dsdTree.c 36.9 KB
Newer Older
Alan Mishchenko committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/**CFile****************************************************************

  FileName    [dsdTree.c]

  PackageName [DSD: Disjoint-support decomposition package.]

  Synopsis    [Managing the decomposition tree.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 8.0. Started - September 22, 2003.]

  Revision    [$Id: dsdTree.c,v 1.0 2002/22/09 00:00:00 alanmi Exp $]

***********************************************************************/

#include "dsdInt.h"
20
#include "misc/util/utilTruth.h"
21
#include "opt/dau/dau.h"
Alan Mishchenko committed
22

23 24 25
ABC_NAMESPACE_IMPL_START


Alan Mishchenko committed
26 27 28 29 30 31 32 33 34 35 36
////////////////////////////////////////////////////////////////////////
///                    FUNCTION DECLARATIONS                         ///
////////////////////////////////////////////////////////////////////////

static void Dsd_TreeUnmark_rec( Dsd_Node_t * pNode );
static void Dsd_TreeGetInfo_rec( Dsd_Node_t * pNode, int RankCur );
static int  Dsd_TreeCountNonTerminalNodes_rec( Dsd_Node_t * pNode );
static int  Dsd_TreeCountPrimeNodes_rec( Dsd_Node_t * pNode );
static int  Dsd_TreeCollectDecomposableVars_rec( DdManager * dd, Dsd_Node_t * pNode, int * pVars, int * nVars );
static void Dsd_TreeCollectNodesDfs_rec( Dsd_Node_t * pNode, Dsd_Node_t * ppNodes[], int * pnNodes );
static void Dsd_TreePrint_rec( FILE * pFile, Dsd_Node_t * pNode, int fCcmp, char * pInputNames[], char * pOutputName, int nOffset, int * pSigCounter, int fShortNames );
Alan Mishchenko committed
37
static void Dsd_NodePrint_rec( FILE * pFile, Dsd_Node_t * pNode, int fComp, char * pOutputName, int nOffset, int * pSigCounter );
Alan Mishchenko committed
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

////////////////////////////////////////////////////////////////////////
///                      STATIC VARIABLES                            ///
////////////////////////////////////////////////////////////////////////

static int s_DepthMax;
static int s_GateSizeMax;

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Create the DSD node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Dsd_Node_t * Dsd_TreeNodeCreate( int Type, int nDecs, int BlockNum )
{
    // allocate memory for this node 
Alan Mishchenko committed
64
    Dsd_Node_t * p = (Dsd_Node_t *) ABC_ALLOC( char, sizeof(Dsd_Node_t) );
Alan Mishchenko committed
65
    memset( p, 0, sizeof(Dsd_Node_t) );
66 67
    p->Type       = (Dsd_Type_t)Type;       // the type of this block
    p->nDecs      = nDecs;                  // the number of decompositions
Alan Mishchenko committed
68 69
    if ( p->nDecs )
    {
Alan Mishchenko committed
70
        p->pDecs      = (Dsd_Node_t **) ABC_ALLOC( char, p->nDecs * sizeof(Dsd_Node_t *) );
Alan Mishchenko committed
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
        p->pDecs[0]   = NULL;
    }
    return p;
}

/**Function*************************************************************

  Synopsis    [Frees the DSD node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Dsd_TreeNodeDelete( DdManager * dd, Dsd_Node_t * pNode )
{
    if ( pNode->G )  Cudd_RecursiveDeref( dd, pNode->G );
    if ( pNode->S )  Cudd_RecursiveDeref( dd, pNode->S );
Alan Mishchenko committed
91 92
    ABC_FREE( pNode->pDecs );
    ABC_FREE( pNode );
Alan Mishchenko committed
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
}

/**Function*************************************************************

  Synopsis    [Unmarks the decomposition tree.]

  Description [This function assumes that originally pNode->nVisits are 
  set to zero!]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Dsd_TreeUnmark( Dsd_Manager_t * pDsdMan )
{
    int i;
    for ( i = 0; i < pDsdMan->nRoots; i++ )
        Dsd_TreeUnmark_rec( Dsd_Regular( pDsdMan->pRoots[i] ) );
}


/**Function*************************************************************

  Synopsis    [Recursive unmarking.]

  Description [This function should be called with a non-complemented 
  pointer.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Dsd_TreeUnmark_rec( Dsd_Node_t * pNode )
{
    int i;

    assert( pNode );
    assert( !Dsd_IsComplement( pNode ) );
    assert( pNode->nVisits > 0 );

    if ( --pNode->nVisits ) // if this is not the last visit, return
        return;

    // upon the last visit, go through the list of successors and call recursively 
    if ( pNode->Type != DSD_NODE_BUF && pNode->Type != DSD_NODE_CONST1 )
    for ( i = 0; i < pNode->nDecs; i++ )
        Dsd_TreeUnmark_rec( Dsd_Regular(pNode->pDecs[i]) );
}

/**Function*************************************************************

  Synopsis    [Getting information about the node.]

  Description [This function computes the max depth and the max gate size 
  of the tree rooted at the node.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Dsd_TreeNodeGetInfo( Dsd_Manager_t * pDsdMan, int * DepthMax, int * GateSizeMax )
{
    int i;
    s_DepthMax    = 0;
    s_GateSizeMax = 0;

    for ( i = 0; i < pDsdMan->nRoots; i++ )
        Dsd_TreeGetInfo_rec( Dsd_Regular( pDsdMan->pRoots[i] ), 0 );

    if ( DepthMax ) 
        *DepthMax     = s_DepthMax;
    if ( GateSizeMax ) 
        *GateSizeMax  = s_GateSizeMax;
}

/**Function*************************************************************

  Synopsis    [Getting information about the node.]

