fretInit.c 35.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
/**CFile****************************************************************

  FileName    [fretInit.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Flow-based retiming package.]

  Synopsis    [Initialization for retiming package.]

  Author      [Aaron Hurst]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - January 1, 2008.]

  Revision    [$Id: fretInit.c,v 1.00 2008/01/01 00:00:00 ahurst Exp $]

***********************************************************************/

#include "fretime.h"

#include "base/io/ioAbc.h"
#include "map/mio/mio.h"
#include "aig/hop/hop.h"

#ifdef ABC_USE_CUDD
#include "bdd/cudd/cuddInt.h"
#endif

ABC_NAMESPACE_IMPL_START


#undef DEBUG_PRINT_INIT_NTK


////////////////////////////////////////////////////////////////////////
///                     FUNCTION PROTOTYPES                          ///
////////////////////////////////////////////////////////////////////////

static void Abc_FlowRetime_UpdateForwardInit_rec( Abc_Obj_t * pObj );
static void Abc_FlowRetime_VerifyBackwardInit( Abc_Ntk_t * pNtk );
static void Abc_FlowRetime_VerifyBackwardInit_rec( Abc_Obj_t * pObj );
static Abc_Obj_t* Abc_FlowRetime_UpdateBackwardInit_rec( Abc_Obj_t *pOrigObj );

static void Abc_FlowRetime_SimulateNode( Abc_Obj_t * pObj );
static void Abc_FlowRetime_SimulateSop( Abc_Obj_t * pObj, char *pSop );

static void Abc_FlowRetime_SetInitToOrig( Abc_Obj_t *pInit, Abc_Obj_t *pOrig );
static void Abc_FlowRetime_GetInitToOrig( Abc_Obj_t *pInit, Abc_Obj_t **pOrig, int *lag );
static void Abc_FlowRetime_ClearInitToOrig( Abc_Obj_t *pInit );

extern void * Abc_FrameReadLibGen();

extern void Abc_NtkMarkCone_rec( Abc_Obj_t * pObj, int fForward );

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////


/**Function*************************************************************

  Synopsis    [Updates initial state information.]

  Description [Assumes latch boxes in original position, latches in
               new positions.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void
Abc_FlowRetime_InitState( Abc_Ntk_t * pNtk ) {

  if (!pManMR->fComputeInitState) return;

  if (pManMR->fIsForward)
    Abc_FlowRetime_UpdateForwardInit( pNtk );
  else {
    Abc_FlowRetime_UpdateBackwardInit( pNtk );
  }
}

/**Function*************************************************************

  Synopsis    [Prints initial state information.]

  Description [Prints distribution of 0,1,and X initial states.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
97
static inline int
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
Abc_FlowRetime_ObjFirstNonLatchBox( Abc_Obj_t * pOrigObj, Abc_Obj_t ** pResult ) {
  int lag = 0;
  Abc_Ntk_t *pNtk;
  *pResult = pOrigObj;
  pNtk = Abc_ObjNtk( pOrigObj );

  Abc_NtkIncrementTravId( pNtk );

  while( Abc_ObjIsBo(*pResult) || Abc_ObjIsLatch(*pResult) || Abc_ObjIsBi(*pResult) ) {
    assert(Abc_ObjFaninNum(*pResult));
    *pResult = Abc_ObjFanin0(*pResult);
    
    if (Abc_NodeIsTravIdCurrent(*pResult))
      return -1;
    Abc_NodeSetTravIdCurrent(*pResult);

    if (Abc_ObjIsLatch(*pResult)) ++lag;
  }

  return lag;
}


/**Function*************************************************************

  Synopsis    [Prints initial state information.]

  Description [Prints distribution of 0,1,and X initial states.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void
Abc_FlowRetime_PrintInitStateInfo( Abc_Ntk_t * pNtk ) {
  int i, n0=0, n1=0, nDC=0, nOther=0;
  Abc_Obj_t *pLatch;

  Abc_NtkForEachLatch( pNtk, pLatch, i ) {
    if (Abc_LatchIsInit0(pLatch)) n0++;
    else if (Abc_LatchIsInit1(pLatch)) n1++;
    else if (Abc_LatchIsInitDc(pLatch)) nDC++;
    else nOther++;
  }     

  printf("\tinitial states {0,1,x} = {%d, %d, %d}", n0, n1, nDC);
  if (nOther)
    printf(" + %d UNKNOWN", nOther);
  printf("\n");
}


/**Function*************************************************************

  Synopsis    [Computes initial state after forward retiming.]

