absOldRef.c 15.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/**CFile****************************************************************

  FileName    [saigAbsStart.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Sequential AIG package.]

  Synopsis    [Counter-example-based abstraction.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 20, 2005.]

  Revision    [$Id: saigAbsStart.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]

***********************************************************************/

21
#include "abs.h"
22 23
#include "proof/ssw/ssw.h"
#include "proof/fra/fra.h"
24
#include "bdd/bbr/bbr.h"
25
#include "proof/pdr/pdr.h"
26
#include "sat/bmc/bmc.h"
27 28 29 30 31 32 33 34 35 36 37 38 39 40

ABC_NAMESPACE_IMPL_START


////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
  Synopsis    [This procedure sets default parameters.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Gia_ManAbsSetDefaultParams( Gia_ParAbs_t * p )
{
    memset( p, 0, sizeof(Gia_ParAbs_t) );
    p->Algo        =        0;    // algorithm: CBA
    p->nFramesMax  =       10;    // timeframes for PBA
    p->nConfMax    =    10000;    // conflicts for PBA
    p->fDynamic    =        1;    // dynamic unfolding for PBA
    p->fConstr     =        0;    // use constraints
    p->nFramesBmc  =      250;    // timeframes for BMC
    p->nConfMaxBmc =     5000;    // conflicts for BMC
    p->nStableMax  =  1000000;    // the number of stable frames to quit
    p->nRatio      =       10;    // ratio of flops to quit
    p->nBobPar     =  1000000;    // the number of frames before trying to quit
    p->fUseBdds    =        0;    // use BDDs to refine abstraction
    p->fUseDprove  =        0;    // use 'dprove' to refine abstraction
    p->fUseStart   =        1;    // use starting frame
    p->fVerbose    =        0;    // verbose output
    p->fVeryVerbose=        0;    // printing additional information
    p->Status      =       -1;    // the problem status
    p->nFramesDone =       -1;    // the number of rames covered
}


/**Function*************************************************************

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
  Synopsis    [Derive a new counter-example.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Cex_t * Saig_ManCexRemap( Aig_Man_t * p, Aig_Man_t * pAbs, Abc_Cex_t * pCexAbs )
{
    Abc_Cex_t * pCex;
    Aig_Obj_t * pObj;
    int i, f;
    if ( !Saig_ManVerifyCex( pAbs, pCexAbs ) )
        printf( "Saig_ManCexRemap(): The initial counter-example is invalid.\n" );
//    else
//        printf( "Saig_ManCexRemap(): The initial counter-example is correct.\n" );
    // start the counter-example
    pCex = Abc_CexAlloc( Aig_ManRegNum(p), Saig_ManPiNum(p), pCexAbs->iFrame+1 );
    pCex->iFrame = pCexAbs->iFrame;
    pCex->iPo    = pCexAbs->iPo;
    // copy the bit data
    for ( f = 0; f <= pCexAbs->iFrame; f++ )
    {
        Saig_ManForEachPi( pAbs, pObj, i )
        {
            if ( i == Saig_ManPiNum(p) )
                break;
            if ( Abc_InfoHasBit( pCexAbs->pData, pCexAbs->nRegs + pCexAbs->nPis * f + i ) )
                Abc_InfoSetBit( pCex->pData, pCex->nRegs + pCex->nPis * f + i );
        }
    }
    // verify the counter example
    if ( !Saig_ManVerifyCex( p, pCex ) )
    {
        printf( "Saig_ManCexRemap(): Counter-example is invalid.\n" );
        Abc_CexFree( pCex );
        pCex = NULL;
    }
    else
    {
        Abc_Print( 1, "Counter-example verification is successful.\n" );
        Abc_Print( 1, "Output %d of miter \"%s\" was asserted in frame %d. \n", pCex->iPo, p->pName, pCex->iFrame );
    }
    return pCex;
}

/**Function*************************************************************

125 126 127 128 129 130 131 132 133 134 135 136 137 138
  Synopsis    [Find the first PI corresponding to the flop.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Saig_ManCexFirstFlopPi( Aig_Man_t * p, Aig_Man_t * pAbs )
{ 
    Aig_Obj_t * pObj;
    int i;
    assert( pAbs->vCiNumsOrig != NULL );
139
    Aig_ManForEachCi( p, pObj, i )
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    {
        if ( Vec_IntEntry(pAbs->vCiNumsOrig, i) >= Saig_ManPiNum(p) )
            return i;
    }
    return -1;
}