  Description [This function computes the max depth and the max gate size 
  of the tree rooted at the node.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Dsd_TreeNodeGetInfoOne( Dsd_Node_t * pNode, int * DepthMax, int * GateSizeMax )
{
    s_DepthMax    = 0;
    s_GateSizeMax = 0;

    Dsd_TreeGetInfo_rec( Dsd_Regular(pNode), 0 );

    if ( DepthMax ) 
        *DepthMax     = s_DepthMax;
    if ( GateSizeMax ) 
        *GateSizeMax  = s_GateSizeMax;
}


/**Function*************************************************************

  Synopsis    [Performs the recursive step of Dsd_TreeNodeGetInfo().]

  Description [pNode is the node, for the tree rooted in which we are 
  determining info. RankCur is the current rank to assign to the node.
  fSetRank is the flag saying whether the rank will be written in the 
  node. s_DepthMax is the maximum depths of the tree. s_GateSizeMax is 
  the maximum gate size.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Dsd_TreeGetInfo_rec( Dsd_Node_t * pNode, int RankCur )
{
    int i;
    int GateSize;

    assert( pNode );
    assert( !Dsd_IsComplement( pNode ) );
    assert( pNode->nVisits >= 0 );

    // we don't want the two-input gates to count for non-decomposable blocks
    if ( pNode->Type == DSD_NODE_OR  || 
         pNode->Type == DSD_NODE_EXOR )
        GateSize = 2;
    else
        GateSize = pNode->nDecs;

    // update the max size of the node
    if ( s_GateSizeMax < GateSize )
         s_GateSizeMax = GateSize;

    if ( pNode->nDecs < 2 )
        return;

    // update the max rank
    if ( s_DepthMax < RankCur+1 )
         s_DepthMax = RankCur+1;

    // call recursively
    for ( i = 0; i < pNode->nDecs; i++ )
        Dsd_TreeGetInfo_rec( Dsd_Regular(pNode->pDecs[i]), RankCur+1 );
}

/**Function*************************************************************

Alan Mishchenko committed
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
  Synopsis    [Counts AIG nodes needed to implement this node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Dsd_TreeGetAigCost_rec( Dsd_Node_t * pNode )
{
    int i, Counter = 0;

    assert( pNode );
    assert( !Dsd_IsComplement( pNode ) );
    assert( pNode->nVisits >= 0 );

    if ( pNode->nDecs < 2 )
        return 0;

    // we don't want the two-input gates to count for non-decomposable blocks
    if ( pNode->Type == DSD_NODE_OR )
        Counter += pNode->nDecs - 1;
    else if ( pNode->Type == DSD_NODE_EXOR )
        Counter += 3*(pNode->nDecs - 1);
    else if ( pNode->Type == DSD_NODE_PRIME && pNode->nDecs == 3 )
        Counter += 3;

    // call recursively
    for ( i = 0; i < pNode->nDecs; i++ )
        Counter += Dsd_TreeGetAigCost_rec( Dsd_Regular(pNode->pDecs[i]) );
    return Counter;
}

/**Function*************************************************************

  Synopsis    [Counts AIG nodes needed to implement this node.]

  Description [Assumes that the only primes of the DSD tree are MUXes.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Dsd_TreeGetAigCost( Dsd_Node_t * pNode )
{
    return Dsd_TreeGetAigCost_rec( Dsd_Regular(pNode) );
}

/**Function*************************************************************

Alan Mishchenko committed
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
  Synopsis    [Counts non-terminal nodes of the DSD tree.]

  Description [Nonterminal nodes include all the nodes with the
  support more than 1. These are OR, EXOR, and PRIME nodes. They
  do not include the elementary variable nodes and the constant 1
  node.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Dsd_TreeCountNonTerminalNodes( Dsd_Manager_t * pDsdMan )
{
    int Counter, i;
    Counter = 0;
    for ( i = 0; i < pDsdMan->nRoots; i++ )
        Counter += Dsd_TreeCountNonTerminalNodes_rec( Dsd_Regular( pDsdMan->pRoots[i] ) );
    Dsd_TreeUnmark( pDsdMan );
    return Counter;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Dsd_TreeCountNonTerminalNodesOne( Dsd_Node_t * pRoot )
{
    int Counter = 0;

    // go through the list of successors and call recursively 
    Counter = Dsd_TreeCountNonTerminalNodes_rec( Dsd_Regular(pRoot) );

    Dsd_TreeUnmark_rec( Dsd_Regular(pRoot) );
    return Counter;
}


/**Function*************************************************************

  Synopsis    [Counts non-terminal nodes for one root.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Dsd_TreeCountNonTerminalNodes_rec( Dsd_Node_t * pNode )
{
    int i;
    int Counter = 0;

    assert( pNode );
    assert( !Dsd_IsComplement( pNode ) );
    assert( pNode->nVisits >= 0 );

    if ( pNode->nVisits++ ) // if this is not the first visit, return zero
        return 0;

    if ( pNode->nDecs <= 1 )
        return 0;

    // upon the first visit, go through the list of successors and call recursively 
    for ( i = 0; i < pNode->nDecs; i++ )
        Counter += Dsd_TreeCountNonTerminalNodes_rec( Dsd_Regular(pNode->pDecs[i]) );

    return Counter + 1;
}


/**Function*************************************************************

  Synopsis    [Counts prime nodes of the DSD tree.]