  Description [Assumes box outputs in old positions stored w/ init values.
               Uses three-value simulation to preserve don't cares.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_FlowRetime_UpdateForwardInit( Abc_Ntk_t * pNtk ) {
  Abc_Obj_t *pObj, *pFanin;
  int i;

  vprintf("\t\tupdating init state\n");

  Abc_NtkIncrementTravId( pNtk );

  Abc_NtkForEachLatch( pNtk, pObj, i ) {
    pFanin = Abc_ObjFanin0(pObj);
    Abc_FlowRetime_UpdateForwardInit_rec( pFanin );

    if (FTEST(pFanin, INIT_0))
      Abc_LatchSetInit0( pObj );
    else if (FTEST(pFanin, INIT_1))
      Abc_LatchSetInit1( pObj );
    else
      Abc_LatchSetInitDc( pObj );
  }
}

void Abc_FlowRetime_UpdateForwardInit_rec( Abc_Obj_t * pObj ) {
  Abc_Obj_t *pNext;
  int i;

  assert(!Abc_ObjIsPi(pObj)); // should never reach the inputs

  if (Abc_ObjIsBo(pObj)) return;

  // visited?
  if (Abc_NodeIsTravIdCurrent(pObj)) return;
  Abc_NodeSetTravIdCurrent(pObj);

  Abc_ObjForEachFanin( pObj, pNext, i ) {
    Abc_FlowRetime_UpdateForwardInit_rec( pNext );
  }
  
  Abc_FlowRetime_SimulateNode( pObj );
}

/**Function*************************************************************

  Synopsis    [Recursively evaluates HOP netlist.]

  Description [Exponential.  There aren't enough flags on a HOP node.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static void Abc_FlowRetime_EvalHop_rec( Hop_Man_t *pHop, Hop_Obj_t *pObj, int *f, int *dc ) {
  int f1, dc1, f2, dc2;
  Hop_Obj_t *pReg = Hop_Regular(pObj);
  
  // const 0
  if (Hop_ObjIsConst1(pReg)) {
    *f  = 1;
    *f ^= (pReg == pObj ? 1 : 0);
    *dc = 0;
    return;
  }

  // PI
  if (Hop_ObjIsPi(pReg)) {
    *f  = pReg->fMarkA;
    *f ^= (pReg == pObj ? 1 : 0);
    *dc = pReg->fMarkB;
    return;
  }

  // PO
  if (Hop_ObjIsPo(pReg)) {
    assert( pReg == pObj );
    Abc_FlowRetime_EvalHop_rec(pHop, Hop_ObjChild0(pReg), f, dc);
    return;
  }

  // AND
  if (Hop_ObjIsAnd(pReg)) {
    Abc_FlowRetime_EvalHop_rec(pHop, Hop_ObjChild0(pReg), &f1, &dc1);
    Abc_FlowRetime_EvalHop_rec(pHop, Hop_ObjChild1(pReg), &f2, &dc2);

    *dc = (dc1 & f2) | (dc2 & f1) | (dc1 & dc2);
    *f  = f1 & f2;
    *f ^= (pReg == pObj ? 1 : 0);
    return;
  }

  assert(0);
}


/**Function*************************************************************

  Synopsis    [Sets initial value flags.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline void Abc_FlowRetime_SetInitValue( Abc_Obj_t * pObj,
                                                int val, int dc ) {
  
  // store init value
  FUNSET(pObj, INIT_CARE);
  if (!dc){
    if (val) {
      FSET(pObj, INIT_1);
    } else {
      FSET(pObj, INIT_0);
    }
  }
}


/**Function*************************************************************

  Synopsis    [Propogates initial state through a logic node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_FlowRetime_SimulateNode( Abc_Obj_t * pObj ) {
  Abc_Ntk_t *pNtk = Abc_ObjNtk(pObj);
  Abc_Obj_t * pFanin;
  int i, rAnd, rVar, dcAnd, dcVar;
#ifdef ABC_USE_CUDD
298 299
  DdManager * dd = (DdManager*)pNtk->pManFunc;
  DdNode *pBdd = (DdNode*)pObj->pData, *pVar;
300
#endif
301
  Hop_Man_t *pHop = (Hop_Man_t*)pNtk->pManFunc;
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
  
  assert(!Abc_ObjIsLatch(pObj));
  assert(Abc_ObjRegular(pObj));

  // (i) constant nodes
  if (Abc_NtkIsStrash(pNtk) && Abc_AigNodeIsConst(pObj)) {
    Abc_FlowRetime_SetInitValue(pObj, 1, 0);
    return;
  }
  if (!Abc_NtkIsStrash( pNtk ) && Abc_ObjIsNode(pObj)) {
    if (Abc_NodeIsConst0(pObj)) {
      Abc_FlowRetime_SetInitValue(pObj, 0, 0);
      return;
    } else if (Abc_NodeIsConst1(pObj)) {
      Abc_FlowRetime_SetInitValue(pObj, 1, 0);
      return;
    }
  }
  
  // (ii) terminal nodes
  if (!Abc_ObjIsNode(pObj)) {
    pFanin = Abc_ObjFanin0(pObj);
    
    Abc_FlowRetime_SetInitValue(pObj, 
         (FTEST(pFanin, INIT_1) ? 1 : 0) ^ pObj->fCompl0, 
         !FTEST(pFanin, INIT_CARE));    
    return;
  }

