SimpSolver.cpp 21.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
/***********************************************************************************[SimpSolver.cc]
Copyright (c) 2006,      Niklas Een, Niklas Sorensson
Copyright (c) 2007-2010, Niklas Sorensson

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/

#include "Sort.h"
#include "SimpSolver.h"
#include "System.h"

using namespace Minisat;

//=================================================================================================
// Options:


static const char* _cat = "SIMP";

static BoolOption   opt_use_asymm        (_cat, "asymm",        "Shrink clauses by asymmetric branching.", false);
static BoolOption   opt_use_rcheck       (_cat, "rcheck",       "Check if a clause is already implied. (costly)", false);
static BoolOption   opt_use_elim         (_cat, "elim",         "Perform variable elimination.", true);
static IntOption    opt_grow             (_cat, "grow",         "Allow a variable elimination step to grow by a number of clauses.", 0);
static IntOption    opt_clause_lim       (_cat, "cl-lim",       "Variables are not eliminated if it produces a resolvent with a length above this limit. -1 means no limit", 20,   IntRange(-1, INT32_MAX));
static IntOption    opt_subsumption_lim  (_cat, "sub-lim",      "Do not check if subsumption against a clause larger than this. -1 means no limit.", 1000, IntRange(-1, INT32_MAX));
static DoubleOption opt_simp_garbage_frac(_cat, "simp-gc-frac", "The fraction of wasted memory allowed before a garbage collection is triggered during simplification.",  0.5, DoubleRange(0, false, HUGE_VAL, false));


//=================================================================================================
// Constructor/Destructor:


SimpSolver::SimpSolver() :
    grow               (opt_grow)
  , clause_lim         (opt_clause_lim)
  , subsumption_lim    (opt_subsumption_lim)
  , simp_garbage_frac  (opt_simp_garbage_frac)
  , use_asymm          (opt_use_asymm)
  , use_rcheck         (opt_use_rcheck)
  , use_elim           (opt_use_elim)
  , merges             (0)
  , asymm_lits         (0)
  , eliminated_vars    (0)
  , elimorder          (1)
  , use_simplification (true)
  , occurs             (ClauseDeleted(ca))
  , elim_heap          (ElimLt(n_occ))
  , bwdsub_assigns     (0)
  , n_touched          (0)
{
    vec<Lit> dummy(1,lit_Undef);
    ca.extra_clause_field = true; // NOTE: must happen before allocating the dummy clause below.
    bwdsub_tmpunit        = ca.alloc(dummy);
    remove_satisfied      = false;
}


SimpSolver::~SimpSolver()
{
}


Var SimpSolver::newVar(bool sign, bool dvar) {
    Var v = Solver::newVar(sign, dvar);

    frozen    .push((char)false);
    eliminated.push((char)false);

    if (use_simplification){
        n_occ     .push(0);
        n_occ     .push(0);
        occurs    .init(v);
        touched   .push(0);
        elim_heap .insert(v);
    }
    return v; }



lbool SimpSolver::solve_(bool do_simp, bool turn_off_simp)
{
    vec<Var> extra_frozen;
    lbool    result = l_True;

    do_simp &= use_simplification;

    if (do_simp){
        // Assumptions must be temporarily frozen to run variable elimination:
        for (int i = 0; i < assumptions.size(); i++){
            Var v = var(assumptions[i]);

            // If an assumption has been eliminated, remember it.
            assert(!isEliminated(v));

            if (!frozen[v]){
                // Freeze and store.
                setFrozen(v, true);
                extra_frozen.push(v);
            } }

        result = lbool(eliminate(turn_off_simp));
    }

    if (result == l_True)
        result = Solver::solve_();
    else if (verbosity >= 1)
        printf("===============================================================================\n");

    if (result == l_True)
        extendModel();

    if (do_simp)
        // Unfreeze the assumptions that were frozen:
        for (int i = 0; i < extra_frozen.size(); i++)
            setFrozen(extra_frozen[i], false);

    return result;
}



bool SimpSolver::addClause_(vec<Lit>& ps)
{
#ifndef NDEBUG
    for (int i = 0; i < ps.size(); i++)
        assert(!isEliminated(var(ps[i])));
#endif

    int nclauses = clauses.size();

    if (use_rcheck && implied(ps))
        return true;

    if (!Solver::addClause_(ps))
        return false;

    if (use_simplification && clauses.size() == nclauses + 1){
        CRef          cr = clauses.last();
        const Clause& c  = ca[cr];

