dsdProc.c 63 KB
Newer Older
Alan Mishchenko committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/**CFile****************************************************************

  FileName    [dsdProc.c]

  PackageName [DSD: Disjoint-support decomposition package.]

  Synopsis    [The core procedures of the package.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 8.0. Started - September 22, 2003.]

  Revision    [$Id: dsdProc.c,v 1.0 2002/22/09 00:00:00 alanmi Exp $]

***********************************************************************/

#include "dsdInt.h"

21 22 23
ABC_NAMESPACE_IMPL_START


Alan Mishchenko committed
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

////////////////////////////////////////////////////////////////////////
///                    FUNCTION DECLARATIONS                         ///
////////////////////////////////////////////////////////////////////////

// the most important procedures
void dsdKernelDecompose( Dsd_Manager_t * pDsdMan, DdNode ** pbFuncs, int nFuncs );
static Dsd_Node_t * dsdKernelDecompose_rec( Dsd_Manager_t * pDsdMan, DdNode * F );

// additional procedures
static Dsd_Node_t * dsdKernelFindContainingComponent( Dsd_Manager_t * pDsdMan, Dsd_Node_t * pWhere, DdNode * Var, int * fPolarity );
static int dsdKernelFindCommonComponents( Dsd_Manager_t * pDsdMan, Dsd_Node_t * pL, Dsd_Node_t * pH, Dsd_Node_t *** pCommon, Dsd_Node_t ** pLastDiffL, Dsd_Node_t ** pLastDiffH );
static void dsdKernelComputeSumOfComponents( Dsd_Manager_t * pDsdMan, Dsd_Node_t ** pCommon, int nCommon, DdNode ** pCompF, DdNode ** pCompS, int fExor );
static int dsdKernelCheckContainment( Dsd_Manager_t * pDsdMan, Dsd_Node_t * pL, Dsd_Node_t * pH, Dsd_Node_t ** pLarge, Dsd_Node_t ** pSmall );

// list copying
static void dsdKernelCopyListPlusOne( Dsd_Node_t * p, Dsd_Node_t * First, Dsd_Node_t ** ppList, int nListSize );
static void dsdKernelCopyListPlusOneMinusOne( Dsd_Node_t * p, Dsd_Node_t * First, Dsd_Node_t ** ppList, int nListSize, int Skipped );

// debugging procedures
static int dsdKernelVerifyDecomposition( Dsd_Manager_t * pDsdMan, Dsd_Node_t * pDE );

////////////////////////////////////////////////////////////////////////
///                       STATIC VARIABLES                           ///
////////////////////////////////////////////////////////////////////////

// the counter of marks
static int s_Mark;

// debugging flag
Alan Mishchenko committed
54
//static int s_Show = 0;
Alan Mishchenko committed
55 56 57 58 59 60 61 62 63 64 65 66
// temporary var used for debugging
static int Depth = 0;

static int s_Loops1;
static int s_Loops2;
static int s_Loops3;
static int s_Common;
static int s_CommonNo;

static int s_Case4Calls;
static int s_Case4CallsSpecial;

Alan Mishchenko committed
67 68
//static int s_Case5;
//static int s_Loops2Useless;
Alan Mishchenko committed
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

// statistical variables
static int   s_nDecBlocks;
static int   s_nLiterals;
static int   s_nExorGates; 
static int   s_nReusedBlocks;
static int   s_nCascades;
static int   s_nPrimeBlocks;

static int HashSuccess = 0;
static int HashFailure = 0;

static int s_CacheEntries;


////////////////////////////////////////////////////////////////////////
///                     DECOMPOSITION FUNCTIONS                      ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Performs DSD for the array of functions represented by BDDs.]

  Description [This function takes the DSD manager, which should be
  previously allocated by the call to Dsd_ManagerStart(). The resulting
  DSD tree is stored in the DSD manager (pDsdMan->pRoots, pDsdMan->nRoots).
  Access to the tree is through the APIs of the manager. The resulting
  tree is a shared DSD DAG for the functions given in the array. For one
  function the resulting DAG is always a tree. The root node pointers can 
  be complemented, as discussed in the literature referred to in "dsd.h".
  This procedure can be called repeatedly for different functions. There is
  no need to remove the decomposition tree after it is returned, because
  the next call to the DSD manager will "recycle" the tree. The user should
  not modify or dereference any data associated with the nodes of the 
  DSD trees (the user can only change the contents of a temporary
  mark associated with each node by the calling to Dsd_NodeSetMark()).
  All the decomposition trees and intermediate nodes will be removed when
  the DSD manager is deallocated at the end by calling Dsd_ManagerStop().]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Dsd_Decompose( Dsd_Manager_t * pDsdMan, DdNode ** pbFuncs, int nFuncs )
{
    DdManager * dd = pDsdMan->dd;
    int i;
117
    clock_t clk;
Alan Mishchenko committed
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    Dsd_Node_t * pTemp;
    int SumMaxGateSize = 0;
    int nDecOutputs = 0;
    int nCBFOutputs = 0;
/*
s_Loops1 = 0;
s_Loops2 = 0;
s_Loops3 = 0;
s_Case4Calls = 0;
s_Case4CallsSpecial = 0;
s_Case5 = 0;
s_Loops2Useless = 0;
*/
    // resize the number of roots in the manager
    if ( pDsdMan->nRootsAlloc < nFuncs )
    {
        if ( pDsdMan->nRootsAlloc > 0 )
Alan Mishchenko committed
135
            ABC_FREE( pDsdMan->pRoots );
Alan Mishchenko committed
136
        pDsdMan->nRootsAlloc = nFuncs;
Alan Mishchenko committed
137
        pDsdMan->pRoots = (Dsd_Node_t **) ABC_ALLOC( char, pDsdMan->nRootsAlloc * sizeof(Dsd_Node_t *) );
Alan Mishchenko committed
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    }

    if ( pDsdMan->fVerbose )
        printf( "\nDecomposability statistics for individual outputs:\n" );

    // set the counter of decomposition nodes
    s_nDecBlocks = 0;

    // perform decomposition for all outputs
    clk = clock();
    pDsdMan->nRoots = 0;
    s_nCascades = 0;
    for ( i = 0; i < nFuncs; i++ )
    {
        int nLiteralsPrev;
        int nDecBlocksPrev;
        int nExorGatesPrev;
        int nReusedBlocksPres;
        int nCascades;
        int MaxBlock;
        int nPrimeBlocks;
159
        clock_t clk;
Alan Mishchenko committed
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

        clk = clock();
        nLiteralsPrev     = s_nLiterals;
        nDecBlocksPrev    = s_nDecBlocks;
        nExorGatesPrev    = s_nExorGates;
        nReusedBlocksPres = s_nReusedBlocks;
        nPrimeBlocks      = s_nPrimeBlocks;

        pDsdMan->pRoots[ pDsdMan->nRoots++ ] = dsdKernelDecompose_rec( pDsdMan, pbFuncs[i] );

        Dsd_TreeNodeGetInfoOne( pDsdMan->pRoots[i], &nCascades, &MaxBlock );
        s_nCascades = ddMax( s_nCascades, nCascades );
        pTemp = Dsd_Regular(pDsdMan->pRoots[i]);
        if ( pTemp->Type != DSD_NODE_PRIME || pTemp->nDecs != Extra_bddSuppSize(dd,pTemp->S) )
            nDecOutputs++;
        if ( MaxBlock < 3 )
            nCBFOutputs++;
        SumMaxGateSize += MaxBlock;

        if ( pDsdMan->fVerbose )
        {
            printf("#%02d: ", i );                              
            printf("Ins=%2d. ", Cudd_SupportSize(dd,pbFuncs[i]) );                  
            printf("Gts=%3d. ", Dsd_TreeCountNonTerminalNodesOne( pDsdMan->pRoots[i] ) ); 
            printf("Pri=%3d. ", Dsd_TreeCountPrimeNodesOne( pDsdMan->pRoots[i] ) ); 
            printf("Max=%3d. ", MaxBlock ); 
            printf("Reuse=%2d. ", s_nReusedBlocks-nReusedBlocksPres ); 
            printf("Csc=%2d. ", nCascades ); 
            printf("T= %.2f s. ", (float)(clock()-clk)/(float)(CLOCKS_PER_SEC) ) ;
            printf("Bdd=%2d. ", Cudd_DagSize(pbFuncs[i]) ); 
            printf("\n");
            fflush( stdout );
        }
    }
    assert( pDsdMan->nRoots == nFuncs );