/**Function*************************************************************

  Synopsis    [Refines abstraction using one step.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Aig_Man_t * Saig_ManCexRefine( Aig_Man_t * p, Aig_Man_t * pAbs, Vec_Int_t * vFlops, int nFrames, int nConfMaxOne, int fUseBdds, int fUseDprove, int fVerbose, int * pnUseStart, int * piRetValue, int * pnFrames )
{ 
    Vec_Int_t * vFlopsNew;
    int i, Entry, RetValue;
    *piRetValue = -1;
    if ( fUseDprove && Aig_ManRegNum(pAbs) > 0 )
    {
/*
        Fra_Sec_t SecPar, * pSecPar = &SecPar;
        Fra_SecSetDefaultParams( pSecPar );
        pSecPar->fVerbose       = fVerbose;
        RetValue = Fra_FraigSec( pAbs, pSecPar, NULL );
*/
        Aig_Man_t * pAbsOrpos = Saig_ManDupOrpos( pAbs );
        Pdr_Par_t Pars, * pPars = &Pars;
        Pdr_ManSetDefaultParams( pPars );
        pPars->nTimeOut = 10;
        pPars->fVerbose = fVerbose;
        if ( pPars->fVerbose )
            printf( "Running property directed reachability...\n" );
178 179 180 181 182
        RetValue = Pdr_ManSolve( pAbsOrpos, pPars );
        if ( pAbsOrpos->pSeqModel )
            pAbsOrpos->pSeqModel->iPo = Saig_ManFindFailedPoCex( pAbs, pAbsOrpos->pSeqModel );
        pAbs->pSeqModel = pAbsOrpos->pSeqModel;
        pAbsOrpos->pSeqModel = NULL;
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
        Aig_ManStop( pAbsOrpos );
        if ( RetValue )
            *piRetValue = 1;

    }
    else if ( fUseBdds && (Aig_ManRegNum(pAbs) > 0 && Aig_ManRegNum(pAbs) <= 80) )
    {
        Saig_ParBbr_t Pars, * pPars = &Pars;
        Bbr_ManSetDefaultParams( pPars );
        pPars->TimeLimit     = 0;
        pPars->nBddMax       = 1000000;
        pPars->nIterMax      = nFrames;
        pPars->fPartition    = 1;
        pPars->fReorder      = 1;
        pPars->fReorderImage = 1;
        pPars->fVerbose      = fVerbose;
        pPars->fSilent       = 0;
        RetValue = Aig_ManVerifyUsingBdds( pAbs, pPars );
        if ( RetValue )
            *piRetValue = 1;
    }
    else 
    {
206
        Saig_BmcPerform( pAbs, pnUseStart? *pnUseStart: 0, nFrames, 2000, 0, nConfMaxOne, 0, fVerbose, 0, pnFrames, 0 );
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
    }
    if ( pAbs->pSeqModel == NULL )
        return NULL;
    if ( pnUseStart )
        *pnUseStart = pAbs->pSeqModel->iFrame;
//    vFlopsNew = Saig_ManExtendCounterExampleTest( pAbs, Saig_ManCexFirstFlopPi(p, pAbs), pAbs->pSeqModel, 1, fVerbose );
    vFlopsNew = Saig_ManExtendCounterExampleTest3( pAbs, Saig_ManCexFirstFlopPi(p, pAbs), pAbs->pSeqModel, fVerbose );
    if ( vFlopsNew == NULL )
        return NULL;
    if ( Vec_IntSize(vFlopsNew) == 0 )
    {
        printf( "Discovered a true counter-example!\n" );
        p->pSeqModel = Saig_ManCexRemap( p, pAbs, pAbs->pSeqModel );
        Vec_IntFree( vFlopsNew );
        *piRetValue = 0;
        return NULL;
    }
    // vFlopsNew contains PI numbers that should be kept in pAbs
    if ( fVerbose )
226
        printf( "Adding %d registers to the abstraction (total = %d).\n\n", Vec_IntSize(vFlopsNew), Aig_ManRegNum(pAbs)+Vec_IntSize(vFlopsNew) );
227 228 229 230 231
    // add to the abstraction
    Vec_IntForEachEntry( vFlopsNew, Entry, i )
    {
        Entry = Vec_IntEntry(pAbs->vCiNumsOrig, Entry);
        assert( Entry >= Saig_ManPiNum(p) );
232
        assert( Entry < Aig_ManCiNum(p) );
233 234 235 236 237 238 239 240
        Vec_IntPush( vFlops, Entry-Saig_ManPiNum(p) );
    }
    Vec_IntFree( vFlopsNew );

    Vec_IntSort( vFlops, 0 );
    Vec_IntForEachEntryStart( vFlops, Entry, i, 1 )
        assert( Vec_IntEntry(vFlops, i-1) != Entry );

241
    return Saig_ManDupAbstraction( p, vFlops );
242 243 244 245 246 247 248 249 250 251 252 253 254
}
 
