wlcSim.c 8.65 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
/**CFile****************************************************************

  FileName    [wlcSim.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Verilog parser.]

  Synopsis    [Performs sequential simulation of word-level network.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 04, 2015.]

  Revision    [$Id: wlcSim.c,v 1.00 2015/06/04 00:00:00 alanmi Exp $]

***********************************************************************/

#include "wlc.h"

ABC_NAMESPACE_IMPL_START

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Internal simulation APIs.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline word * Wlc_ObjSim( Gia_Man_t * p, int iObj )
{
    return Vec_WrdEntryP( p->vSims, p->iPatsPi * iObj );
}
static inline void Wlc_ObjSimPi( Gia_Man_t * p, int iObj )
{
    int w;
    word * pSim = Wlc_ObjSim( p, iObj );
    for ( w = 0; w < p->iPatsPi; w++ )
        pSim[w] = Gia_ManRandomW( 0 );
}
static inline void Wlc_ObjSimRo( Gia_Man_t * p, int iObj )
{
    int w;
    word * pSimRo = Wlc_ObjSim( p, iObj );
    word * pSimRi = Wlc_ObjSim( p, Gia_ObjRoToRiId(p, iObj) );
    for ( w = 0; w < p->iPatsPi; w++ )
        pSimRo[w] = pSimRi[w];
}
static inline void Wlc_ObjSimCo( Gia_Man_t * p, int iObj )
{
    int w;
    Gia_Obj_t * pObj = Gia_ManObj( p, iObj );
    word * pSimCo  = Wlc_ObjSim( p, iObj );
    word * pSimDri = Wlc_ObjSim( p, Gia_ObjFaninId0(pObj, iObj) );
    if ( Gia_ObjFaninC0(pObj) )
        for ( w = 0; w < p->iPatsPi; w++ )
            pSimCo[w] = ~pSimDri[w];
    else
        for ( w = 0; w < p->iPatsPi; w++ )
            pSimCo[w] =  pSimDri[w];
}
static inline void Wlc_ObjSimAnd( Gia_Man_t * p, int iObj )
{
    int w;
    Gia_Obj_t * pObj = Gia_ManObj( p, iObj );
    word * pSim  = Wlc_ObjSim( p, iObj );
    word * pSim0 = Wlc_ObjSim( p, Gia_ObjFaninId0(pObj, iObj) );
    word * pSim1 = Wlc_ObjSim( p, Gia_ObjFaninId1(pObj, iObj) );
    if ( Gia_ObjFaninC0(pObj) && Gia_ObjFaninC1(pObj) )
        for ( w = 0; w < p->iPatsPi; w++ )
            pSim[w] = ~pSim0[w] & ~pSim1[w];
    else if ( Gia_ObjFaninC0(pObj) && !Gia_ObjFaninC1(pObj) )
        for ( w = 0; w < p->iPatsPi; w++ )
            pSim[w] = ~pSim0[w] & pSim1[w];
    else if ( !Gia_ObjFaninC0(pObj) && Gia_ObjFaninC1(pObj) )
        for ( w = 0; w < p->iPatsPi; w++ )
            pSim[w] = pSim0[w] & ~pSim1[w];
    else
        for ( w = 0; w < p->iPatsPi; w++ )
            pSim[w] = pSim0[w] & pSim1[w];
}


/**Function*************************************************************

  Synopsis    [Performs simulation of a word-level network.]