    if ( pDsdMan->fVerbose )
    {
        printf( "\n" );
        printf( "The cumulative decomposability statistics:\n" );
        printf( "  Total outputs                             = %5d\n", nFuncs );
        printf( "  Decomposable outputs                      = %5d\n", nDecOutputs );
        printf( "  Completely decomposable outputs           = %5d\n", nCBFOutputs );
        printf( "  The sum of max gate sizes                 = %5d\n", SumMaxGateSize );
        printf( "  Shared BDD size                           = %5d\n", Cudd_SharingSize( pbFuncs, nFuncs ) );
        printf( "  Decomposition entries                     = %5d\n", st_count( pDsdMan->Table ) );
        printf( "  Pure decomposition time                   =  %.2f sec\n", (float)(clock() - clk)/(float)(CLOCKS_PER_SEC) );
    }
/*
    printf( "s_Loops1 = %d.\n", s_Loops1 );
    printf( "s_Loops2 = %d.\n", s_Loops2 );
    printf( "s_Loops3 = %d.\n", s_Loops3 );
    printf( "s_Case4Calls = %d.\n", s_Case4Calls );
    printf( "s_Case4CallsSpecial = %d.\n", s_Case4CallsSpecial );
    printf( "s_Case5 = %d.\n", s_Case5 );
    printf( "s_Loops2Useless = %d.\n", s_Loops2Useless );
*/
}

/**Function*************************************************************

Alan Mishchenko committed
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
  Synopsis    [Performs decomposition for one function.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Dsd_Node_t * Dsd_DecomposeOne( Dsd_Manager_t * pDsdMan, DdNode * bFunc )
{
    return dsdKernelDecompose_rec( pDsdMan, bFunc );
}

/**Function*************************************************************

Alan Mishchenko committed
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
  Synopsis    [The main function of this module. Recursive implementation of DSD.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Dsd_Node_t * dsdKernelDecompose_rec( Dsd_Manager_t * pDsdMan, DdNode * bFunc0 )
{
    DdManager * dd = pDsdMan->dd;
    DdNode * bLow;
    DdNode * bLowR;
    DdNode * bHigh;

    int      VarInt;
    DdNode * bVarCur;
    Dsd_Node_t *     pVarCurDE; 
    // works only if var indices start from 0!!!
    DdNode * bSuppNew = NULL, * bTemp;

    int fContained;
    int nSuppLH;
    int nSuppL;
    int nSuppH;



    // various decomposition nodes
    Dsd_Node_t * pThis, * pL, * pH, * pLR, * pHR;

    Dsd_Node_t * pSmallR, * pLargeR;
    Dsd_Node_t * pTableEntry;


    // treat the complemented case
    DdNode * bF = Cudd_Regular(bFunc0);
    int  fCompF = (int)(bF != bFunc0);

    // check cache
    if ( st_lookup( pDsdMan->Table, (char*)bF, (char**)&pTableEntry ) )
    { // the entry is present 
        HashSuccess++;
        return Dsd_NotCond( pTableEntry, fCompF );
    }
    HashFailure++;
    Depth++;

    // proceed to consider "four cases"
    //////////////////////////////////////////////////////////////////////
    // TERMINAL CASES - CASES 1 and 2
    //////////////////////////////////////////////////////////////////////
    bLow    = cuddE(bF);
    bLowR   = Cudd_Regular(bLow);
    bHigh   = cuddT(bF);
    VarInt    = bF->index;
    bVarCur   = dd->vars[VarInt];
    pVarCurDE = pDsdMan->pInputs[VarInt]; 
    // works only if var indices start from 0!!!
    bSuppNew = NULL;

    if ( bLowR->index == CUDD_CONST_INDEX || bHigh->index == CUDD_CONST_INDEX )
    { // one of the cofactors in the constant
        if ( bHigh == b1 )  // bHigh cannot be equal to b0, because then it will be complemented
          if ( bLow == b0 ) // bLow cannot be equal to b1, because then the node will have bLow == bHigh
          /////////////////////////////////////////////////////////////////
          // bLow == 0, bHigh == 1, F = x'&0 + x&1 = x
          /////////////////////////////////////////////////////////////////
          { // create the elementary variable node
            assert(0); // should be already in the hash table
            pThis = Dsd_TreeNodeCreate( DSD_NODE_BUF, 1, s_nDecBlocks++ );
            pThis->pDecs[0] = NULL;
          }
          else // if ( bLow != constant )
          /////////////////////////////////////////////////////////////////
          // bLow != const, bHigh == 1, F = x'&bLow + x&1 = bLow + x  --- DSD_NODE_OR(x,bLow)
          /////////////////////////////////////////////////////////////////
          {
            pL  = dsdKernelDecompose_rec( pDsdMan, bLow );
            pLR = Dsd_Regular( pL );
            bSuppNew = Cudd_bddAnd( dd, bVarCur, pLR->S ); Cudd_Ref(bSuppNew);
            if ( pLR->Type == DSD_NODE_OR && pL == pLR ) // OR and no complement
            { // add to the components
                pThis = Dsd_TreeNodeCreate( DSD_NODE_OR, pL->nDecs+1, s_nDecBlocks++ );
                dsdKernelCopyListPlusOne( pThis, pVarCurDE, pL->pDecs, pL->nDecs );
            }
            else // all other cases
            { // create a new 2-input OR-gate
                pThis = Dsd_TreeNodeCreate( DSD_NODE_OR, 2, s_nDecBlocks++ );
                dsdKernelCopyListPlusOne( pThis, pVarCurDE, &pL, 1 );
            }
          }
        else // if ( bHigh != const ) // meaning that bLow should be a constant
        {
          pH = dsdKernelDecompose_rec( pDsdMan, bHigh );
          pHR = Dsd_Regular( pH );
          bSuppNew = Cudd_bddAnd( dd, bVarCur, pHR->S ); Cudd_Ref(bSuppNew);
          if ( bLow == b0 )
          /////////////////////////////////////////////////////////////////
          // Low == 0, High != 1, F = x'&0+x&High = (x'+High')'--- NOR(x',High')
          /////////////////////////////////////////////////////////////////
            if ( pHR->Type == DSD_NODE_OR && pH != pHR ) // DSD_NODE_OR and complement
            { // add to the components
               pThis = Dsd_TreeNodeCreate( DSD_NODE_OR, pHR->nDecs+1, s_nDecBlocks++ );
              dsdKernelCopyListPlusOne( pThis, Dsd_Not(pVarCurDE), pHR->pDecs, pHR->nDecs );
              pThis = Dsd_Not(pThis);
            }
            else // all other cases
            { // create a new 2-input NOR gate
               pThis = Dsd_TreeNodeCreate( DSD_NODE_OR, 2, s_nDecBlocks++ );
              pH = Dsd_Not(pH);
              dsdKernelCopyListPlusOne( pThis, Dsd_Not(pVarCurDE), &pH, 1 );
              pThis = Dsd_Not(pThis);
            }
          else // if ( bLow == b1 )
            /////////////////////////////////////////////////////////////////
          // Low == 1, High != 1, F = x'&1 + x&High = x' + High --- DSD_NODE_OR(x',High)
          /////////////////////////////////////////////////////////////////
            if ( pHR->Type == DSD_NODE_OR && pH == pHR ) // OR and no complement
            { // add to the components
                pThis = Dsd_TreeNodeCreate( DSD_NODE_OR, pH->nDecs+1, s_nDecBlocks++ );
                dsdKernelCopyListPlusOne( pThis, Dsd_Not(pVarCurDE), pH->pDecs, pH->nDecs );
            }
            else // all other cases
            { // create a new 2-input OR-gate
                pThis = Dsd_TreeNodeCreate( DSD_NODE_OR, 2, s_nDecBlocks++ );
                dsdKernelCopyListPlusOne( pThis, Dsd_Not(pVarCurDE), &pH, 1 );
            }
        }
        goto EXIT;
    }
    // else if ( bLow != const && bHigh != const )