        // NOTE: the clause is added to the queue immediately and then
        // again during 'gatherTouchedClauses()'. If nothing happens
        // in between, it will only be checked once. Otherwise, it may
        // be checked twice unnecessarily. This is an unfortunate
        // consequence of how backward subsumption is used to mimic
        // forward subsumption.
        subsumption_queue.insert(cr);
        for (int i = 0; i < c.size(); i++){
            occurs[var(c[i])].push(cr);
            n_occ[toInt(c[i])]++;
            touched[var(c[i])] = 1;
            n_touched++;
            if (elim_heap.inHeap(var(c[i])))
                elim_heap.increase(var(c[i]));
        }
    }

    return true;
}


void SimpSolver::removeClause(CRef cr)
{
    const Clause& c = ca[cr];

    if (use_simplification)
        for (int i = 0; i < c.size(); i++){
            n_occ[toInt(c[i])]--;
            updateElimHeap(var(c[i]));
            occurs.smudge(var(c[i]));
        }

    Solver::removeClause(cr);
}


bool SimpSolver::strengthenClause(CRef cr, Lit l)
{
    Clause& c = ca[cr];
    assert(decisionLevel() == 0);
    assert(use_simplification);

    // FIX: this is too inefficient but would be nice to have (properly implemented)
    // if (!find(subsumption_queue, &c))
    subsumption_queue.insert(cr);

    if (c.size() == 2){
        removeClause(cr);
        c.strengthen(l);
    }else{
        detachClause(cr, true);
        c.strengthen(l);
        attachClause(cr);
        remove(occurs[var(l)], cr);
        n_occ[toInt(l)]--;
        updateElimHeap(var(l));
    }

    return c.size() == 1 ? enqueue(c[0]) && propagate() == CRef_Undef : true;
}


// Returns FALSE if clause is always satisfied ('out_clause' should not be used).
bool SimpSolver::merge(const Clause& _ps, const Clause& _qs, Var v, vec<Lit>& out_clause)
{
    merges++;
    out_clause.clear();

    bool  ps_smallest = _ps.size() < _qs.size();
    const Clause& ps  =  ps_smallest ? _qs : _ps;
    const Clause& qs  =  ps_smallest ? _ps : _qs;
Alan Mishchenko committed
225
    int i, j;
226

Alan Mishchenko committed
227
    for (i = 0; i < qs.size(); i++){
228
        if (var(qs[i]) != v){
Alan Mishchenko committed
229
            for (j = 0; j < ps.size(); j++)
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
                if (var(ps[j]) == var(qs[i]))
                    if (ps[j] == ~qs[i])
                        return false;
                    else
                        goto next;
            out_clause.push(qs[i]);
        }
        next:;
    }

    for (i = 0; i < ps.size(); i++)
        if (var(ps[i]) != v)
            out_clause.push(ps[i]);

    return true;
}


// Returns FALSE if clause is always satisfied.
bool SimpSolver::merge(const Clause& _ps, const Clause& _qs, Var v, int& size)
{
    merges++;

    bool  ps_smallest = _ps.size() < _qs.size();
    const Clause& ps  =  ps_smallest ? _qs : _ps;
    const Clause& qs  =  ps_smallest ? _ps : _qs;
    const Lit*  __ps  = (const Lit*)ps;
    const Lit*  __qs  = (const Lit*)qs;

    size = ps.size()-1;

    for (int i = 0; i < qs.size(); i++){
        if (var(__qs[i]) != v){
            for (int j = 0; j < ps.size(); j++)
                if (var(__ps[j]) == var(__qs[i]))
                    if (__ps[j] == ~__qs[i])
                        return false;
                    else
                        goto next;
            size++;
        }
        next:;
    }

    return true;
}


void SimpSolver::gatherTouchedClauses()
{
    if (n_touched == 0) return;

    int i,j;
    for (i = j = 0; i < subsumption_queue.size(); i++)
        if (ca[subsumption_queue[i]].mark() == 0)
            ca[subsumption_queue[i]].mark(2);

    for (i = 0; i < touched.size(); i++)
        if (touched[i]){
            const vec<CRef>& cs = occurs.lookup(i);
            for (j = 0; j < cs.size(); j++)
                if (ca[cs[j]].mark() == 0){
                    subsumption_queue.insert(cs[j]);
                    ca[cs[j]].mark(2);
                }
            touched[i] = 0;
        }

    for (i = 0; i < subsumption_queue.size(); i++)
        if (ca[subsumption_queue[i]].mark() == 2)
            ca[subsumption_queue[i]].mark(0);

    n_touched = 0;
}


bool SimpSolver::implied(const vec<Lit>& c)
{
    assert(decisionLevel() == 0);

    trail_lim.push(trail.size());
    for (int i = 0; i < c.size(); i++)
        if (value(c[i]) == l_True){
            cancelUntil(0);
            return false;
        }else if (value(c[i]) != l_False){
            assert(value(c[i]) == l_Undef);
            uncheckedEnqueue(~c[i]);
        }

    bool result = propagate() != CRef_Undef;
    cancelUntil(0);
    return result;
}