  Description [Prime nodes are nodes with the support more than 2,
  that is not an OR or EXOR gate.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Dsd_TreeCountPrimeNodes( Dsd_Manager_t * pDsdMan )
{
    int Counter, i;
    Counter = 0;
    for ( i = 0; i < pDsdMan->nRoots; i++ )
        Counter += Dsd_TreeCountPrimeNodes_rec( Dsd_Regular( pDsdMan->pRoots[i] ) );
    Dsd_TreeUnmark( pDsdMan );
    return Counter;
}

/**Function*************************************************************

  Synopsis    [Counts prime nodes for one root.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Dsd_TreeCountPrimeNodesOne( Dsd_Node_t * pRoot )
{
    int Counter = 0;

    // go through the list of successors and call recursively 
    Counter = Dsd_TreeCountPrimeNodes_rec( Dsd_Regular(pRoot) );

    Dsd_TreeUnmark_rec( Dsd_Regular(pRoot) );
    return Counter;
}


/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Dsd_TreeCountPrimeNodes_rec( Dsd_Node_t * pNode )
{
    int i;
    int Counter = 0;

    assert( pNode );
    assert( !Dsd_IsComplement( pNode ) );
    assert( pNode->nVisits >= 0 );

    if ( pNode->nVisits++ ) // if this is not the first visit, return zero
        return 0;

    if ( pNode->nDecs <= 1 )
        return 0;

    // upon the first visit, go through the list of successors and call recursively 
    for ( i = 0; i < pNode->nDecs; i++ )
        Counter += Dsd_TreeCountPrimeNodes_rec( Dsd_Regular(pNode->pDecs[i]) );

    if ( pNode->Type == DSD_NODE_PRIME )
        Counter++;

    return Counter;
}


/**Function*************************************************************

  Synopsis    [Collects the decomposable vars on the PI side.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Dsd_TreeCollectDecomposableVars( Dsd_Manager_t * pDsdMan, int * pVars )
{
    int nVars;

    // set the vars collected to 0
    nVars = 0;
    Dsd_TreeCollectDecomposableVars_rec( pDsdMan->dd, Dsd_Regular(pDsdMan->pRoots[0]), pVars, &nVars );
    // return the number of collected vars
    return nVars;
}

/**Function*************************************************************

  Synopsis    [Implements the recursive part of Dsd_TreeCollectDecomposableVars().]

  Description [Adds decomposable variables as they are found to pVars and increments 
  nVars. Returns 1 if a non-dec node with more than 4 inputs was encountered 
  in the processed subtree. Returns 0, otherwise. ]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Dsd_TreeCollectDecomposableVars_rec( DdManager * dd, Dsd_Node_t * pNode, int * pVars, int * nVars )
{
    int fSkipThisNode, i;
    Dsd_Node_t * pTemp;
    int fVerbose = 0;

    assert( pNode );
    assert( !Dsd_IsComplement( pNode ) );

    if ( pNode->nDecs <= 1 )
        return 0;

    // go through the list of successors and call recursively 
    fSkipThisNode = 0;
    for ( i = 0; i < pNode->nDecs; i++ )
        if ( Dsd_TreeCollectDecomposableVars_rec(dd, Dsd_Regular(pNode->pDecs[i]), pVars, nVars) )
            fSkipThisNode = 1;

    if ( !fSkipThisNode && (pNode->Type == DSD_NODE_OR || pNode->Type == DSD_NODE_EXOR || pNode->nDecs <= 4) )
    {
if ( fVerbose )
printf( "Node of type <%d> (OR=6,EXOR=8,RAND=1): ", pNode->Type );

        for ( i = 0; i < pNode->nDecs; i++ )
        {
            pTemp = Dsd_Regular(pNode->pDecs[i]);
            if ( pTemp->Type == DSD_NODE_BUF )
            {
                if ( pVars )
                    pVars[ (*nVars)++ ] = pTemp->S->index;
                else
                    (*nVars)++;
                    
if ( fVerbose )
printf( "%d ", pTemp->S->index );
            }
        }
if ( fVerbose )
printf( "\n" );
    }
    else
        fSkipThisNode = 1;


    return fSkipThisNode;
}


/**Function*************************************************************

  Synopsis    [Creates the DFS ordered array of DSD nodes in the tree.]

  Description [The collected nodes do not include the terminal nodes
  and the constant 1 node. The array of nodes is returned. The number
  of entries in the array is returned in the variale pnNodes.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Dsd_Node_t ** Dsd_TreeCollectNodesDfs( Dsd_Manager_t * pDsdMan, int * pnNodes )
{
    Dsd_Node_t ** ppNodes;
    int nNodes, nNodesAlloc;
    int i;

    nNodesAlloc = Dsd_TreeCountNonTerminalNodes(pDsdMan);
    nNodes  = 0;
Alan Mishchenko committed
563
    ppNodes = ABC_ALLOC( Dsd_Node_t *, nNodesAlloc );
Alan Mishchenko committed
564 565 566 567 568 569 570 571
    for ( i = 0; i < pDsdMan->nRoots; i++ )
        Dsd_TreeCollectNodesDfs_rec( Dsd_Regular(pDsdMan->pRoots[i]), ppNodes, &nNodes );
    Dsd_TreeUnmark( pDsdMan );
    assert( nNodesAlloc == nNodes );
    *pnNodes = nNodes;
    return ppNodes;
}

Alan Mishchenko committed
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
/**Function*************************************************************

  Synopsis    [Creates the DFS ordered array of DSD nodes in the tree.]