    // the case of equal cofactors (up to complementation)
    if ( bLowR == bHigh )
    /////////////////////////////////////////////////////////////////
    // Low == G, High == G', F = x'&G + x&G' = (x(+)G) --- EXOR(x,Low)
    /////////////////////////////////////////////////////////////////
    {
        pL  = dsdKernelDecompose_rec( pDsdMan, bLow );
        pLR = Dsd_Regular( pL );
        bSuppNew = Cudd_bddAnd( dd, bVarCur, pLR->S ); Cudd_Ref(bSuppNew);
        if ( pLR->Type == DSD_NODE_EXOR ) // complemented or not - does not matter!
        { // add to the components
            pThis = Dsd_TreeNodeCreate( DSD_NODE_EXOR, pLR->nDecs+1, s_nDecBlocks++ );
            dsdKernelCopyListPlusOne( pThis, pVarCurDE, pLR->pDecs, pLR->nDecs );
            if ( pL != pLR )
                pThis = Dsd_Not( pThis );
        }
        else // all other cases
        { // create a new 2-input EXOR-gate
            pThis = Dsd_TreeNodeCreate( DSD_NODE_EXOR, 2, s_nDecBlocks++ );
            if ( pL != pLR ) // complemented
            {
                dsdKernelCopyListPlusOne( pThis, pVarCurDE, &pLR, 1 );
                pThis = Dsd_Not( pThis );
            }
            else // non-complemented
                dsdKernelCopyListPlusOne( pThis, pVarCurDE, &pL, 1 );
        }
        goto EXIT;
    }

    //////////////////////////////////////////////////////////////////////
    // solve subproblems
    //////////////////////////////////////////////////////////////////////
    pL   = dsdKernelDecompose_rec( pDsdMan, bLow );
    pH   = dsdKernelDecompose_rec( pDsdMan, bHigh );
    pLR  = Dsd_Regular( pL );
    pHR  = Dsd_Regular( pH );

    assert( pLR->Type == DSD_NODE_BUF || pLR->Type == DSD_NODE_OR || pLR->Type == DSD_NODE_EXOR || pLR->Type == DSD_NODE_PRIME );
    assert( pHR->Type == DSD_NODE_BUF || pHR->Type == DSD_NODE_OR || pHR->Type == DSD_NODE_EXOR || pHR->Type == DSD_NODE_PRIME );

/*
if ( Depth == 1 )
{
//    PRK(bLow,pDecTreeTotal->nInputs);
//    PRK(bHigh,pDecTreeTotal->nInputs);
if ( s_Show )
{
    PRD( pL );
    PRD( pH );
}
}
*/
    // compute the new support
    bTemp    = Cudd_bddAnd( dd, pLR->S, pHR->S );   Cudd_Ref( bTemp );
    nSuppL   = Extra_bddSuppSize( dd, pLR->S );
    nSuppH   = Extra_bddSuppSize( dd, pHR->S );
    nSuppLH  = Extra_bddSuppSize( dd, bTemp );
    bSuppNew = Cudd_bddAnd( dd, bTemp, bVarCur );   Cudd_Ref( bSuppNew );
    Cudd_RecursiveDeref( dd, bTemp );


    // several possibilities are possible
    // (1) support of one component contains another
    // (2) none of the supports is contained in another
    fContained = dsdKernelCheckContainment( pDsdMan, pLR, pHR, &pLargeR, &pSmallR );

    //////////////////////////////////////////////////////////////////////
    // CASE 3.b One of the cofactors in a constant (OR and EXOR)
    //////////////////////////////////////////////////////////////////////
    // the support of the larger component should contain the support of the smaller
    // it is possible to have PRIME function in this role
    // for example: F = ITE( a+b, c(+)d, e+f ), F0 = ITE( b, c(+)d, e+f ), F1 = c(+)d
    if ( fContained )
    {
        Dsd_Node_t * pSmall, * pLarge;
Alan Mishchenko committed
447
        int c, iCompLarge = -1; // the number of the component is Large is equal to the whole of Small; suppress "might be used uninitialized"
Alan Mishchenko committed
448 449 450 451 452 453
        int fLowIsLarge;

        DdNode * bFTemp;     // the changed input function
        Dsd_Node_t * pDETemp, * pDENew;

        Dsd_Node_t * pComp = NULL;
Alan Mishchenko committed
454
        int  nComp = -1; // Suppress "might be used uninitialized"
Alan Mishchenko committed
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490

        if ( pSmallR == pLR )
        { // Low is Small => High is Large
            pSmall = pL;
            pLarge = pH;
            fLowIsLarge = 0;
        }
        else
        { // vice versa
            pSmall = pH;
            pLarge = pL;
            fLowIsLarge = 1;
        }

        // treat the situation when the larger is PRIME
        if ( pLargeR->Type == DSD_NODE_PRIME ) //&& pLargeR->nDecs != pSmallR->nDecs )
        {
            // QUESTION: Is it possible for pLargeR->nDecs > 3 
            // and pSmall contained as one of input in pLarge?
            // Yes, for example F = a'c + a & MUX(b,c',d) = a'c + abc' + ab'd is non-decomposable
            // Consider the function H(a->xy) = F( xy, b, c, d )
            // H0 = H(x=0) = F(0,b,c,d) = c
            // H1 = F(x=1) = F(y,b,c,d) - non-decomposable
            //
            // QUESTION: Is it possible that pLarge is PRIME(3) and pSmall is OR(2),
            // which is not contained in PRIME as one input?
            // Yes, for example F = abcd + b'c'd' + a'c'd' = PRIME(ab, c, d)
            // F(a=0) = c'd' = NOT(OR(a,d))  F(a=1) = bcd + b'c'd' = PRIME(b,c,d)
            // To find decomposition, we have to prove that F(a=1)|b=0 = F(a=0)

            // Is it possible that (pLargeR->nDecs == pSmallR->nDecs) and yet this case holds?
            // Yes, consider the function such that F(a=0) = PRIME(a,b+c,d,e) and F(a=1) = OR(b,c,d,e)
            // They have the same number of inputs and it is possible that they will be the cofactors
            // as discribed in the previous example.

            // find the component, which when substituted for 0 or 1, produces the desired result
Alan Mishchenko committed
491
            int g, fFoundComp = -1; // {0,1} depending on whether setting cofactor to 0 or 1 worked out; suppress "might be used uninitialized"
Alan Mishchenko committed
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570

            DdNode * bLarge, * bSmall;
            if ( fLowIsLarge )
            {
                bLarge = bLow;
                bSmall = bHigh;
            }
            else
            {
                bLarge = bHigh;
                bSmall = bLow;
            }

            for ( g = 0; g < pLargeR->nDecs; g++ )
//            if ( g != c )
            {
                pDETemp = pLargeR->pDecs[g]; // cannot be complemented
                if ( Dsd_CheckRootFunctionIdentity( dd, bLarge, bSmall, pDETemp->G, b1 ) )
                {
                    fFoundComp = 1;
                    break;
                }

                s_Loops1++;

                if ( Dsd_CheckRootFunctionIdentity( dd, bLarge, bSmall, Cudd_Not(pDETemp->G), b1 ) )
                {
                    fFoundComp = 0;
                    break;
                }

                s_Loops1++;
            }

            if ( g != pLargeR->nDecs ) 
            { // decomposition is found
                if ( fFoundComp )
                    if ( fLowIsLarge )
                        bFTemp = Cudd_bddOr( dd, bVarCur, pLargeR->pDecs[g]->G );
                    else
                        bFTemp = Cudd_bddOr( dd, Cudd_Not(bVarCur), pLargeR->pDecs[g]->G );
                else
                    if ( fLowIsLarge )
                        bFTemp = Cudd_bddAnd( dd, Cudd_Not(bVarCur), pLargeR->pDecs[g]->G );
                    else
                        bFTemp = Cudd_bddAnd( dd, bVarCur, pLargeR->pDecs[g]->G );
                Cudd_Ref( bFTemp );

                pDENew = dsdKernelDecompose_rec( pDsdMan, bFTemp );
                pDENew = Dsd_Regular( pDENew );
                Cudd_RecursiveDeref( dd, bFTemp );

                // get the new gate
                pThis = Dsd_TreeNodeCreate( DSD_NODE_PRIME, pLargeR->nDecs, s_nDecBlocks++ );
                dsdKernelCopyListPlusOneMinusOne( pThis, pDENew, pLargeR->pDecs, pLargeR->nDecs, g );
                goto EXIT;
            }
        }

        // try to find one component in the pLarger that is equal to the whole of pSmaller
        for ( c = 0; c < pLargeR->nDecs; c++ )
            if ( pLargeR->pDecs[c] == pSmall || pLargeR->pDecs[c] == Dsd_Not(pSmall) )
            {
                iCompLarge = c;
                break;
            }