/**Function*************************************************************

  Synopsis    [Refines abstraction using one step.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
255
int Saig_ManCexRefineStep( Aig_Man_t * p, Vec_Int_t * vFlops, Vec_Int_t * vFlopClasses, Abc_Cex_t * pCex, int nFfToAddMax, int fTryFour, int fSensePath, int fVerbose )
256 257 258
{
    Aig_Man_t * pAbs;
    Vec_Int_t * vFlopsNew;
259
    int i, Entry;
260
    abctime clk = Abc_Clock();
261
    pAbs = Saig_ManDupAbstraction( p, vFlops );
262 263 264 265 266 267 268 269 270 271 272 273 274
    if ( fSensePath )
        vFlopsNew = Saig_ManExtendCounterExampleTest2( pAbs, Saig_ManCexFirstFlopPi(p, pAbs), pCex, fVerbose );
    else
//        vFlopsNew = Saig_ManExtendCounterExampleTest( pAbs, Saig_ManCexFirstFlopPi(p, pAbs), pCex, fTryFour, fVerbose );
        vFlopsNew = Saig_ManExtendCounterExampleTest3( pAbs, Saig_ManCexFirstFlopPi(p, pAbs), pCex, fVerbose );
    if ( vFlopsNew == NULL )
    {
        Aig_ManStop( pAbs );
        return 0;
    }
    if ( Vec_IntSize(vFlopsNew) == 0 )
    {
        printf( "Refinement did not happen. Discovered a true counter-example.\n" );
275
        printf( "Remapping counter-example from %d to %d primary inputs.\n", Aig_ManCiNum(pAbs), Aig_ManCiNum(p) );
276 277 278 279 280 281 282
        p->pSeqModel = Saig_ManCexRemap( p, pAbs, pCex );
        Vec_IntFree( vFlopsNew );
        Aig_ManStop( pAbs );
        return 0;
    }
    if ( fVerbose )
    {
283
        printf( "Adding %d registers to the abstraction (total = %d).  ", Vec_IntSize(vFlopsNew), Aig_ManRegNum(p)+Vec_IntSize(vFlopsNew) );
284
        Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
285
    }
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
    // vFlopsNew contains PI numbers that should be kept in pAbs
    // select the most useful flops among those to be added
    if ( nFfToAddMax > 0 && Vec_IntSize(vFlopsNew) > nFfToAddMax )
    {
        Vec_Int_t * vFlopsNewBest;
        // shift the indices
        Vec_IntForEachEntry( vFlopsNew, Entry, i )
            Vec_IntAddToEntry( vFlopsNew, i, -Saig_ManPiNum(p) );
        // create new flops
        vFlopsNewBest = Saig_ManCbaFilterFlops( p, pCex, vFlopClasses, vFlopsNew, nFfToAddMax );
        assert( Vec_IntSize(vFlopsNewBest) == nFfToAddMax );
        printf( "Filtering flops based on cost (%d -> %d).\n", Vec_IntSize(vFlopsNew), Vec_IntSize(vFlopsNewBest) );
        // update
        Vec_IntFree( vFlopsNew );
        vFlopsNew = vFlopsNewBest;
        // shift the indices
        Vec_IntForEachEntry( vFlopsNew, Entry, i )
            Vec_IntAddToEntry( vFlopsNew, i, Saig_ManPiNum(p) );
    }
305 306 307 308 309
    // add to the abstraction
    Vec_IntForEachEntry( vFlopsNew, Entry, i )
    {
        Entry = Vec_IntEntry(pAbs->vCiNumsOrig, Entry);
        assert( Entry >= Saig_ManPiNum(p) );
310
        assert( Entry < Aig_ManCiNum(p) );
311 312 313 314 315 316 317 318 319
        Vec_IntPush( vFlops, Entry-Saig_ManPiNum(p) );
    }
    Vec_IntFree( vFlopsNew );
    Aig_ManStop( pAbs );
    return 1;
}

/**Function*************************************************************

320
  Synopsis    [Transform flop map into flop list.]
321 322 323 324 325 326

  Description []
               
  SideEffects []

  SeeAlso     []
327

328
***********************************************************************/
329
Vec_Int_t * Gia_ManClasses2Flops( Vec_Int_t * vFlopClasses )
330 331
{
    Vec_Int_t * vFlops;
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
    int i, Entry;
    vFlops = Vec_IntAlloc( 100 );
    Vec_IntForEachEntry( vFlopClasses, Entry, i )
        if ( Entry )
            Vec_IntPush( vFlops, i );
    return vFlops;
}