// Backward subsumption + backward subsumption resolution
bool SimpSolver::backwardSubsumptionCheck(bool verbose)
{
    int cnt = 0;
    int subsumed = 0;
    int deleted_literals = 0;
    assert(decisionLevel() == 0);

    while (subsumption_queue.size() > 0 || bwdsub_assigns < trail.size()){

        // Empty subsumption queue and return immediately on user-interrupt:
        if (asynch_interrupt){
            subsumption_queue.clear();
            bwdsub_assigns = trail.size();
            break; }

        // Check top-level assignments by creating a dummy clause and placing it in the queue:
        if (subsumption_queue.size() == 0 && bwdsub_assigns < trail.size()){
            Lit l = trail[bwdsub_assigns++];
            ca[bwdsub_tmpunit][0] = l;
            ca[bwdsub_tmpunit].calcAbstraction();
            subsumption_queue.insert(bwdsub_tmpunit); }

        CRef    cr = subsumption_queue.peek(); subsumption_queue.pop();
        Clause& c  = ca[cr];

        if (c.mark()) continue;

        if (verbose && verbosity >= 2 && cnt++ % 1000 == 0)
            printf("subsumption left: %10d (%10d subsumed, %10d deleted literals)\r", subsumption_queue.size(), subsumed, deleted_literals);

        assert(c.size() > 1 || value(c[0]) == l_True);    // Unit-clauses should have been propagated before this point.

        // Find best variable to scan:
        Var best = var(c[0]);
        for (int i = 1; i < c.size(); i++)
            if (occurs[var(c[i])].size() < occurs[best].size())
                best = var(c[i]);

        // Search all candidates:
        vec<CRef>& _cs = occurs.lookup(best);
        CRef*       cs = (CRef*)_cs;

        for (int j = 0; j < _cs.size(); j++)
            if (c.mark())
                break;
            else if (!ca[cs[j]].mark() &&  cs[j] != cr && (subsumption_lim == -1 || ca[cs[j]].size() < subsumption_lim)){
                Lit l = c.subsumes(ca[cs[j]]);

                if (l == lit_Undef)
                    subsumed++, removeClause(cs[j]);
                else if (l != lit_Error){
                    deleted_literals++;

                    if (!strengthenClause(cs[j], ~l))
                        return false;

                    // Did current candidate get deleted from cs? Then check candidate at index j again:
                    if (var(l) == best)
                        j--;
                }
            }
    }

    return true;
}


bool SimpSolver::asymm(Var v, CRef cr)
{
    Clause& c = ca[cr];
    assert(decisionLevel() == 0);

    if (c.mark() || satisfied(c)) return true;

    trail_lim.push(trail.size());
    Lit l = lit_Undef;
    for (int i = 0; i < c.size(); i++)
        if (var(c[i]) != v && value(c[i]) != l_False)
            uncheckedEnqueue(~c[i]);
        else
            l = c[i];

    if (propagate() != CRef_Undef){
        cancelUntil(0);
        asymm_lits++;
        if (!strengthenClause(cr, l))
            return false;
    }else
        cancelUntil(0);

    return true;
}


bool SimpSolver::asymmVar(Var v)
{
    assert(use_simplification);

    const vec<CRef>& cls = occurs.lookup(v);

    if (value(v) != l_Undef || cls.size() == 0)
        return true;

    for (int i = 0; i < cls.size(); i++)
        if (!asymm(v, cls[i]))
            return false;

    return backwardSubsumptionCheck();
}


static void mkElimClause(vec<uint32_t>& elimclauses, Lit x)
{
    elimclauses.push(toInt(x));
    elimclauses.push(1);
}


static void mkElimClause(vec<uint32_t>& elimclauses, Var v, Clause& c)
{
    int first = elimclauses.size();
    int v_pos = -1;