  Description [The collected nodes do not include the terminal nodes
  and the constant 1 node. The array of nodes is returned. The number
  of entries in the array is returned in the variale pnNodes.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Dsd_Node_t ** Dsd_TreeCollectNodesDfsOne( Dsd_Manager_t * pDsdMan, Dsd_Node_t * pNode, int * pnNodes )
{
    Dsd_Node_t ** ppNodes;
    int nNodes, nNodesAlloc;
    nNodesAlloc = Dsd_TreeCountNonTerminalNodesOne(pNode);
    nNodes  = 0;
Alan Mishchenko committed
591
    ppNodes = ABC_ALLOC( Dsd_Node_t *, nNodesAlloc );
Alan Mishchenko committed
592 593 594 595 596 597 598
    Dsd_TreeCollectNodesDfs_rec( Dsd_Regular(pNode), ppNodes, &nNodes );
    Dsd_TreeUnmark_rec(Dsd_Regular(pNode));
    assert( nNodesAlloc == nNodes );
    *pnNodes = nNodes;
    return ppNodes;
}

Alan Mishchenko committed
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Dsd_TreeCollectNodesDfs_rec( Dsd_Node_t * pNode, Dsd_Node_t * ppNodes[], int * pnNodes )
{
    int i;
    assert( pNode );
    assert( !Dsd_IsComplement(pNode) );
    assert( pNode->nVisits >= 0 );

    if ( pNode->nVisits++ ) // if this is not the first visit, return zero
        return;
    if ( pNode->nDecs <= 1 )
        return;

    // upon the first visit, go through the list of successors and call recursively 
    for ( i = 0; i < pNode->nDecs; i++ )
        Dsd_TreeCollectNodesDfs_rec( Dsd_Regular(pNode->pDecs[i]), ppNodes, pnNodes );

    ppNodes[ (*pnNodes)++ ] = pNode;
}

/**Function*************************************************************

  Synopsis    [Prints the decompostion tree into file.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Dsd_TreePrint( FILE * pFile, Dsd_Manager_t * pDsdMan, char * pInputNames[], char * pOutputNames[], int fShortNames, int Output )
{
    Dsd_Node_t * pNode;
    int SigCounter;
    int i;
    SigCounter = 1;

    if ( Output == -1 )
    {
        for ( i = 0; i < pDsdMan->nRoots; i++ )
        {
            pNode = Dsd_Regular( pDsdMan->pRoots[i] );
            Dsd_TreePrint_rec( pFile, pNode, (pNode != pDsdMan->pRoots[i]), pInputNames, pOutputNames[i], 0, &SigCounter, fShortNames );
        }
    }
    else
    {
        assert( Output >= 0 && Output < pDsdMan->nRoots );
        pNode = Dsd_Regular( pDsdMan->pRoots[Output] );
        Dsd_TreePrint_rec( pFile, pNode, (pNode != pDsdMan->pRoots[Output]), pInputNames, pOutputNames[Output], 0, &SigCounter, fShortNames );
    }
}

/**Function*************************************************************

  Synopsis    [Prints the decompostion tree into file.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Dsd_TreePrint_rec( FILE * pFile, Dsd_Node_t * pNode, int fComp, char * pInputNames[], char * pOutputName, int nOffset, int * pSigCounter, int fShortNames )
{
    char Buffer[100];
    Dsd_Node_t * pInput;
    int * pInputNums;
    int fCompNew, i;

    assert( pNode->Type == DSD_NODE_BUF || pNode->Type == DSD_NODE_CONST1 || 
        pNode->Type == DSD_NODE_PRIME || pNode->Type == DSD_NODE_OR || pNode->Type == DSD_NODE_EXOR ); 

