSize(vObjsUsed) );
    Gia_ManForEachObjVec( vObjsUsed, p, pObj, i ) 
        if ( Gia_ObjIsAnd(pObj) )
        {
            int iObj  = Gia_ObjId( p, pObj );
            int iVar  = Gia_ObjCopyArray(p, iObj);
            int iVar0 = Gia_ObjCopyArray(p, Gia_ObjFaninId0(pObj, iObj));
            int iVar1 = Gia_ObjCopyArray(p, Gia_ObjFaninId1(pObj, iObj));
            bmcg2_sat_solver_add_and( pSats[0], iVar, iVar0, iVar1, Gia_ObjFaninC0(pObj), Gia_ObjFaninC1(pObj), 0 );
            if ( pSats[1] )
            bmcg2_sat_solver_add_and( pSats[1], iVar, iVar0, iVar1, Gia_ObjFaninC0(pObj), Gia_ObjFaninC1(pObj), 0 );
        }
        else if ( Gia_ObjIsConst0(pObj) )
        {
            int Lit = Abc_Var2Lit( Gia_ObjCopyArray(p, 0), 1 );
            int RetValue = bmcg2_sat_solver_addclause( pSats[0], &Lit, 1 );
            assert( RetValue );
            if ( pSats[1] )
            bmcg2_sat_solver_addclause( pSats[1], &Lit, 1 );
            assert( Lit == 1 );
        }
}
int Gia_ManFactorSop2( Gia_Man_t * p, Vec_Int_t * vCiObjIds, Vec_Str_t * vSop, int fHash )
{
    extern Gia_Man_t * Abc_SopSynthesizeOne( char * pSop, int fClp );
    Gia_Man_t * pMan = Abc_SopSynthesizeOne( Vec_StrArray(vSop), 1 );
    Gia_Obj_t * pObj; int i, Result;
    assert( Gia_ManPiNum(pMan) == Vec_IntSize(vCiObjIds) );
    Gia_ManConst0(pMan)->Value = 0;
    Gia_ManForEachPi( pMan, pObj, i )
        pObj->Value = Abc_Var2Lit( Vec_IntEntry(vCiObjIds, i), 0 );
    Gia_ManForEachAnd( pMan, pObj, i )
        if ( fHash )
            pObj->Value = Gia_ManHashAnd( p, Gia_ObjFanin0Copy(pObj), Gia_ObjFanin1Copy(pObj) );
        else
            pObj->Value = Gia_ManAppendAnd( p, Gia_ObjFanin0Copy(pObj), Gia_ObjFanin1Copy(pObj) );
    pObj = Gia_ManPo(pMan, 0);
    Result = Gia_ObjFanin0Copy(pObj);
    Gia_ManStop( pMan );
    return Result;
}
int bmcg2_sat_solver_quantify( bmcg2_sat_solver * pSats[], Gia_Man_t * p, int iLit, int fHash, int(*pFuncCiToKeep)(void *, int), void * pData, Vec_Int_t * vDLits )
{
    Vec_Int_t * vObjsUsed = Vec_IntAlloc( 100 ); // GIA objs
    Vec_Int_t * vCiVars = Vec_IntAlloc( 100 );   // CI SAT vars
    Vec_Int_t * vVarMap = NULL; Vec_Str_t * vSop = NULL; 
    int i, iVar, iVarLast, Lit, RetValue, Count = 0, Result = -1;
    if ( vDLits ) Vec_IntClear( vDLits );
    if ( iLit < 2 )
        return iLit;
    if ( Vec_IntSize(&p->vCopies) < Gia_ManObjNum(p) )
        Vec_IntFillExtra( &p->vCopies, Gia_ManObjNum(p), -1 );
    // assign variable number 0 to const0 node
    iVar = Vec_IntSize(vObjsUsed); 
    Vec_IntPush( vObjsUsed, 0 );
    Gia_ObjSetCopyArray( p, 0, iVar );
    assert( iVar == 0 );    

    // collect other variables
    iVarLast = Gia_ManSatAndCollect2_rec( p, Abc_Lit2Var(iLit), vObjsUsed, vCiVars );
    Gia_ManQuantLoadCnf2( p, vObjsUsed, pSats );