        // assign the equal component
        if ( c != pLargeR->nDecs )  // the decomposition is possible!
        { 
            pComp  = pLargeR->pDecs[iCompLarge];
            nComp  = 1;
        }
        else // the decomposition is still possible
        { // for example F = OR(ab,c,d), F(a=0) = OR(c,d), F(a=1) = OR(b,c,d)
            // supp(F0) is contained in supp(F1), Polarity(F(a=0)) == Polarity(F(a=1))

            // try to find a group of common components
            if ( pLargeR->Type == pSmallR->Type &&
Alan Mishchenko committed
571
                (pLargeR->Type == DSD_NODE_EXOR || (pSmallR->Type == DSD_NODE_OR && ((pLarge==pLargeR) == (pSmall==pSmallR)))) )
Alan Mishchenko committed
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
            {
                Dsd_Node_t ** pCommon, * pLastDiffL = NULL, * pLastDiffH = NULL; 
                int nCommon = dsdKernelFindCommonComponents( pDsdMan, pLargeR, pSmallR, &pCommon, &pLastDiffL, &pLastDiffH );
                // if all the components of pSmall are contained in pLarge,
                // then the decomposition exists
                if ( nCommon == pSmallR->nDecs )
                {
                    pComp = pSmallR;
                    nComp = pSmallR->nDecs;
                }
            }
        }

        if ( pComp ) // the decomposition is possible!
        {
//            Dsd_Node_t * pComp  = pLargeR->pDecs[iCompLarge];
            Dsd_Node_t * pCompR = Dsd_Regular( pComp );
            int fComp1 = (int)( pLarge != pLargeR );
            int fComp2 = (int)( pComp  != pCompR );
            int fComp3 = (int)( pSmall != pSmallR );

            DdNode * bFuncComp;  // the function of the given component
            DdNode * bFuncNew;   // the function of the input component

            if ( pLargeR->Type == DSD_NODE_OR ) // Figure 4 of Matsunaga's paper
            { 
                // the decomposition exists only if the polarity assignment 
                // along the paths is the same
                if ( (fComp1 ^ fComp2) == fComp3 )
                { // decomposition exists = consider 4 cases
                    // consideration of cases leads to the following conclusion
                    // fComp1 gives the polarity of the resulting DSD_NODE_OR gate
                    // fComp2 gives the polarity of the common component feeding into the DSD_NODE_OR gate
                    //
                    //                  |  fComp1              pL/  |pS
                    //                  <> .........<=>....... <>   |
                    //                  |                     /     |
                    //                [OR]                  [OR]    | fComp3
                    //                /  \  fComp2          / | \   |
                    //              <>    <> .......<=>... /..|..<> | 
                    //             /        \             /   |    \|
                    //          [OR]        [C]          S1   S2    C 
Alan Mishchenko committed
614 615 616 617 618 619
                    //          /  \      .
                    //        <>    \     .
                    //       /       \    .
                    //     [OR]      [x]  .
                    //     /  \           .
                    //    S1   S2         .
Alan Mishchenko committed
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
                    //


                    // at this point we have the function F (bFTemp) and the common component C (bFuncComp)
                    // to get the remainder, R, in the relationship F = R + C, supp(R) & supp(C) = 0
                    // we compute the following R = Exist( F - C, supp(C) )
                    bFTemp = (fComp1)? Cudd_Not( bF ): bF;
                    bFuncComp = (fComp2)? Cudd_Not( pCompR->G ): pCompR->G;
                    bFuncNew  = Cudd_bddAndAbstract( dd, bFTemp, Cudd_Not(bFuncComp), pCompR->S ); Cudd_Ref( bFuncNew );

                    // there is no need to copy the dec entry list first, because pComp is a component
                    // which will not be destroyed by the recursive call to decomposition
                    pDENew = dsdKernelDecompose_rec( pDsdMan, bFuncNew );
                    assert( Dsd_IsComplement(pDENew) ); // follows from the consideration of cases
                    Cudd_RecursiveDeref( dd, bFuncNew );

                    // get the new gate
                    if ( nComp == 1 )
                    {
                        pThis = Dsd_TreeNodeCreate( DSD_NODE_OR, 2, s_nDecBlocks++ );
                        pThis->pDecs[0] = pDENew;
                        pThis->pDecs[1] = pComp; // takes the complement
                    }
                    else
                    {  // pComp is not complemented
                        pThis = Dsd_TreeNodeCreate( DSD_NODE_OR, nComp+1, s_nDecBlocks++ );
                        dsdKernelCopyListPlusOne( pThis, pDENew, pComp->pDecs, nComp );
                    }
                    
                    if ( fComp1 )
                        pThis = Dsd_Not( pThis );
                    goto EXIT;
                }
            }
            else if ( pLargeR->Type == DSD_NODE_EXOR ) // Figure 5 of Matsunaga's paper (with correction)
            { // decomposition always exists = consider 4 cases

                // consideration of cases leads to the following conclusion
                // fComp3 gives the COMPLEMENT of the polarity of the resulting EXOR gate
                // (if fComp3 is 0, the EXOR gate is complemented, and vice versa)
                //
                //                  |  fComp1              pL/  |pS
                //                  <> .........<=>....... /....|  fComp3
                //                  |                     /     |
                //                [XOR]                [XOR]    |
                //                /  \  fComp2==0       / | \   |
                //              /     \                /  |  \  | 
                //             /        \             /   |    \|
                //          [OR]        [C]          S1   S2    C 
Alan Mishchenko committed
669 670 671 672 673 674
                //          /  \     .
                //        <>    \    .
                //       /       \   .
                //    [XOR]      [x] .
                //     /  \          .
                //    S1   S2        .
Alan Mishchenko committed
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
                //

                assert( fComp2 == 0 );
                // find the functionality of the lower gates
                bFTemp = (fComp3)? bF: Cudd_Not( bF );
                bFuncNew = Cudd_bddXor( dd, bFTemp, pComp->G );   Cudd_Ref( bFuncNew );

                pDENew = dsdKernelDecompose_rec( pDsdMan, bFuncNew );
                assert( !Dsd_IsComplement(pDENew) ); // follows from the consideration of cases
                Cudd_RecursiveDeref( dd, bFuncNew ); 

                // get the new gate
                if ( nComp == 1 )
                {
                    pThis = Dsd_TreeNodeCreate( DSD_NODE_EXOR, 2, s_nDecBlocks++ );
                    pThis->pDecs[0] = pDENew;
                    pThis->pDecs[1] = pComp; 
                }
                else
                {  // pComp is not complemented
                    pThis = Dsd_TreeNodeCreate( DSD_NODE_EXOR, nComp+1, s_nDecBlocks++ );
                    dsdKernelCopyListPlusOne( pThis, pDENew, pComp->pDecs, nComp );
                }

                if ( !fComp3 )
                    pThis = Dsd_Not( pThis );
                goto EXIT;
            }
        }
    }

    // this case was added to fix the trivial bug found November 4, 2002 in Japan
    // by running the example provided by T. Sasao
    if ( nSuppLH == nSuppL + nSuppH ) // the supports of the components are disjoint
    {
        // create a new component of the type ITE( a, pH, pL )
        pThis = Dsd_TreeNodeCreate( DSD_NODE_PRIME, 3, s_nDecBlocks++ );
        if ( dd->perm[pLR->S->index] < dd->perm[pHR->S->index] ) // pLR is higher in the varible order
        {
            pThis->pDecs[1] = pLR;
            pThis->pDecs[2] = pHR;
        }
        else  // pHR is higher in the varible order
        {
            pThis->pDecs[1] = pHR;
            pThis->pDecs[2] = pLR;
        }
        // add the first component
        pThis->pDecs[0] = pVarCurDE;
        goto EXIT;
    }