    Extra_PrintSymbols( pFile, ' ', nOffset, 0 );
Alan Mishchenko committed
686 687 688 689
    if ( !fComp )
        fprintf( pFile, "%s = ", pOutputName );
    else
        fprintf( pFile, "NOT(%s) = ", pOutputName );
Alan Mishchenko committed
690
    pInputNums = ABC_ALLOC( int, pNode->nDecs );
Alan Mishchenko committed
691 692
    if ( pNode->Type == DSD_NODE_CONST1 )
    {
693
        fprintf( pFile, " Constant 1.\n" );
Alan Mishchenko committed
694 695 696 697
    }
    else if ( pNode->Type == DSD_NODE_BUF )
    {
        if ( fShortNames )
Alan Mishchenko committed
698
            fprintf( pFile, "%d", 'a' + pNode->S->index );
Alan Mishchenko committed
699 700 701 702 703 704 705 706 707 708 709 710 711 712
        else
            fprintf( pFile, "%s", pInputNames[pNode->S->index] );
        fprintf( pFile, "\n" );
    }
    else if ( pNode->Type == DSD_NODE_PRIME )
    {
        // print the line
        fprintf( pFile, "PRIME(" );
        for ( i = 0; i < pNode->nDecs; i++ )
        {
            pInput   = Dsd_Regular( pNode->pDecs[i] );
            fCompNew = (int)( pInput != pNode->pDecs[i] );
            if ( i )
                fprintf( pFile, "," );
Alan Mishchenko committed
713 714 715 716
            if ( fCompNew )
                fprintf( pFile, " NOT(" );
            else
                fprintf( pFile, " " );
Alan Mishchenko committed
717 718 719 720 721 722 723 724 725 726 727
            if ( pInput->Type == DSD_NODE_BUF )
            {
                pInputNums[i] = 0;
                if ( fShortNames )
                    fprintf( pFile, "%d", pInput->S->index );
                else
                    fprintf( pFile, "%s", pInputNames[pInput->S->index] );
            }
            else
            {
                pInputNums[i] = (*pSigCounter)++;
Alan Mishchenko committed
728
                fprintf( pFile, "<%d>", pInputNums[i] );
Alan Mishchenko committed
729
            }
Alan Mishchenko committed
730 731
            if ( fCompNew )
                fprintf( pFile, ")" );
Alan Mishchenko committed
732 733 734 735 736 737 738 739
        }
        fprintf( pFile, " )\n" );
        // call recursively for the following blocks
        for ( i = 0; i < pNode->nDecs; i++ )
            if ( pInputNums[i] )
            {
                pInput   = Dsd_Regular( pNode->pDecs[i] );
                sprintf( Buffer, "<%d>", pInputNums[i] );
Alan Mishchenko committed
740
                Dsd_TreePrint_rec( pFile, Dsd_Regular( pNode->pDecs[i] ), 0, pInputNames, Buffer, nOffset + 6, pSigCounter, fShortNames );
Alan Mishchenko committed
741 742 743 744 745
            }
    }
    else if ( pNode->Type == DSD_NODE_OR )
    {
        // print the line
Alan Mishchenko committed
746
        fprintf( pFile, "OR(" );
Alan Mishchenko committed
747 748 749 750 751 752
        for ( i = 0; i < pNode->nDecs; i++ )
        {
            pInput = Dsd_Regular( pNode->pDecs[i] );
            fCompNew  = (int)( pInput != pNode->pDecs[i] );
            if ( i )
                fprintf( pFile, "," );
Alan Mishchenko committed
753 754 755 756
            if ( fCompNew )
                fprintf( pFile, " NOT(" );
            else
                fprintf( pFile, " " );
Alan Mishchenko committed
757 758 759 760
            if ( pInput->Type == DSD_NODE_BUF )
            {
                pInputNums[i] = 0;
                if ( fShortNames )
Alan Mishchenko committed
761
                    fprintf( pFile, "%c", 'a' + pInput->S->index );
Alan Mishchenko committed
762 763 764 765 766 767
                else
                    fprintf( pFile, "%s", pInputNames[pInput->S->index] );
            }
            else
            {
                pInputNums[i] = (*pSigCounter)++;
Alan Mishchenko committed
768
                fprintf( pFile, "<%d>", pInputNums[i] );
Alan Mishchenko committed
769
            }
Alan Mishchenko committed
770 771
            if ( fCompNew )
                fprintf( pFile, ")" );
Alan Mishchenko committed
772 773 774 775 776 777 778 779
        }
        fprintf( pFile, " )\n" );
        // call recursively for the following blocks
        for ( i = 0; i < pNode->nDecs; i++ )
            if ( pInputNums[i] )
            {
                pInput = Dsd_Regular( pNode->pDecs[i] );
                sprintf( Buffer, "<%d>", pInputNums[i] );
Alan Mishchenko committed
780
                Dsd_TreePrint_rec( pFile, Dsd_Regular( pNode->pDecs[i] ), 0, pInputNames, Buffer, nOffset + 6, pSigCounter, fShortNames );
Alan Mishchenko committed
781 782 783 784 785
            }
    }
    else if ( pNode->Type == DSD_NODE_EXOR )
    {
        // print the line
Alan Mishchenko committed
786
        fprintf( pFile, "EXOR(" );
Alan Mishchenko committed
787 788 789 790 791 792
        for ( i = 0; i < pNode->nDecs; i++ )
        {
            pInput = Dsd_Regular( pNode->pDecs[i] );
            fCompNew  = (int)( pInput != pNode->pDecs[i] );
            if ( i )
                fprintf( pFile, "," );
Alan Mishchenko committed
793 794 795 796
            if ( fCompNew )
                fprintf( pFile, " NOT(" );
            else
                fprintf( pFile, " " );
Alan Mishchenko committed
797 798 799 800
            if ( pInput->Type == DSD_NODE_BUF )
            {
                pInputNums[i] = 0;
                if ( fShortNames )
Alan Mishchenko committed
801
                    fprintf( pFile, "%c", 'a' + pInput->S->index );
Alan Mishchenko committed
802 803
                else
                    fprintf( pFile, "%s", pInputNames[pInput->S->index] );
Alan Mishchenko committed
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
            }
            else
            {
                pInputNums[i] = (*pSigCounter)++;
                fprintf( pFile, "<%d>", pInputNums[i] );
            }
            if ( fCompNew )
                fprintf( pFile, ")" );
        }
        fprintf( pFile, " )\n" );
        // call recursively for the following blocks
        for ( i = 0; i < pNode->nDecs; i++ )
            if ( pInputNums[i] )
            {
                pInput = Dsd_Regular( pNode->pDecs[i] );
                sprintf( Buffer, "<%d>", pInputNums[i] );
                Dsd_TreePrint_rec( pFile, Dsd_Regular( pNode->pDecs[i] ), 0, pInputNames, Buffer, nOffset + 6, pSigCounter, fShortNames );
            }
    }
Alan Mishchenko committed
823
    ABC_FREE( pInputNums );
Alan Mishchenko committed
824 825 826 827 828 829 830 831 832 833 834 835 836
}