    // check constants
    Lit = Abc_Var2Lit( iVarLast, !Abc_LitIsCompl(iLit) ); 
    RetValue = bmcg2_sat_solver_addclause( pSats[0], &Lit, 1 ); // offset
    if ( !RetValue || bmcg2_sat_solver_solve(pSats[0], NULL, 0) == GLUCOSE_UNSAT )
    {
        Result = 1;
        goto cleanup;
    }
    Lit = Abc_Var2Lit( iVarLast, Abc_LitIsCompl(iLit) );
    RetValue = bmcg2_sat_solver_addclause( pSats[1], &Lit, 1 ); // onset
    if ( !RetValue || bmcg2_sat_solver_solve(pSats[1], NULL, 0) == GLUCOSE_UNSAT )
    {
        Result = 0;
        goto cleanup;
    }
/*
    // reorder CI SAT variables to have keep-vars first
    Vec_Int_t * vCiVars2 = Vec_IntAlloc( 100 );   // CI SAT vars
    Vec_IntForEachEntry( vCiVars, iVar, i )
    {
        Gia_Obj_t * pObj = Gia_ManObj( p, Vec_IntEntry(vObjsUsed, iVar) );
        assert( Gia_ObjIsCi(pObj) );
        if ( pFuncCiToKeep(pData, Gia_ObjCioId(pObj)) )
            Vec_IntPush( vCiVars2, iVar );
    }
    Vec_IntForEachEntry( vCiVars, iVar, i )
    {
        Gia_Obj_t * pObj = Gia_ManObj( p, Vec_IntEntry(vObjsUsed, iVar) );
        assert( Gia_ObjIsCi(pObj) );
        if ( !pFuncCiToKeep(pData, Gia_ObjCioId(pObj)) )
            Vec_IntPush( vCiVars2, iVar );
    }
    ABC_SWAP( Vec_Int_t *, vCiVars2, vCiVars );
    Vec_IntFree( vCiVars2 );
*/
    // map CI SAT variables into their indexes used in the cubes
    vVarMap = Vec_IntStartFull( Vec_IntSize(vObjsUsed) );
    Vec_IntForEachEntry( vCiVars, iVar, i )
    {
        Gia_Obj_t * pObj = Gia_ManObj( p, Vec_IntEntry(vObjsUsed, iVar) );
        assert( Gia_ObjIsCi(pObj) );
        if ( pFuncCiToKeep(pData, Gia_ObjCioId(pObj)) )
            Vec_IntWriteEntry( vVarMap, iVar, i ), Count++;
    }
    if ( Count == 0 || Count == Vec_IntSize(vCiVars) )
    {
        Result = Count == 0 ? 1 : iLit;
        goto cleanup;
    }
    // generate cubes
    vSop = Glucose2_GenerateCubes( pSats, vCiVars, vVarMap, 0 );
    //printf( "%s", Vec_StrArray(vSop) );
    // convert into object IDs
    Vec_IntForEachEntry( vCiVars, iVar, i )
        Vec_IntWriteEntry( vCiVars, i, Vec_IntEntry(vObjsUsed, iVar) );
    // generate unate variables
    if ( vDLits )
        bmcg2_sat_generate_dvars( vCiVars, vSop, vDLits );
    // convert into an AIG
    RetValue = Gia_ManAndNum(p);
    Result = Gia_ManFactorSop2( p, vCiVars, vSop, fHash );

    // report the result
//    printf( "Performed quantification with %5d nodes, %3d keep-vars, %3d quant-vars, resulting in %5d cubes and %5d nodes. ", 
//        Vec_IntSize(vObjsUsed), Count, Vec_IntSize(vCiVars) - Count, Vec_StrCountEntry(vSop, '\n'), Gia_ManAndNum(p)-RetValue );
//    Abc_PrintTime( 1, "Time", Abc_Clock() - clkAll );