/**Function*************************************************************

  Synopsis    [Transform flop list into flop map.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Int_t * Gia_ManFlops2Classes( Gia_Man_t * pGia, Vec_Int_t * vFlops )
{
    Vec_Int_t * vFlopClasses;
    int i, Entry;
    vFlopClasses = Vec_IntStart( Gia_ManRegNum(pGia) );
    Vec_IntForEachEntry( vFlops, Entry, i )
        Vec_IntWriteEntry( vFlopClasses, Entry, 1 );
    return vFlopClasses;
}

/**Function*************************************************************

  Synopsis    [Refines abstraction using the latch map.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Gia_ManCexAbstractionRefine( Gia_Man_t * pGia, Abc_Cex_t * pCex, int nFfToAddMax, int fTryFour, int fSensePath, int fVerbose )
{
    Aig_Man_t * pNew;
    Vec_Int_t * vFlops;
    if ( pGia->vFlopClasses == NULL )
377
    {
378 379
        printf( "Gia_ManCexAbstractionRefine(): Abstraction latch map is missing.\n" );
        return -1;
380
    }
381 382 383
    pNew = Gia_ManToAig( pGia, 0 );
    vFlops = Gia_ManClasses2Flops( pGia->vFlopClasses );
    if ( !Saig_ManCexRefineStep( pNew, vFlops, pGia->vFlopClasses, pCex, nFfToAddMax, fTryFour, fSensePath, fVerbose ) )
384
    {
385 386 387 388
        pGia->pCexSeq = pNew->pSeqModel; pNew->pSeqModel = NULL;
        Vec_IntFree( vFlops );
        Aig_ManStop( pNew );
        return 0;
389
    }
390 391 392 393 394
    Vec_IntFree( pGia->vFlopClasses );
    pGia->vFlopClasses = Gia_ManFlops2Classes( pGia, vFlops );
    Vec_IntFree( vFlops );
    Aig_ManStop( pNew );
    return -1;
395 396 397
}


398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
/**Function*************************************************************

  Synopsis    [Computes the flops to remain after abstraction.]

  Description []
               
  SideEffects []

  SeeAlso     []
 
***********************************************************************/
Vec_Int_t * Saig_ManCexAbstractionFlops( Aig_Man_t * p, Gia_ParAbs_t * pPars )
{
    int nUseStart = 0;
    Aig_Man_t * pAbs, * pTemp;
    Vec_Int_t * vFlops;
414
    int Iter;//, clk = Abc_Clock(), clk2 = Abc_Clock();//, iFlop;
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
    assert( Aig_ManRegNum(p) > 0 );
    if ( pPars->fVerbose )
        printf( "Performing counter-example-based refinement.\n" );
    Aig_ManSetCioIds( p );
    vFlops = Vec_IntStartNatural( 1 );
/*
    iFlop = Saig_ManFindFirstFlop( p );
    assert( iFlop >= 0 );
    vFlops = Vec_IntAlloc( 1 );
    Vec_IntPush( vFlops, iFlop );
*/
    // create the resulting AIG
    pAbs = Saig_ManDupAbstraction( p, vFlops );
    if ( !pPars->fVerbose )
    {
        printf( "Init : " );
        Aig_ManPrintStats( pAbs );
    }
    printf( "Refining abstraction...\n" );
    for ( Iter = 0; ; Iter++ )
    {
        pTemp = Saig_ManCexRefine( p, pAbs, vFlops, pPars->nFramesBmc, pPars->nConfMaxBmc, pPars->fUseBdds, pPars->fUseDprove, pPars->fVerbose, pPars->fUseStart?&nUseStart:NULL, &pPars->Status, &pPars->nFramesDone );
        if ( pTemp == NULL )
        {
            ABC_FREE( p->pSeqModel );
            p->pSeqModel = pAbs->pSeqModel;
            pAbs->pSeqModel = NULL;
            Aig_ManStop( pAbs );
            break;
        }
        Aig_ManStop( pAbs );
        pAbs = pTemp;
        printf( "ITER %4d : ", Iter );
        if ( !pPars->fVerbose )
            Aig_ManPrintStats( pAbs );
        // output the intermediate result of abstraction
        Ioa_WriteAiger( pAbs, "gabs.aig", 0, 0 );
//            printf( "Intermediate abstracted model was written into file \"%s\".\n", "gabs.aig" );
        // check if the ratio is reached
        if ( 100.0*(Aig_ManRegNum(p)-Aig_ManRegNum(pAbs))/Aig_ManRegNum(p) < 1.0*pPars->nRatio )
        {
            printf( "Refinements is stopped because flop reduction is less than %d%%\n", pPars->nRatio );
            Aig_ManStop( pAbs );
            pAbs = NULL;
            Vec_IntFree( vFlops );
            vFlops = NULL;
            break;
        }
    }
    return vFlops;
}


468 469 470 471 472 473 474
////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


ABC_NAMESPACE_IMPL_END