    //////////////////////////////////////////////////////////////////////
    // CASE 3.a Neither of the cofactors is a constant (OR, EXOR, PRIME)
    //////////////////////////////////////////////////////////////////////
    // the component types are identical 
    // and if they are OR, they are either both complemented or both not complemented
    // and if they are PRIME, their dec numbers should be the same
    if ( pLR->Type == pHR->Type && 
         pLR->Type != DSD_NODE_BUF &&           
Alan Mishchenko committed
736
        (pLR->Type != DSD_NODE_OR    || ( (pL == pLR && pH == pHR) || (pL != pLR && pH != pHR) ) ) &&
Alan Mishchenko committed
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
        (pLR->Type != DSD_NODE_PRIME || pLR->nDecs == pHR->nDecs)  )
    {
        // array to store common comps in pL and pH
        Dsd_Node_t ** pCommon, * pLastDiffL = NULL, * pLastDiffH = NULL; 
        int nCommon = dsdKernelFindCommonComponents( pDsdMan, pLR, pHR, &pCommon, &pLastDiffL, &pLastDiffH );
        if ( nCommon )
        {
            if ( pLR->Type == DSD_NODE_OR ) // Figure 2 of Matsunaga's paper
            { // at this point we have the function F and the group of common components C
                // to get the remainder, R, in the relationship F = R + C, supp(R) & supp(C) = 0
                // we compute the following R = Exist( F - C, supp(C) )

                // compute the sum total of the common components and the union of their supports
                DdNode * bCommF, * bCommS, * bFTemp, * bFuncNew;
                Dsd_Node_t * pDENew;

                dsdKernelComputeSumOfComponents( pDsdMan, pCommon, nCommon, &bCommF, &bCommS, 0 );
                Cudd_Ref( bCommF );
                Cudd_Ref( bCommS );
                bFTemp = ( pL != pLR )?    Cudd_Not(bF): bF;

                bFuncNew = Cudd_bddAndAbstract( dd, bFTemp, Cudd_Not(bCommF), bCommS ); Cudd_Ref( bFuncNew );
                Cudd_RecursiveDeref( dd, bCommF );
                Cudd_RecursiveDeref( dd, bCommS );

                // get the new gate

                // copy the components first, then call the decomposition
                // because decomposition will distroy the list used for copying
                pThis = Dsd_TreeNodeCreate( DSD_NODE_OR, nCommon + 1, s_nDecBlocks++ );
                dsdKernelCopyListPlusOne( pThis, NULL, pCommon, nCommon );

                // call the decomposition recursively
                pDENew = dsdKernelDecompose_rec( pDsdMan, bFuncNew );
//                assert( !Dsd_IsComplement(pDENew) ); // follows from the consideration of cases
                Cudd_RecursiveDeref( dd, bFuncNew );

                // add the first component
                pThis->pDecs[0] = pDENew;
                
                if ( pL != pLR )
                    pThis = Dsd_Not( pThis );
                goto EXIT;
            }
            else
            if ( pLR->Type == DSD_NODE_EXOR ) // Figure 3 of Matsunaga's paper
            {
                // compute the sum total of the common components and the union of their supports
                DdNode * bCommF, * bFuncNew;
                Dsd_Node_t * pDENew;
                int fCompExor;

                dsdKernelComputeSumOfComponents( pDsdMan, pCommon, nCommon, &bCommF, NULL, 1 );
                Cudd_Ref( bCommF );

                bFuncNew = Cudd_bddXor( dd, bF, bCommF ); Cudd_Ref( bFuncNew );
                Cudd_RecursiveDeref( dd, bCommF );

                // get the new gate

                // copy the components first, then call the decomposition
                // because decomposition will distroy the list used for copying
                pThis = Dsd_TreeNodeCreate( DSD_NODE_EXOR, nCommon + 1, s_nDecBlocks++ );
                dsdKernelCopyListPlusOne( pThis, NULL, pCommon, nCommon );

                // call the decomposition recursively
                pDENew = dsdKernelDecompose_rec( pDsdMan, bFuncNew );
                Cudd_RecursiveDeref( dd, bFuncNew );

                // remember the fact that it was complemented
                fCompExor = Dsd_IsComplement(pDENew);
                pDENew = Dsd_Regular(pDENew);

                // add the first component
                pThis->pDecs[0] = pDENew;

    
                if ( fCompExor )
                    pThis = Dsd_Not( pThis );
                goto EXIT;
            }
            else 
            if ( pLR->Type == DSD_NODE_PRIME && (nCommon == pLR->nDecs-1 || nCommon == pLR->nDecs) )
            {
                // for example the function F(a,b,c,d) = ITE(b,c,a(+)d) produces
                // two cofactors F(a=0) = PRIME(b,c,d) and F(a=1) = PRIME(b,c,d)
                // with exactly the same list of common components

                Dsd_Node_t * pDENew;
                DdNode * bFuncNew;
                int fCompComp = 0;    // this flag can be {0,1,2}
                // if it is 0 there is no identity
                // if it is 1/2, the cofactored functions are equal in the direct/complemented polarity

                if ( nCommon == pLR->nDecs )
                {    // all the components are the same
                    // find the formal input, in which pLow and pHigh differ (if such input exists)
                    int m;
                    Dsd_Node_t * pTempL, * pTempH;

                    s_Common++;
                    for ( m = 0; m < pLR->nDecs; m++ )
                    {
                        pTempL = pLR->pDecs[m]; // cannot be complemented
                        pTempH = pHR->pDecs[m]; // cannot be complemented

                        if ( Dsd_CheckRootFunctionIdentity( dd, bLow, bHigh,          pTempL->G, Cudd_Not(pTempH->G) ) &&
                             Dsd_CheckRootFunctionIdentity( dd, bLow, bHigh, Cudd_Not(pTempL->G),         pTempH->G ) )
                        {
                             pLastDiffL = pTempL;
                             pLastDiffH = pTempH;
                             assert( pLastDiffL == pLastDiffH );
                             fCompComp = 2;
                             break;
                        }

                        s_Loops2++;
                        s_Loops2++;
/* 
                        if ( s_Loops2 % 10000  == 0 )
                        {
                            int i;
                            for ( i = 0; i < pLR->nDecs; i++ )
                                printf( " %d(s=%d)", pLR->pDecs[i]->Type,
                                    Extra_bddSuppSize(dd, pLR->pDecs[i]->S) );
                            printf( "\n" );
                        }
*/

                    }
//                    if ( pLR->nDecs == Extra_bddSuppSize(dd, pLR->S) )
//                        s_Loops2Useless += pLR->nDecs * 2;

                    if ( fCompComp )
                    { // put the equal components into pCommon, so that they could be copied into the new dec entry
                        nCommon = 0;
                        for ( m = 0; m < pLR->nDecs; m++ )
                            if ( pLR->pDecs[m] != pLastDiffL )
                                 pCommon[nCommon++] = pLR->pDecs[m];
                        assert( nCommon = pLR->nDecs-1 );
                    }
                }
                else
                {  // the differing components are known - check that they have compatible PRIME function

                    s_CommonNo++;

                    // find the numbers of different components
                    assert( pLastDiffL );
                    assert( pLastDiffH );
                    // also, they cannot be complemented, because the decomposition type is PRIME

                    if ( Dsd_CheckRootFunctionIdentity( dd, bLow, bHigh, Cudd_Not(pLastDiffL->G), Cudd_Not(pLastDiffH->G) ) &&
                         Dsd_CheckRootFunctionIdentity( dd, bLow, bHigh,          pLastDiffL->G,           pLastDiffH->G ) )
                        fCompComp = 1;
                    else if ( Dsd_CheckRootFunctionIdentity( dd, bLow, bHigh,          pLastDiffL->G, Cudd_Not(pLastDiffH->G) ) &&
                              Dsd_CheckRootFunctionIdentity( dd, bLow, bHigh, Cudd_Not(pLastDiffL->G),         pLastDiffH->G ) )
                        fCompComp = 2;

                    s_Loops3 += 4;
                }

                if ( fCompComp )
                {
                    if ( fCompComp == 1 ) // it is true that bLow(G=0) == bHigh(H=0) && bLow(G=1) == bHigh(H=1)
                        bFuncNew = Cudd_bddIte( dd, bVarCur, pLastDiffH->G, pLastDiffL->G ); 
                    else // it is true that bLow(G=0) == bHigh(H=1) && bLow(G=1) == bHigh(H=0)
                        bFuncNew = Cudd_bddIte( dd, bVarCur, Cudd_Not(pLastDiffH->G), pLastDiffL->G ); 
                    Cudd_Ref( bFuncNew );

                    // get the new gate

                    // copy the components first, then call the decomposition
                    // because decomposition will distroy the list used for copying
                    pThis = Dsd_TreeNodeCreate( DSD_NODE_PRIME, pLR->nDecs, s_nDecBlocks++ );
                    dsdKernelCopyListPlusOne( pThis, NULL, pCommon, nCommon );