cleanup:
    Vec_IntForEachEntry( vObjsUsed, iVar, i )
        Gia_ObjSetCopyArray( p, iVar, -1 );
    Vec_IntFree( vObjsUsed );
    Vec_IntFree( vCiVars );
    Vec_IntFreeP( &vVarMap );
    Vec_StrFreeP( &vSop );
    return Result;
}
int Gia_ManCiIsToKeep2( void * pData, int i )
{
    return i % 5 != 0;
}
void Glucose2_QuantifyAigTest( Gia_Man_t * p )
{
    bmcg2_sat_solver * pSats[3] = { bmcg2_sat_solver_start(), bmcg2_sat_solver_start(), bmcg2_sat_solver_start() };

    abctime clk1 = Abc_Clock();
    int iRes1 = bmcg2_sat_solver_quantify( pSats, p, Gia_ObjFaninLit0p(p, Gia_ManPo(p, 0)), 0, Gia_ManCiIsToKeep2, NULL, NULL );
    abctime clk1d = Abc_Clock()-clk1;

    abctime clk2 = Abc_Clock();
    int iRes2 = bmcg2_sat_solver_quantify2( p, Gia_ObjFaninLit0p(p, Gia_ManPo(p, 0)), 0, Gia_ManCiIsToKeep2, NULL, NULL );
    abctime clk2d = Abc_Clock()-clk2;

    Abc_PrintTime( 1, "Time1", clk1d );
    Abc_PrintTime( 1, "Time2", clk2d );

    if ( bmcg2_sat_solver_equiv_overlap_check( pSats[2], p, iRes1, iRes2, 1 ) )
        printf( "Verification passed.\n" );
    else
        printf( "Verification FAILED.\n" );

    Gia_ManAppendCo( p, iRes1 );
    Gia_ManAppendCo( p, iRes2 );

    bmcg2_sat_solver_stop( pSats[0] );
    bmcg2_sat_solver_stop( pSats[1] );
    bmcg2_sat_solver_stop( pSats[2] );
}
int bmcg2_sat_solver_quantify_test( bmcg2_sat_solver * pSats[], Gia_Man_t * p, int iLit, int fHash, int(*pFuncCiToKeep)(void *, int), void * pData, Vec_Int_t * vDLits )
{
    extern int Gia_ManQuantExist( Gia_Man_t * p, int iLit, int(*pFuncCiToKeep)(void *, int), void * pData );
    int Res1 = Gia_ManQuantExist( p, iLit, pFuncCiToKeep, pData );
    int Res2 = bmcg2_sat_solver_quantify2( p, iLit, 1, pFuncCiToKeep, pData, NULL );

    bmcg2_sat_solver * pSat = bmcg2_sat_solver_start();
    if ( bmcg2_sat_solver_equiv_overlap_check( pSat, p, Res1, Res2, 1 ) )
        printf( "Verification passed.\n" );
    else
    {
        printf( "Verification FAILED.\n" );
        bmcg2_sat_solver_print_sop_lit( p, Res1 );
        bmcg2_sat_solver_print_sop_lit( p, Res2 );
        printf( "\n" );
    }
    return Res1;
}

/**Function*************************************************************

  Synopsis    [Checks equivalence or intersection of two nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int bmcg2_sat_solver_equiv_overlap_check( bmcg2_sat_solver * pSat, Gia_Man_t * p, int iLit0, int iLit1, int fEquiv )
{
    bmcg2_sat_solver * pSats[2] = { pSat, NULL };
    Vec_Int_t * vObjsUsed = Vec_IntAlloc( 100 ); 
    int i, iVar, iSatVar[2], iSatLit[2], Lits[2], status;
    if ( Vec_IntSize(&p->vCopies) < Gia_ManObjNum(p) )
        Vec_IntFillExtra( &p->vCopies, Gia_ManObjNum(p), -1 );

    // assign const0 variable number 0
    iVar = Vec_IntSize(vObjsUsed);
    Vec_IntPush( vObjsUsed, 0 );
    Gia_ObjSetCopyArray( p, 0, iVar );
    assert( iVar == 0 );

    iSatVar[0] = Gia_ManSatAndCollect2_rec( p, Abc_Lit2Var(iLit0), vObjsUsed, NULL );
    iSatVar[1] = Gia_ManSatAndCollect2_rec( p, Abc_Lit2Var(iLit1), vObjsUsed, NULL );