    // Copy clause to elimclauses-vector. Remember position where the
    // variable 'v' occurs:
    for (int i = 0; i < c.size(); i++){
        elimclauses.push(toInt(c[i]));
        if (var(c[i]) == v)
            v_pos = i + first;
    }
    assert(v_pos != -1);

    // Swap the first literal with the 'v' literal, so that the literal
    // containing 'v' will occur first in the clause:
    uint32_t tmp = elimclauses[v_pos];
    elimclauses[v_pos] = elimclauses[first];
    elimclauses[first] = tmp;

    // Store the length of the clause last:
    elimclauses.push(c.size());
}



bool SimpSolver::eliminateVar(Var v)
{
    assert(!frozen[v]);
    assert(!isEliminated(v));
    assert(value(v) == l_Undef);
Alan Mishchenko committed
476
    int i;
477 478 479 480 481

    // Split the occurrences into positive and negative:
    //
    const vec<CRef>& cls = occurs.lookup(v);
    vec<CRef>        pos, neg;
Alan Mishchenko committed
482
    for (i = 0; i < cls.size(); i++)
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
        (find(ca[cls[i]], mkLit(v)) ? pos : neg).push(cls[i]);

    // Check wether the increase in number of clauses stays within the allowed ('grow'). Moreover, no
    // clause must exceed the limit on the maximal clause size (if it is set):
    //
    int cnt         = 0;
    int clause_size = 0;

    for (i = 0; i < pos.size(); i++)
        for (int j = 0; j < neg.size(); j++)
            if (merge(ca[pos[i]], ca[neg[j]], v, clause_size) && 
                (++cnt > cls.size() + grow || (clause_lim != -1 && clause_size > clause_lim)))
                return true;

    // Delete and store old clauses:
    eliminated[v] = true;
    setDecisionVar(v, false);
    eliminated_vars++;

    if (pos.size() > neg.size()){
        for (int i = 0; i < neg.size(); i++)
            mkElimClause(elimclauses, v, ca[neg[i]]);
        mkElimClause(elimclauses, mkLit(v));
    }else{
        for (int i = 0; i < pos.size(); i++)
            mkElimClause(elimclauses, v, ca[pos[i]]);
        mkElimClause(elimclauses, ~mkLit(v));
    }

    for (i = 0; i < cls.size(); i++)
        removeClause(cls[i]); 

    // Produce clauses in cross product:
    vec<Lit>& resolvent = add_tmp;
    for (i = 0; i < pos.size(); i++)
        for (int j = 0; j < neg.size(); j++)
            if (merge(ca[pos[i]], ca[neg[j]], v, resolvent) && !addClause_(resolvent))
                return false;

    // Free occurs list for this variable:
    occurs[v].clear(true);
    
    // Free watchers lists for this variable, if possible:
    if (watches[ mkLit(v)].size() == 0) watches[ mkLit(v)].clear(true);
    if (watches[~mkLit(v)].size() == 0) watches[~mkLit(v)].clear(true);

    return backwardSubsumptionCheck();
}


bool SimpSolver::substitute(Var v, Lit x)
{
    assert(!frozen[v]);
    assert(!isEliminated(v));
    assert(value(v) == l_Undef);

    if (!ok) return false;

    eliminated[v] = true;
    setDecisionVar(v, false);
    const vec<CRef>& cls = occurs.lookup(v);
    
    vec<Lit>& subst_clause = add_tmp;
    for (int i = 0; i < cls.size(); i++){
        Clause& c = ca[cls[i]];

        subst_clause.clear();
        for (int j = 0; j < c.size(); j++){
            Lit p = c[j];
            subst_clause.push(var(p) == v ? x ^ sign(p) : p);
        }

        removeClause(cls[i]);

        if (!addClause_(subst_clause))
            return ok = false;
    }

    return true;
}


void SimpSolver::extendModel()
{
    int i, j;
    Lit x;

    for (i = elimclauses.size()-1; i > 0; i -= j){
        for (j = elimclauses[i--]; j > 1; j--, i--)
            if (modelValue(toLit(elimclauses[i])) != l_False)
                goto next;

        x = toLit(elimclauses[i]);
        model[var(x)] = lbool(!sign(x));
    next:;
    }
}


bool SimpSolver::eliminate(bool turn_off_elim)
{
    if (!simplify())
        return false;
    else if (!use_simplification)
        return true;