/**Function*************************************************************

  Synopsis    [Prints the decompostion tree into file.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
word Dsd_TreeFunc2Truth_rec( DdManager * dd, DdNode * bFunc )
{
    word Cof0, Cof1;
    int Level;
    if ( bFunc == b0 )
        return 0;
    if ( bFunc == b1 )
        return ~(word)0;
    if ( Cudd_IsComplement(bFunc) )
        return ~Dsd_TreeFunc2Truth_rec( dd, Cudd_Not(bFunc) );
    Level = dd->perm[bFunc->index];
    assert( Level >= 0 && Level < 6 );
    Cof0 = Dsd_TreeFunc2Truth_rec( dd, cuddE(bFunc) );
    Cof1 = Dsd_TreeFunc2Truth_rec( dd, cuddT(bFunc) );
    return (s_Truths6[Level] & Cof1) | (~s_Truths6[Level] & Cof0);
}
void Dsd_TreePrint2_rec( FILE * pFile, DdManager * dd, Dsd_Node_t * pNode, int fComp, char * pInputNames[] )
{
    int i;
    if ( pNode->Type == DSD_NODE_CONST1 )
    {
        fprintf( pFile, "Const%d", !fComp );
        return;
    }
    assert( pNode->Type == DSD_NODE_BUF || pNode->Type == DSD_NODE_PRIME || pNode->Type == DSD_NODE_OR || pNode->Type == DSD_NODE_EXOR ); 
//    fprintf( pFile, "%s", (fComp ^ (pNode->Type == DSD_NODE_OR))? "!" : "" );
    if ( pNode->Type == DSD_NODE_BUF )
    {
        fprintf( pFile, "%s", fComp? "!" : "" );
        fprintf( pFile, "%s", pInputNames[pNode->S->index] );
    }
    else if ( pNode->Type == DSD_NODE_PRIME )
    {
        fprintf( pFile, " " );
        if ( pNode->nDecs <= 6 )
        {
            char pCanonPerm[6]; int uCanonPhase;
            // compute truth table
            DdNode * bFunc = Dsd_TreeGetPrimeFunction( dd, pNode );  
            word uTruth = Dsd_TreeFunc2Truth_rec( dd, bFunc );
            Cudd_Ref( bFunc );
            Cudd_RecursiveDeref( dd, bFunc );
            // canonicize truth table
            uCanonPhase = Abc_TtCanonicize( &uTruth, pNode->nDecs, pCanonPerm );
            fprintf( pFile, "%s", (fComp ^ ((uCanonPhase >> pNode->nDecs) & 1)) ? "!" : "" );
            Abc_TtPrintHexRev( pFile, &uTruth, pNode->nDecs );
            fprintf( pFile, "{" );
            for ( i = 0; i < pNode->nDecs; i++ )
            {
                Dsd_Node_t * pInput = pNode->pDecs[(int)pCanonPerm[i]];
                Dsd_TreePrint2_rec( pFile, dd, Dsd_Regular(pInput), Dsd_IsComplement(pInput) ^ ((uCanonPhase>>i)&1), pInputNames );
            }
            fprintf( pFile, "} " );
        }
        else
        {
            fprintf( pFile, "|%d|", pNode->nDecs );
            fprintf( pFile, "{" );
            for ( i = 0; i < pNode->nDecs; i++ )
                Dsd_TreePrint2_rec( pFile, dd, Dsd_Regular(pNode->pDecs[i]), Dsd_IsComplement(pNode->pDecs[i]), pInputNames );
            fprintf( pFile, "} " );
        }
    }
    else if ( pNode->Type == DSD_NODE_OR )
    {
        fprintf( pFile, "%s", !fComp? "!" : "" );
        fprintf( pFile, "(" );
        for ( i = 0; i < pNode->nDecs; i++ )
            Dsd_TreePrint2_rec( pFile, dd, Dsd_Regular(pNode->pDecs[i]), !Dsd_IsComplement(pNode->pDecs[i]), pInputNames );
        fprintf( pFile, ")" );
    }
    else if ( pNode->Type == DSD_NODE_EXOR )
    {
        fprintf( pFile, "%s", fComp? "!" : "" );
        fprintf( pFile, "[" );
        for ( i = 0; i < pNode->nDecs; i++ )
            Dsd_TreePrint2_rec( pFile, dd, Dsd_Regular(pNode->pDecs[i]), Dsd_IsComplement(pNode->pDecs[i]), pInputNames );
        fprintf( pFile, "]" );
    }
}
void Dsd_TreePrint2( FILE * pFile, Dsd_Manager_t * pDsdMan, char * pInputNames[], char * pOutputNames[], int Output )
{
    if ( Output == -1 )
    {
        int i;
        for ( i = 0; i < pDsdMan->nRoots; i++ )
        {
            fprintf( pFile, "%8s = ", pOutputNames[i] );
            Dsd_TreePrint2_rec( pFile, pDsdMan->dd, Dsd_Regular(pDsdMan->pRoots[i]), Dsd_IsComplement(pDsdMan->pRoots[i]), pInputNames );
            fprintf( pFile, "\n" );
        }
    }
    else
    {
        assert( Output >= 0 && Output < pDsdMan->nRoots );
        fprintf( pFile, "%8s = ", pOutputNames[Output] );
        Dsd_TreePrint2_rec( pFile, pDsdMan->dd, Dsd_Regular(pDsdMan->pRoots[Output]), Dsd_IsComplement(pDsdMan->pRoots[Output]), pInputNames );
        fprintf( pFile, "\n" );
    }
}