                    // create a new component
                    pDENew = dsdKernelDecompose_rec( pDsdMan, bFuncNew );
                    Cudd_RecursiveDeref( dd, bFuncNew );
                    // the BDD of the argument function in PRIME decomposition, should be regular
                    pDENew = Dsd_Regular(pDENew);

                    // add the first component
                    pThis->pDecs[0] = pDENew;
                    goto EXIT;
                }
            } // end of PRIME type
        } // end of existing common components
    } // end of CASE 3.a

// if ( Depth != 1) 
// {

//CASE4:
    //////////////////////////////////////////////////////////////////////
    // CASE 4
    //////////////////////////////////////////////////////////////////////
    {
    // estimate the number of entries in the list
    int nEntriesMax = pDsdMan->nInputs - dd->perm[VarInt];

    // create the new decomposition entry
    int nEntries = 0;

    DdNode * SuppL, * SuppH, * SuppL_init, * SuppH_init;
Alan Mishchenko committed
943 944
    Dsd_Node_t *pHigher = NULL; // Suppress "might be used uninitialized"
        Dsd_Node_t *pLower, * pTemp, * pDENew;
Alan Mishchenko committed
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065


    int levTopSuppL;
    int levTopSuppH;
    int levTop;

    pThis = Dsd_TreeNodeCreate( DSD_NODE_PRIME, nEntriesMax, s_nDecBlocks++ );
    pThis->pDecs[ nEntries++ ] = pVarCurDE;
    // other entries will be added to this list one-by-one during analysis

    // count how many times does it happen that the decomposition entries are
    s_Case4Calls++;
 
    // consider the simplest case: when the supports are equal 
    // and at least one of the components
    // is the PRIME without decompositions, or 
    // when both of them are without decomposition
    if ( (((pLR->Type == DSD_NODE_PRIME && nSuppL == pLR->nDecs) || (pHR->Type == DSD_NODE_PRIME && nSuppH == pHR->nDecs)) && pLR->S == pHR->S)  ||
          ((pLR->Type == DSD_NODE_PRIME && nSuppL == pLR->nDecs) && (pHR->Type == DSD_NODE_PRIME && nSuppH == pHR->nDecs)) )
    {

         s_Case4CallsSpecial++;
         // walk through both supports and create the decomposition list composed of simple entries
         SuppL = pLR->S;
         SuppH = pHR->S;
         do
         {
             // determine levels
             levTopSuppL = cuddI(dd,SuppL->index);
             levTopSuppH = cuddI(dd,SuppH->index);

             // skip the topmost variable in both supports
             if ( levTopSuppL <= levTopSuppH )
             {
                 levTop = levTopSuppL;
                 SuppL  = cuddT(SuppL);
             }
             else
                 levTop = levTopSuppH;

             if ( levTopSuppH <= levTopSuppL )
                 SuppH = cuddT(SuppH);

             // set the new decomposition entry
             pThis->pDecs[ nEntries++ ] = pDsdMan->pInputs[ dd->invperm[levTop] ];
         }
         while ( SuppL != b1 || SuppH != b1 );
    }
    else
    {

        // compare two different decomposition lists
        SuppL_init = pLR->S;
        SuppH_init = pHR->S;
        // start references (because these supports will change)
        SuppL = pLR->S;  Cudd_Ref( SuppL );
        SuppH = pHR->S;  Cudd_Ref( SuppH );
        while ( SuppL != b1 || SuppH != b1 )
        {
            // determine the top level in cofactors and
            // whether they have the same top level
            int TopLevL  = cuddI(dd,SuppL->index);
            int TopLevH  = cuddI(dd,SuppH->index);
            int TopLevel = TopLevH;
            int fEqualLevel = 0;

            DdNode * bVarTop;
            DdNode * bSuppSubract;


            if ( TopLevL < TopLevH )
            {
                pHigher = pLR;
                pLower  = pHR;
                TopLevel = TopLevL;
            }
            else if ( TopLevL > TopLevH )
            {
                pHigher = pHR;
                pLower  = pLR;
            }
            else
                fEqualLevel = 1;
            assert( TopLevel != CUDD_CONST_INDEX );


            // find the currently top variable in the decomposition lists
            bVarTop = dd->vars[dd->invperm[TopLevel]];

            if ( !fEqualLevel )
            {
                // find the lower support
                DdNode * bSuppLower = (TopLevL < TopLevH)? SuppH_init: SuppL_init; 

                // find the first component in pHigher 
                // whose support does not overlap with supp(Lower) 
                // and remember the previous component
                int fPolarity;            
                Dsd_Node_t * pPrev = NULL;       // the pointer to the component proceeding pCur
                Dsd_Node_t * pCur  = pHigher;    // the first component not contained in supp(Lower)
                while ( Extra_bddSuppOverlapping( dd, pCur->S, bSuppLower ) )
                {    // get the next component
                    pPrev = pCur;
                    pCur  = dsdKernelFindContainingComponent( pDsdMan, pCur, bVarTop, &fPolarity );
                };

                // look for the possibility to subtract more than one component
                if ( pPrev == NULL || pPrev->Type == DSD_NODE_PRIME )
                { // if there is no previous component, or if the previous component is PRIME
                  // there is no way to subtract more than one component

                    // add the new decomposition entry (it is already regular)
                    pThis->pDecs[ nEntries++ ] = pCur;
                    // assign the support to be subtracted from both components
                    bSuppSubract = pCur->S;
                }
                else // all other types
                {
                    // go through the decomposition list of pPrev and find components 
                    // whose support does not overlap with supp(Lower) 

Alan Mishchenko committed
1066
                    static Dsd_Node_t * pNonOverlap[MAXINPUTS];
Alan Mishchenko committed
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
                    int i, nNonOverlap = 0;
                    for ( i = 0; i < pPrev->nDecs; i++ )
                    {
                        pTemp = Dsd_Regular( pPrev->pDecs[i] );
                        if ( !Extra_bddSuppOverlapping( dd, pTemp->S, bSuppLower ) )
                            pNonOverlap[ nNonOverlap++ ] = pPrev->pDecs[i];
                    }
                    assert( nNonOverlap > 0 );

                    if ( nNonOverlap == 1 )
                    { // one one component was found, which is the original one
                        assert( Dsd_Regular(pNonOverlap[0]) == pCur);
                        // add the new decomposition entry
                        pThis->pDecs[ nEntries++ ] = pCur;
                        // assign the support to be subtracted from both components
                        bSuppSubract = pCur->S;
                    }
                    else // more than one components was found
                    {
                        // find the OR (EXOR) of the non-overlapping components
                        DdNode * bCommF;
                        dsdKernelComputeSumOfComponents( pDsdMan, pNonOverlap, nNonOverlap, &bCommF, NULL, (int)(pPrev->Type==DSD_NODE_EXOR) );
                        Cudd_Ref( bCommF );

                        // create a new gated 
                        pDENew = dsdKernelDecompose_rec( pDsdMan, bCommF );
                        Cudd_RecursiveDeref(dd, bCommF);
                        // make it regular... it must be regular already
                        assert( !Dsd_IsComplement(pDENew) );

                        // add the new decomposition entry
                        pThis->pDecs[ nEntries++ ] = pDENew;
                        // assign the support to be subtracted from both components
                        bSuppSubract = pDENew->S;
                    }
                }
                
                // subtract its support from the support of upper component
                if ( TopLevL < TopLevH )
                {
                    SuppL = Cudd_bddExistAbstract( dd, bTemp = SuppL, bSuppSubract ); Cudd_Ref( SuppL );
                    Cudd_RecursiveDeref(dd, bTemp);
                }
                else
                {
                    SuppH = Cudd_bddExistAbstract( dd, bTemp = SuppH, bSuppSubract ); Cudd_Ref( SuppH );
                    Cudd_RecursiveDeref(dd, bTemp);
                }
            } // end of if ( !fEqualLevel )
            else // if ( fEqualLevel ) -- they have the same top level var
            {
Alan Mishchenko committed
1118 1119
                static Dsd_Node_t * pMarkedLeft[MAXINPUTS]; // the pointers to the marked blocks
                static char pMarkedPols[MAXINPUTS]; // polarities of the marked blocks
Alan Mishchenko committed
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
                int nMarkedLeft = 0;

                int fPolarity = 0;
                Dsd_Node_t * pTempL = pLR;

                int fPolarityCurH = 0;
                Dsd_Node_t * pPrevH = NULL, * pCurH = pHR;

                int fPolarityCurL = 0;
                Dsd_Node_t * pPrevL = NULL, * pCurL = pLR; // = pMarkedLeft[0];
                int index = 1;