    // Main simplification loop:
    //
    while (n_touched > 0 || bwdsub_assigns < trail.size() || elim_heap.size() > 0){

        gatherTouchedClauses();
        // printf("  ## (time = %6.2f s) BWD-SUB: queue = %d, trail = %d\n", cpuTime(), subsumption_queue.size(), trail.size() - bwdsub_assigns);
        if ((subsumption_queue.size() > 0 || bwdsub_assigns < trail.size()) && 
            !backwardSubsumptionCheck(true)){
            ok = false; goto cleanup; }

        // Empty elim_heap and return immediately on user-interrupt:
        if (asynch_interrupt){
            assert(bwdsub_assigns == trail.size());
            assert(subsumption_queue.size() == 0);
            assert(n_touched == 0);
            elim_heap.clear();
            goto cleanup; }

        // printf("  ## (time = %6.2f s) ELIM: vars = %d\n", cpuTime(), elim_heap.size());
        for (int cnt = 0; !elim_heap.empty(); cnt++){
            Var elim = elim_heap.removeMin();
            
            if (asynch_interrupt) break;

            if (isEliminated(elim) || value(elim) != l_Undef) continue;

            if (verbosity >= 2 && cnt % 100 == 0)
                printf("elimination left: %10d\r", elim_heap.size());

            if (use_asymm){
                // Temporarily freeze variable. Otherwise, it would immediately end up on the queue again:
                bool was_frozen = frozen[elim];
                frozen[elim] = true;
                if (!asymmVar(elim)){
                    ok = false; goto cleanup; }
                frozen[elim] = was_frozen; }

            // At this point, the variable may have been set by assymetric branching, so check it
            // again. Also, don't eliminate frozen variables:
            if (use_elim && value(elim) == l_Undef && !frozen[elim] && !eliminateVar(elim)){
                ok = false; goto cleanup; }

            checkGarbage(simp_garbage_frac);
        }

        assert(subsumption_queue.size() == 0);
    }
 cleanup:

    // If no more simplification is needed, free all simplification-related data structures:
    if (turn_off_elim){
        touched  .clear(true);
        occurs   .clear(true);
        n_occ    .clear(true);
        elim_heap.clear(true);
        subsumption_queue.clear(true);

        use_simplification    = false;
        remove_satisfied      = true;
        ca.extra_clause_field = false;

        // Force full cleanup (this is safe and desirable since it only happens once):
        rebuildOrderHeap();
        garbageCollect();
    }else{
        // Cheaper cleanup:
        cleanUpClauses(); // TODO: can we make 'cleanUpClauses()' not be linear in the problem size somehow?
        checkGarbage();
    }

    if (verbosity >= 1 && elimclauses.size() > 0)
        printf("|  Eliminated clauses:     %10.2f Mb                                      |\n", 
               double(elimclauses.size() * sizeof(uint32_t)) / (1024*1024));

    return ok;
}


void SimpSolver::cleanUpClauses()
{
    occurs.cleanAll();
    int i,j;
    for (i = j = 0; i < clauses.size(); i++)
        if (ca[clauses[i]].mark() == 0)
            clauses[j++] = clauses[i];
    clauses.shrink(i - j);
}


//=================================================================================================
// Garbage Collection methods:


void SimpSolver::relocAll(ClauseAllocator& to)
{
    if (!use_simplification) return;

    // All occurs lists:
    //
Alan Mishchenko committed
688 689
    int i;
    for (i = 0; i < nVars(); i++){
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
        vec<CRef>& cs = occurs[i];
        for (int j = 0; j < cs.size(); j++)
            ca.reloc(cs[j], to);
    }

    // Subsumption queue:
    //
    for (i = 0; i < subsumption_queue.size(); i++)
        ca.reloc(subsumption_queue[i], to);

    // Temporary clause:
    //
    ca.reloc(bwdsub_tmpunit, to);
}


void SimpSolver::garbageCollect()
{
    // Initialize the next region to a size corresponding to the estimated utilization degree. This
    // is not precise but should avoid some unnecessary reallocations for the new region:
    ClauseAllocator to(ca.size() - ca.wasted()); 

    cleanUpClauses();
    to.extra_clause_field = ca.extra_clause_field; // NOTE: this is important to keep (or lose) the extra fields.
    relocAll(to);
    Solver::relocAll(to);
    if (verbosity >= 2)
        printf("|  Garbage collection:   %12d bytes => %12d bytes             |\n", 
               ca.size()*ClauseAllocator::Unit_Size, to.size()*ClauseAllocator::Unit_Size);
    to.moveTo(ca);
}