/**Function*************************************************************

  Synopsis    [Prints the decompostion tree into file.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Alan Mishchenko committed
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
void Dsd_NodePrint( FILE * pFile, Dsd_Node_t * pNode )
{
    Dsd_Node_t * pNodeR;
    int SigCounter = 1;
    pNodeR = Dsd_Regular(pNode);
    Dsd_NodePrint_rec( pFile, pNodeR, pNodeR != pNode, "F", 0, &SigCounter );
}

/**Function*************************************************************

  Synopsis    [Prints one node of the decomposition tree.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Dsd_NodePrint_rec( FILE * pFile, Dsd_Node_t * pNode, int fComp, char * pOutputName, int nOffset, int * pSigCounter )
{
    char Buffer[100];
    Dsd_Node_t * pInput;
    int * pInputNums;
    int fCompNew, i;

    assert( pNode->Type == DSD_NODE_BUF || pNode->Type == DSD_NODE_CONST1 || 
        pNode->Type == DSD_NODE_PRIME || pNode->Type == DSD_NODE_OR || pNode->Type == DSD_NODE_EXOR ); 

    Extra_PrintSymbols( pFile, ' ', nOffset, 0 );
    if ( !fComp )
        fprintf( pFile, "%s = ", pOutputName );
    else
        fprintf( pFile, "NOT(%s) = ", pOutputName );
Alan Mishchenko committed
983
    pInputNums = ABC_ALLOC( int, pNode->nDecs );
Alan Mishchenko committed
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
    if ( pNode->Type == DSD_NODE_CONST1 )
    {
        fprintf( pFile, " Constant 1.\n" );
    }
    else if ( pNode->Type == DSD_NODE_BUF )
    {
        fprintf( pFile, " " );
        fprintf( pFile, "%c", 'a' + pNode->S->index );
        fprintf( pFile, "\n" );
    }
    else if ( pNode->Type == DSD_NODE_PRIME )
    {
        // print the line
        fprintf( pFile, "PRIME(" );
        for ( i = 0; i < pNode->nDecs; i++ )
        {
            pInput   = Dsd_Regular( pNode->pDecs[i] );
            fCompNew = (int)( pInput != pNode->pDecs[i] );
            assert( fCompNew == 0 );
            if ( i )
                fprintf( pFile, "," );
            if ( pInput->Type == DSD_NODE_BUF )
            {
                pInputNums[i] = 0;
                fprintf( pFile, " %c", 'a' + pInput->S->index );
            }
            else
            {
                pInputNums[i] = (*pSigCounter)++;
                fprintf( pFile, " <%d>", pInputNums[i] );
            }
            if ( fCompNew )
                fprintf( pFile, "\'" );
        }
        fprintf( pFile, " )\n" );
/*
        fprintf( pFile, " )  " );  
        {
            DdNode * bLocal;
            bLocal = Dsd_TreeGetPrimeFunction( dd, pNodeDsd );  Cudd_Ref( bLocal );
            Extra_bddPrint( dd, bLocal );
            Cudd_RecursiveDeref( dd, bLocal );
        }
*/
        // call recursively for the following blocks
        for ( i = 0; i < pNode->nDecs; i++ )
            if ( pInputNums[i] )
            {
                pInput   = Dsd_Regular( pNode->pDecs[i] );
                sprintf( Buffer, "<%d>", pInputNums[i] );
                Dsd_NodePrint_rec( pFile, Dsd_Regular( pNode->pDecs[i] ), 0, Buffer, nOffset + 6, pSigCounter );
            }
    }
    else if ( pNode->Type == DSD_NODE_OR )
    {
        // print the line
        fprintf( pFile, "OR(" );
        for ( i = 0; i < pNode->nDecs; i++ )
        {
            pInput = Dsd_Regular( pNode->pDecs[i] );
            fCompNew  = (int)( pInput != pNode->pDecs[i] );
            if ( i )
                fprintf( pFile, "," );
            if ( pInput->Type == DSD_NODE_BUF )
            {
                pInputNums[i] = 0;
                fprintf( pFile, " %c", 'a' + pInput->S->index );
            }
            else
            {
                pInputNums[i] = (*pSigCounter)++;
                fprintf( pFile, " <%d>", pInputNums[i] );
            }
            if ( fCompNew )
                fprintf( pFile, "\'" );
        }
        fprintf( pFile, " )\n" );
        // call recursively for the following blocks
        for ( i = 0; i < pNode->nDecs; i++ )
            if ( pInputNums[i] )
            {
                pInput = Dsd_Regular( pNode->pDecs[i] );
                sprintf( Buffer, "<%d>", pInputNums[i] );
                Dsd_NodePrint_rec( pFile, Dsd_Regular( pNode->pDecs[i] ), 0, Buffer, nOffset + 6, pSigCounter );
            }
    }
    else if ( pNode->Type == DSD_NODE_EXOR )
    {
        // print the line
        fprintf( pFile, "EXOR(" );
        for ( i = 0; i < pNode->nDecs; i++ )
        {
            pInput = Dsd_Regular( pNode->pDecs[i] );
            fCompNew  = (int)( pInput != pNode->pDecs[i] );
            assert( fCompNew == 0 );
            if ( i )
                fprintf( pFile, "," );
            if ( pInput->Type == DSD_NODE_BUF )
            {
                pInputNums[i] = 0;
                fprintf( pFile, " %c", 'a' + pInput->S->index );
Alan Mishchenko committed
1085 1086 1087 1088 1089 1090
            }
            else
            {
                pInputNums[i] = (*pSigCounter)++;
                fprintf( pFile, " <%d>", pInputNums[i] );
            }
Alan Mishchenko committed
1091 1092
            if ( fCompNew )
                fprintf( pFile, "\'" );
Alan Mishchenko committed
1093 1094 1095 1096 1097 1098 1099 1100
        }
        fprintf( pFile, " )\n" );
        // call recursively for the following blocks
        for ( i = 0; i < pNode->nDecs; i++ )
            if ( pInputNums[i] )
            {
                pInput = Dsd_Regular( pNode->pDecs[i] );
                sprintf( Buffer, "<%d>", pInputNums[i] );
Alan Mishchenko committed
1101
                Dsd_NodePrint_rec( pFile, Dsd_Regular( pNode->pDecs[i] ), 0, Buffer, nOffset + 6, pSigCounter );
Alan Mishchenko committed
1102 1103
            }
    }
Alan Mishchenko committed
1104
    ABC_FREE( pInputNums );
Alan Mishchenko committed
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
}