                // set the new mark
                s_Mark++;

                // go over the dec list of pL, mark all components that contain the given variable
                assert( Extra_bddSuppContainVar( dd, pLR->S, bVarTop ) );
                assert( Extra_bddSuppContainVar( dd, pHR->S, bVarTop ) );
                do {
                    pTempL->Mark = s_Mark;
                    pMarkedLeft[ nMarkedLeft ] = pTempL;
                    pMarkedPols[ nMarkedLeft ] = fPolarity;
                    nMarkedLeft++;
Alan Mishchenko committed
1143
                } while ( (pTempL = dsdKernelFindContainingComponent( pDsdMan, pTempL, bVarTop, &fPolarity )) );
Alan Mishchenko committed
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251

                // go over the dec list of pH, and find the component that is marked and the previos one
                // (such component always exists, because they have common variables)
                while ( pCurH->Mark != s_Mark )
                {
                    pPrevH = pCurH;
                    pCurH  = dsdKernelFindContainingComponent( pDsdMan, pCurH, bVarTop, &fPolarityCurH );
                    assert( pCurH );
                }

                // go through the first list once again and find 
                // the component proceeding the one marked found in the second list
                while ( pCurL != pCurH )
                {
                    pPrevL = pCurL;
                    pCurL  = pMarkedLeft[index];
                    fPolarityCurL = pMarkedPols[index];
                    index++;
                }

                // look for the possibility to subtract more than one component
                if ( !pPrevL || !pPrevH || pPrevL->Type != pPrevH->Type || pPrevL->Type == DSD_NODE_PRIME || fPolarityCurL != fPolarityCurH )
                { // there is no way to extract more than one
                    pThis->pDecs[ nEntries++ ] = pCurH;
                    // assign the support to be subtracted from both components
                    bSuppSubract = pCurH->S;
                }
                else 
                {
                    // find the equal components in two decomposition lists
                    Dsd_Node_t ** pCommon, * pLastDiffL = NULL, * pLastDiffH = NULL; 
                    int nCommon = dsdKernelFindCommonComponents( pDsdMan, pPrevL, pPrevH, &pCommon, &pLastDiffL, &pLastDiffH );
        
                    if ( nCommon == 0 || nCommon == 1 )
                    { // one one component was found, which is the original one
    //                    assert( Dsd_Regular(pCommon[0]) == pCurL);
                        // add the new decomposition entry
                        pThis->pDecs[ nEntries++ ] = pCurL;
                        // assign the support to be subtracted from both components
                        bSuppSubract = pCurL->S;
                    }
                    else // more than one components was found
                    {
                        // find the OR (EXOR) of the non-overlapping components
                        DdNode * bCommF;
                        dsdKernelComputeSumOfComponents( pDsdMan, pCommon, nCommon, &bCommF, NULL, (int)(pPrevL->Type==DSD_NODE_EXOR) );
                        Cudd_Ref( bCommF );

                        pDENew = dsdKernelDecompose_rec( pDsdMan, bCommF );
                        assert( !Dsd_IsComplement(pDENew) ); // cannot be complemented because of construction
                        Cudd_RecursiveDeref( dd, bCommF );

                        // add the new decomposition entry
                        pThis->pDecs[ nEntries++ ] = pDENew;

                        // assign the support to be subtracted from both components
                        bSuppSubract = pDENew->S;
                    }
                }

                SuppL = Cudd_bddExistAbstract( dd, bTemp = SuppL, bSuppSubract ), Cudd_Ref( SuppL );
                Cudd_RecursiveDeref(dd, bTemp);

                SuppH = Cudd_bddExistAbstract( dd, bTemp = SuppH, bSuppSubract ), Cudd_Ref( SuppH );
                Cudd_RecursiveDeref(dd, bTemp);

            } // end of if ( fEqualLevel ) 

        } // end of decomposition list comparison
        Cudd_RecursiveDeref( dd, SuppL );
        Cudd_RecursiveDeref( dd, SuppH );

    }

    // check that the estimation of the number of entries was okay
    assert( nEntries <= nEntriesMax );

//    if ( nEntries != Extra_bddSuppSize(dd, bSuppNew) )
//        s_Case5++;

    // update the number of entries in the new decomposition list
    pThis->nDecs = nEntries;
    }
//}
EXIT:

    {
    // if the component created is complemented, it represents a function without complement
    // therefore, as it is, without complement, it should recieve the complemented function
    Dsd_Node_t * pThisR = Dsd_Regular( pThis );
    assert( pThisR->G == NULL );
    assert( pThisR->S == NULL );

    if ( pThisR == pThis ) // set regular function
        pThisR->G = bF; 
    else // set complemented function
        pThisR->G = Cudd_Not(bF);    
    Cudd_Ref(bF);           // reference the function in the component

    assert( bSuppNew );
    pThisR->S = bSuppNew;   // takes the reference from the new support
    if ( st_insert( pDsdMan->Table, (char*)bF, (char*)pThis ) )
    {
        assert( 0 );
    }
    s_CacheEntries++;


Alan Mishchenko committed
1252
/*
Alan Mishchenko committed
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
    if ( dsdKernelVerifyDecomposition(dd, pThis) == 0 )
    {
        // write the function, for which verification does not work
        cout << endl << "Internal verification failed!"" );

        // create the variable mask
        static int s_pVarMask[MAXINPUTS];
        int nInputCounter = 0;

        Cudd_SupportArray( dd, bF, s_pVarMask );
        int k; 
        for ( k = 0; k < dd->size; k++ )
            if ( s_pVarMask[k] )
                nInputCounter++;

        cout << endl << "The problem function is "" );

        DdNode * zNewFunc = Cudd_zddIsopCover( dd, bF, bF ); Cudd_Ref( zNewFunc );
        cuddWriteFunctionSop( stdout, dd, zNewFunc, -1, dd->size, "1", s_pVarMask );
        Cudd_RecursiveDerefZdd( dd, zNewFunc );
    }
Alan Mishchenko committed
1274
*/
Alan Mishchenko committed
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341

    }

    Depth--;
    return Dsd_NotCond( pThis, fCompF );
}


////////////////////////////////////////////////////////////////////////
///                        OTHER FUNCTIONS                           ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Finds the corresponding decomposition entry.]

  Description [This function returns the non-complemented pointer to the 
  DecEntry of that component which contains the given variable in its 
  support, or NULL if no such component exists]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Dsd_Node_t * dsdKernelFindContainingComponent( Dsd_Manager_t * pDsdMan, Dsd_Node_t * pWhere, DdNode * Var, int * fPolarity )

{
    Dsd_Node_t * pTemp;
    int i;

//    assert( !Dsd_IsComplement( pWhere ) );
//    assert( Extra_bddSuppContainVar( pDsdMan->dd, pWhere->S, Var ) );

    if ( pWhere->nDecs == 1 )
        return NULL;

    for( i = 0; i < pWhere->nDecs; i++ )
    {
        pTemp = Dsd_Regular( pWhere->pDecs[i] );
        if ( Extra_bddSuppContainVar( pDsdMan->dd, pTemp->S, Var ) )
        {
            *fPolarity = (int)( pTemp != pWhere->pDecs[i] );
            return pTemp;
        }
    }
    assert( 0 );
    return NULL;
}

/**Function*************************************************************

  Synopsis    [Find the common decomposition components.]