    iSatLit[0] = Abc_Var2Lit( iSatVar[0], Abc_LitIsCompl(iLit0) );
    iSatLit[1] = Abc_Var2Lit( iSatVar[1], Abc_LitIsCompl(iLit1) );
    Gia_ManQuantLoadCnf2( p, vObjsUsed, pSats );
    Vec_IntForEachEntry( vObjsUsed, iVar, i )
        Gia_ObjSetCopyArray( p, iVar, -1 );
    Vec_IntFree( vObjsUsed );

    if ( fEquiv )
    {
        Lits[0] = iSatLit[0];
        Lits[1] = Abc_LitNot(iSatLit[1]);
        status  = bmcg2_sat_solver_solve( pSats[0], Lits, 2 );
        if ( status == GLUCOSE_UNSAT )
        {
            Lits[0] = Abc_LitNot(iSatLit[0]);
            Lits[1] = iSatLit[1];
            status  = bmcg2_sat_solver_solve( pSats[0], Lits, 2 );
        }
        return status == GLUCOSE_UNSAT;
    }
    else
    {
        Lits[0] = iSatLit[0];
        Lits[1] = iSatLit[1];
        status  = bmcg2_sat_solver_solve( pSats[0], Lits, 2 );
        return status == GLUCOSE_SAT;
    }
}
void Glucose2_CheckTwoNodesTest( Gia_Man_t * p )
{
    int n, Res;
    bmcg2_sat_solver * pSat = bmcg2_sat_solver_start();
    for ( n = 0; n < 2; n++ )
    {
        Res = bmcg2_sat_solver_equiv_overlap_check( 
            pSat, p, 
            Gia_ObjFaninLit0p(p, Gia_ManPo(p, 0)), 
            Gia_ObjFaninLit0p(p, Gia_ManPo(p, 1)), 
            n );
        bmcg2_sat_solver_reset( pSat );
        printf( "%s %s.\n", n ? "Equivalence" : "Overlap", Res ? "holds" : "fails" );
    }
    bmcg2_sat_solver_stop( pSat );
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Glucose2_SolveAig(Gia_Man_t * p, Glucose2_Pars * pPars)
{  
    abctime clk = Abc_Clock();

    SimpSolver S;
    S.verbosity = pPars->verb;
    S.verbEveryConflicts = 50000;
    S.showModel = false;
    //S.verbosity = 2;
    S.setConfBudget( pPars->nConfls > 0 ? (int64_t)pPars->nConfls : -1 );

    S.parsing = 1;
    Vec_Int_t * vCnfIds = Glucose_SolverFromAig(p,S);
    S.parsing = 0;

    if (pPars->verb)
    {
        printf("c ============================[ Problem Statistics ]=============================\n");
        printf("c |                                                                             |\n");
        printf("c |  Number of variables:  %12d                                         |\n", S.nVars());
        printf("c |  Number of clauses:    %12d                                         |\n", S.nClauses());
    }

    if (pPars->pre) 
    {
        S.eliminate(true);
        printf( "c Simplication removed %d variables and %d clauses.  ", S.eliminated_vars, S.eliminated_clauses );
        Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
    }
    
    vec<Lit> dummy;
    lbool ret = S.solveLimited(dummy, 0);

1538
    if ( pPars->verb ) glucose2_print_stats(S, Abc_Clock() - clk);
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
    printf(ret == l_True ? "SATISFIABLE" : ret == l_False ? "UNSATISFIABLE" : "INDETERMINATE");
    Abc_PrintTime( 1, "      Time", Abc_Clock() - clk );

    // port counterexample
    if (ret == l_True)
    {
        Gia_Obj_t * pObj;  int i;
        p->pCexComb = Abc_CexAlloc(0,Gia_ManCiNum(p),1);
        Gia_ManForEachCi( p, pObj, i )
        {
            assert(Vec_IntEntry(vCnfIds,Gia_ObjId(p, pObj))!=-1);
            if (S.model[Vec_IntEntry(vCnfIds,Gia_ObjId(p, pObj))] == l_True)
                Abc_InfoSetBit( p->pCexComb->pData, i);
        }
    }
    Vec_IntFree(vCnfIds);
    return (ret == l_True ? 10 : ret == l_False ? 20 : 0);
}

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////

ABC_NAMESPACE_IMPL_END