/**Function*************************************************************

  Synopsis    [Retuns the function of one node of the decomposition tree.]

  Description [This is the old procedure. It is now superceded by the
  procedure Dsd_TreeGetPrimeFunction() found in "dsdLocal.c".]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
DdNode * Dsd_TreeGetPrimeFunctionOld( DdManager * dd, Dsd_Node_t * pNode, int fRemap ) 
{
    DdNode * bCof0,  * bCof1, * bCube0, * bCube1, * bNewFunc, * bTemp;
    int i;
Alan Mishchenko committed
1124
    static int Permute[MAXINPUTS];
Alan Mishchenko committed
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152

    assert( pNode );
    assert( !Dsd_IsComplement( pNode ) );
    assert( pNode->Type == DSD_NODE_PRIME );

    // transform the function of this block to depend on inputs
    // corresponding to the formal inputs

    // first, substitute those inputs that have some blocks associated with them
    // second, remap the inputs to the top of the manager (then, it is easy to output them)

    // start the function
    bNewFunc = pNode->G;  Cudd_Ref( bNewFunc );
    // go over all primary inputs
    for ( i = 0; i < pNode->nDecs; i++ )
    if ( pNode->pDecs[i]->Type != DSD_NODE_BUF ) // remap only if it is not the buffer
    {
        bCube0 = Extra_bddFindOneCube( dd, Cudd_Not(pNode->pDecs[i]->G) );  Cudd_Ref( bCube0 );
        bCof0 = Cudd_Cofactor( dd, bNewFunc, bCube0 );                     Cudd_Ref( bCof0 );
        Cudd_RecursiveDeref( dd, bCube0 );

        bCube1 = Extra_bddFindOneCube( dd,          pNode->pDecs[i]->G  );  Cudd_Ref( bCube1 );
        bCof1 = Cudd_Cofactor( dd, bNewFunc, bCube1 );                     Cudd_Ref( bCof1 );
        Cudd_RecursiveDeref( dd, bCube1 );

        Cudd_RecursiveDeref( dd, bNewFunc );

        // use the variable in the i-th level of the manager
1153
//      bNewFunc = Cudd_bddIte( dd, dd->vars[dd->invperm[i]],bCof1,bCof0 );     Cudd_Ref( bNewFunc );
Alan Mishchenko committed
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
        // use the first variale in the support of the component
        bNewFunc = Cudd_bddIte( dd, dd->vars[pNode->pDecs[i]->S->index],bCof1,bCof0 );     Cudd_Ref( bNewFunc );
        Cudd_RecursiveDeref( dd, bCof0 );
        Cudd_RecursiveDeref( dd, bCof1 );
    }

    if ( fRemap )
    {
        // remap the function to the top of the manager
        // remap the function to the first variables of the manager
        for ( i = 0; i < pNode->nDecs; i++ )
1165
    //      Permute[ pNode->pDecs[i]->S->index ] = dd->invperm[i];
Alan Mishchenko committed
1166
            Permute[ pNode->pDecs[i]->S->index ] = i;
Alan Mishchenko committed
1167

Alan Mishchenko committed
1168
        bNewFunc = Cudd_bddPermute( dd, bTemp = bNewFunc, Permute );   Cudd_Ref( bNewFunc );
Alan Mishchenko committed
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
        Cudd_RecursiveDeref( dd, bTemp );
    }

    Cudd_Deref( bNewFunc );
    return bNewFunc;
}


////////////////////////////////////////////////////////////////////////
///                           END OF FILE                            ///
////////////////////////////////////////////////////////////////////////
1180 1181
ABC_NAMESPACE_IMPL_END