  Description [Returns vRes, a 2D array of simulation information for 
  the output of each bit of each object listed in vNodes. In particular, 
  Vec_Ptr_t * vSimObj = (Vec_Ptr_t *)Vec_PtrEntry(vRes, iObj) and
  Vec_Ptr_t * vSimObjBit = (Vec_Ptr_t *)Vec_PtrEntry(vSimObj, iBit)
  are arrays containing the simulation info for each object (vSimObj) 
  and for each output bit of this object (vSimObjBit). Alternatively,
  Vec_Ptr_t * vSimObjBit = Vec_VecEntryEntry( (Vec_Vec_t *)vRes, iObj, iBit ).
  The output bitwidth of an object is Wlc_ObjRange( Wlc_NtkObj(pNtk, iObj) ).
  Simulation information is binary data constaining the given number (nWords)
  of 64-bit machine words for the given number (nFrames) of consecutive 
  timeframes.  The total number of timeframes is nWords * nFrames for 
  each bit of each object.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Wlc_NtkDeleteSim( Vec_Ptr_t * p )
{
    word * pInfo; int i, k;
    Vec_Vec_t * vVec = (Vec_Vec_t *)p;
    Vec_VecForEachEntry( word *, vVec, pInfo, i, k )
        ABC_FREE( pInfo );
    Vec_VecFree( vVec );
}
Vec_Ptr_t * Wlc_NtkSimulate( Wlc_Ntk_t * p, Vec_Int_t * vNodes, int nWords, int nFrames )
{
    Gia_Obj_t * pObj; 
    Vec_Ptr_t * vOne, * vRes;
132
    Gia_Man_t * pGia = Wlc_NtkBitBlast( p, NULL, -1, 0, 0, 0 );
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    Wlc_Obj_t * pWlcObj;
    int f, i, k, w, nBits, Counter = 0;
    // allocate simulation info for one timeframe
    Vec_WrdFreeP( &pGia->vSims );
    pGia->vSims = Vec_WrdStart( Gia_ManObjNum(pGia) * nWords );
    pGia->iPatsPi = nWords;
    // allocate resulting simulation info
    vRes = Vec_PtrAlloc( Vec_IntSize(vNodes) );
    Wlc_NtkForEachObjVec( vNodes, p, pWlcObj, i )
    {
        nBits = Wlc_ObjRange(pWlcObj);
        vOne = Vec_PtrAlloc( nBits );
        for ( k = 0; k < nBits; k++ )
            Vec_PtrPush( vOne, ABC_CALLOC(word, nWords * nFrames) );
        Vec_PtrPush( vRes, vOne ); 
    }
    // perform simulation (const0 and flop outputs are already initialized)
    Gia_ManRandomW( 1 );
    for ( f = 0; f < nFrames; f++ )
    {
        Gia_ManForEachObj1( pGia, pObj, i )
        {
            if ( Gia_ObjIsAnd(pObj) )
                Wlc_ObjSimAnd( pGia, i );
            else if ( Gia_ObjIsCo(pObj) )
                Wlc_ObjSimCo( pGia, i );
            else if ( Gia_ObjIsPi(pGia, pObj) )
                Wlc_ObjSimPi( pGia, i );
            else if ( Gia_ObjIsRo(pGia, pObj) )
                Wlc_ObjSimRo( pGia, i );
        }
        // collect simulation data
        Wlc_NtkForEachObjVec( vNodes, p, pWlcObj, i )
        {
            int nBits = Wlc_ObjRange(pWlcObj);
            int iFirst = Vec_IntEntry( &p->vCopies, Wlc_ObjId(p, pWlcObj) );
            for ( k = 0; k < nBits; k++ )
            {
                int iLit = Vec_IntEntry( &p->vBits, iFirst + k );
172
                word * pInfo = (word*)Vec_VecEntryEntry( (Vec_Vec_t *)vRes, i, k );
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
                if ( iLit == -1 )
                {
                    Counter++;
                    for ( w = 0; w < nWords; w++ )
                        pInfo[f * nWords + w] = 0;
                }
                else
                {
                    word * pInfoObj = Wlc_ObjSim( pGia, Abc_Lit2Var(iLit) );
                    for ( w = 0; w < nWords; w++ )
                        pInfo[f * nWords + w] = Abc_LitIsCompl(iLit) ? ~pInfoObj[w] : pInfoObj[w];
                }
            }
        }
        if ( f == 0 && Counter )
            printf( "Replaced %d dangling internal bits with constant 0.\n", Counter );
    }
    Vec_WrdFreeP( &pGia->vSims );
    pGia->iPatsPi = 0;
    Gia_ManStop( pGia );
    return vRes;
}

/**Function*************************************************************

  Synopsis    [Testing procedure.]

  Description [This testing procedure assumes that the WLC network has 
  one node, which is a multiplier. It simulates the node and checks the 
  word-level interpretation of the bit-level simulation info to make sure 
  that it indeed represents multiplication.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Wlc_NtkSimulatePrint( Wlc_Ntk_t * p, Vec_Int_t * vNodes, Vec_Ptr_t * vRes, int nWords, int nFrames )
{
    Wlc_Obj_t * pWlcObj; 
    int f, w, b, i, k, iPat = 0;
    for ( f = 0; f < nFrames; f++, printf("\n") )
      for ( w = 0; w < nWords; w++ )
        for ( b = 0; b < 64; b++, iPat++, printf("\n") )
        {
            Wlc_NtkForEachObjVec( vNodes, p, pWlcObj, i )
            {
                int nBits = Wlc_ObjRange(pWlcObj);
                for ( k = nBits-1; k >= 0; k-- )
                {
223
                    word * pInfo = (word*)Vec_VecEntryEntry( (Vec_Vec_t *)vRes, i, k );
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
                    printf( "%d", Abc_InfoHasBit((unsigned *)pInfo, iPat) );
                }
                printf( " " );
            }
        }
}
void Wlc_NtkSimulateTest( Wlc_Ntk_t * p )
{
    int nWords = 2;
    int nFrames = 2;
    Vec_Ptr_t * vRes;
    Vec_Int_t * vNodes = Vec_IntAlloc( 3 );
    Vec_IntPush( vNodes, 1 );
    Vec_IntPush( vNodes, 2 );
    Vec_IntPush( vNodes, 3 );
    vRes = Wlc_NtkSimulate( p, vNodes, nWords, nFrames );
    Wlc_NtkSimulatePrint( p, vNodes, vRes, nWords, nFrames );
    Wlc_NtkDeleteSim( vRes );
    Vec_IntFree( vNodes );
}

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


ABC_NAMESPACE_IMPL_END