  Description [This function determines the common components. It counts 
  the number of common components in the decomposition lists of pL and pH
  and returns their number and the lists of common components. It assumes 
  that pL and pH are regular pointers. It retuns also the pointers to the 
  last different components encountered in pL and pH.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int dsdKernelFindCommonComponents( Dsd_Manager_t * pDsdMan, Dsd_Node_t * pL, Dsd_Node_t * pH, Dsd_Node_t *** pCommon, Dsd_Node_t ** pLastDiffL, Dsd_Node_t ** pLastDiffH )
{
Alan Mishchenko committed
1342
    static Dsd_Node_t * Common[MAXINPUTS];
Alan Mishchenko committed
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
    int nCommon = 0;

    // pointers to the current decomposition entries
    Dsd_Node_t * pLcur;
    Dsd_Node_t * pHcur;

    // the pointers to their supports
    DdNode * bSLcur;
    DdNode * bSHcur;

    // the top variable in the supports
    int TopVar;

    // the indices running through the components
    int iCurL = 0;
    int iCurH = 0;
    while ( iCurL < pL->nDecs && iCurH < pH->nDecs )
    { // both did not run out

        pLcur = Dsd_Regular(pL->pDecs[iCurL]);
        pHcur = Dsd_Regular(pH->pDecs[iCurH]);

        bSLcur = pLcur->S;
        bSHcur = pHcur->S;

        // find out what component is higher in the BDD
        if ( pDsdMan->dd->perm[bSLcur->index] < pDsdMan->dd->perm[bSHcur->index] )
            TopVar = bSLcur->index;
        else
            TopVar = bSHcur->index;

        if ( TopVar == bSLcur->index && TopVar == bSHcur->index ) 
        {
            // the components may be equal - should match exactly!
            if ( pL->pDecs[iCurL] == pH->pDecs[iCurH] )
                Common[nCommon++] = pL->pDecs[iCurL];
            else
            {
                *pLastDiffL = pL->pDecs[iCurL];
                *pLastDiffH = pH->pDecs[iCurH];
            }

            // skip both
            iCurL++;
            iCurH++;
        }
        else if ( TopVar == bSLcur->index )
        {  // the components cannot be equal
            // skip the top-most one
            *pLastDiffL = pL->pDecs[iCurL++];
        }
        else // if ( TopVar == bSHcur->index )
        {  // the components cannot be equal
            // skip the top-most one
            *pLastDiffH = pH->pDecs[iCurH++];
        }
    }

    // if one of the lists still has components, write the first one down
    if ( iCurL < pL->nDecs )
        *pLastDiffL = pL->pDecs[iCurL];

    if ( iCurH < pH->nDecs )
        *pLastDiffH = pH->pDecs[iCurH];

    // return the pointer to the array
    *pCommon = Common;
    // return the number of common components
    return nCommon;            
}

/**Function*************************************************************

  Synopsis    [Computes the sum (OR or EXOR) of the functions of the components.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void dsdKernelComputeSumOfComponents( Dsd_Manager_t * pDsdMan, Dsd_Node_t ** pCommon, int nCommon, DdNode ** pCompF, DdNode ** pCompS, int fExor )
{
    DdManager * dd = pDsdMan->dd;
Alan Mishchenko committed
1428 1429
    DdNode * bF, * bFadd, * bTemp;
        DdNode * bS = NULL; // Suppress "might be used uninitialized"
Alan Mishchenko committed
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
    Dsd_Node_t * pDE, * pDER;
    int i;

    // start the function
    bF = b0; Cudd_Ref( bF );
    // start the support
    if ( pCompS )
        bS = b1, Cudd_Ref( bS );

    assert( nCommon > 0 );
    for ( i = 0; i < nCommon; i++ )
    {
        pDE  = pCommon[i];
        pDER = Dsd_Regular( pDE );
        bFadd = (pDE != pDER)? Cudd_Not(pDER->G): pDER->G;
        // add to the function
        if ( fExor )
            bF = Cudd_bddXor( dd, bTemp = bF, bFadd );
        else
            bF = Cudd_bddOr( dd, bTemp = bF, bFadd );
        Cudd_Ref( bF );
        Cudd_RecursiveDeref( dd, bTemp );
        if ( pCompS )
        {
            // add to the support
            bS = Cudd_bddAnd( dd, bTemp = bS, pDER->S );  Cudd_Ref( bS );
            Cudd_RecursiveDeref( dd, bTemp );
        }
    }
    // return the function
    Cudd_Deref( bF );
    *pCompF = bF;

    // return the support
    if ( pCompS )
        Cudd_Deref( bS ), *pCompS = bS;
}

/**Function*************************************************************

  Synopsis    [Checks support containment of the decomposition components.]

  Description [This function returns 1 if support of one component is contained 
  in that of another. In this case, pLarge (pSmall) is assigned to point to the 
  larger (smaller) support. If the supports are identical return 0, and does not 
  assign the components.]
]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int dsdKernelCheckContainment( Dsd_Manager_t * pDsdMan, Dsd_Node_t * pL, Dsd_Node_t * pH, Dsd_Node_t ** pLarge, Dsd_Node_t ** pSmall )
{
    DdManager * dd = pDsdMan->dd;
    DdNode * bSuppLarge, * bSuppSmall;
    int RetValue;
    
    RetValue = Extra_bddSuppCheckContainment( dd, pL->S, pH->S, &bSuppLarge, &bSuppSmall );

    if ( RetValue == 0 ) 
        return 0;

    if ( pH->S == bSuppLarge )
    {
        *pLarge = pH;
        *pSmall = pL;
    }
    else // if ( pL->S == bSuppLarge )
    {
        *pLarge = pL;
        *pSmall = pH;
    }
    return 1;
}

/**Function*************************************************************

  Synopsis    [Copies the list of components plus one.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void dsdKernelCopyListPlusOne( Dsd_Node_t * p, Dsd_Node_t * First, Dsd_Node_t ** ppList, int nListSize )
{
    int i;
    assert( nListSize+1 == p->nDecs );
    p->pDecs[0] = First;
    for( i = 0; i < nListSize; i++ )
        p->pDecs[i+1] = ppList[i];
}

/**Function*************************************************************

  Synopsis    [Copies the list of components plus one, and skips one.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void dsdKernelCopyListPlusOneMinusOne( Dsd_Node_t * p, Dsd_Node_t * First, Dsd_Node_t ** ppList, int nListSize, int iSkipped )
{
    int i, Counter;
    assert( nListSize == p->nDecs );
    p->pDecs[0] = First;
    for( i = 0, Counter = 1; i < nListSize; i++ )
        if ( i != iSkipped )
            p->pDecs[Counter++] = ppList[i];
}

/**Function*************************************************************

  Synopsis    [Debugging procedure to compute the functionality of the decomposed structure.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int dsdKernelVerifyDecomposition( Dsd_Manager_t * pDsdMan, Dsd_Node_t * pDE )
{
    DdManager * dd = pDsdMan->dd;
    Dsd_Node_t * pR    = Dsd_Regular(pDE);
    int RetValue;

    DdNode * bRes;
    if ( pR->Type == DSD_NODE_CONST1 )
        bRes = b1;
    else if ( pR->Type == DSD_NODE_BUF )
        bRes = pR->G;
    else if ( pR->Type == DSD_NODE_OR || pR->Type == DSD_NODE_EXOR )
        dsdKernelComputeSumOfComponents( pDsdMan, pR->pDecs, pR->nDecs, &bRes, NULL, (int)(pR->Type == DSD_NODE_EXOR) );
    else if ( pR->Type == DSD_NODE_PRIME )
    {
        int i;
Alan Mishchenko committed
1575
        static DdNode * bGVars[MAXINPUTS];
Alan Mishchenko committed
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
        // transform the function of this block, so that it depended on inputs
        // corresponding to the formal inputs
        DdNode * bNewFunc = Dsd_TreeGetPrimeFunctionOld( dd, pR, 1 );  Cudd_Ref( bNewFunc );

        // compose this function with the inputs
        // create the elementary permutation
        for ( i = 0; i < dd->size; i++ )
            bGVars[i] = dd->vars[i];

        // assign functions to be composed
        for ( i = 0; i < pR->nDecs; i++ )
            bGVars[dd->invperm[i]] = pR->pDecs[i]->G;

        // perform the composition
        bRes = Cudd_bddVectorCompose( dd, bNewFunc, bGVars );       Cudd_Ref( bRes );
        Cudd_RecursiveDeref( dd, bNewFunc );

        /////////////////////////////////////////////////////////
        RetValue = (int)( bRes == pR->G );//|| bRes == Cudd_Not(pR->G) );
        /////////////////////////////////////////////////////////
        Cudd_Deref( bRes );
    }
    else
    {
        assert(0);
    }

    Cudd_Ref( bRes );
    RetValue = (int)( bRes == pR->G );//|| bRes == Cudd_Not(pR->G) );
    Cudd_RecursiveDeref( dd, bRes );
    return RetValue;
}

////////////////////////////////////////////////////////////////////////
///                           END OF FILE                            ///
////////////////////////////////////////////////////////////////////////
1612 1613
ABC_NAMESPACE_IMPL_END