  // (iii) logic nodes

  // ------ SOP network
  if ( Abc_NtkHasSop( pNtk )) {
    Abc_FlowRetime_SimulateSop( pObj, (char *)Abc_ObjData(pObj) );
    return;
  }
#ifdef ABC_USE_CUDD
  // ------ BDD network
  else if ( Abc_NtkHasBdd( pNtk )) {
    assert(dd);
    assert(pBdd);

    // cofactor for 0,1 inputs
    // do nothing for X values
    Abc_ObjForEachFanin(pObj, pFanin, i) {
      pVar = Cudd_bddIthVar( dd, i );
      if (FTEST(pFanin, INIT_CARE)) {
        if (FTEST(pFanin, INIT_0))
          pBdd = Cudd_Cofactor( dd, pBdd, Cudd_Not(pVar) ); 
        else
          pBdd = Cudd_Cofactor( dd, pBdd, pVar ); 
      }
    }

    // if function has not been reduced to 
    // a constant, propagate an X
    rVar = (pBdd == Cudd_ReadOne(dd));
    dcVar = !Cudd_IsConstant(pBdd);
    
    Abc_FlowRetime_SetInitValue(pObj, rVar, dcVar);
    return;
  }
#endif // #ifdef ABC_USE_CUDD

  // ------ AIG logic network
  else if ( Abc_NtkHasAig( pNtk ) && !Abc_NtkIsStrash( pNtk )) {
    
    assert(Abc_ObjIsNode(pObj));
    assert(pObj->pData);
    assert(Abc_ObjFaninNum(pObj) <= Hop_ManPiNum(pHop) );
    
    // set vals at inputs
    Abc_ObjForEachFanin(pObj, pFanin, i) {
      Hop_ManPi(pHop, i)->fMarkA = FTEST(pFanin, INIT_1)?1:0;
      Hop_ManPi(pHop, i)->fMarkB = FTEST(pFanin, INIT_CARE)?1:0;
    }

379
    Abc_FlowRetime_EvalHop_rec( pHop, (Hop_Obj_t*)pObj->pData, &rVar, &dcVar );
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
   
    Abc_FlowRetime_SetInitValue(pObj, rVar, dcVar);

    // clear flags
    Abc_ObjForEachFanin(pObj, pFanin, i) {
      Hop_ManPi(pHop, i)->fMarkA = 0;
      Hop_ManPi(pHop, i)->fMarkB = 0;
    }

    return;
  }

  // ------ strashed network
  else if ( Abc_NtkIsStrash( pNtk )) {

    assert(Abc_ObjType(pObj) == ABC_OBJ_NODE);
    dcAnd = 0, rAnd = 1;
    
    pFanin = Abc_ObjFanin0(pObj);
    dcAnd |= FTEST(pFanin, INIT_CARE) ? 0 : 1;
    rVar = FTEST(pFanin, INIT_0) ? 0 : 1;
    if (pObj->fCompl0) rVar ^= 1; // complimented?
    rAnd &= rVar;
    
    pFanin = Abc_ObjFanin1(pObj);
    dcAnd |= FTEST(pFanin, INIT_CARE) ? 0 : 1;
    rVar = FTEST(pFanin, INIT_0) ? 0 : 1;
    if (pObj->fCompl1) rVar ^= 1; // complimented?
    rAnd &= rVar;
    
    if (!rAnd) dcAnd = 0; /* controlling value */
    
    Abc_FlowRetime_SetInitValue(pObj, rAnd, dcAnd);
    return;
  }

  // ------ MAPPED network
  else if ( Abc_NtkHasMapping( pNtk )) {
418
    Abc_FlowRetime_SimulateSop( pObj, (char *)Mio_GateReadSop((Mio_Gate_t*)pObj->pData) );
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
    return;
  }

  assert(0);
}


/**Function*************************************************************

  Synopsis    [Propogates initial state through a SOP node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_FlowRetime_SimulateSop( Abc_Obj_t * pObj, char *pSop ) {
  Abc_Obj_t * pFanin;
  char *pCube;
  int i, j, rAnd, rOr, rVar, dcAnd, dcOr, v;

  assert( pSop && !Abc_SopIsExorType(pSop) );
      
  rOr = 0, dcOr = 0;

  i = Abc_SopGetVarNum(pSop);
  Abc_SopForEachCube( pSop, i, pCube ) {
    rAnd = 1, dcAnd = 0;
    Abc_CubeForEachVar( pCube, v, j ) {
      pFanin = Abc_ObjFanin(pObj, j);
      if ( v == '0' )
        rVar = FTEST(pFanin, INIT_0) ? 1 : 0;
      else if ( v == '1' )
        rVar = FTEST(pFanin, INIT_1) ? 1 : 0;
      else
        continue;
      
      if (FTEST(pFanin, INIT_CARE))
        rAnd &= rVar;
      else
        dcAnd = 1;
    }
    if (!rAnd) dcAnd = 0; /* controlling value */
    if (dcAnd) 
      dcOr = 1;
    else
      rOr |= rAnd;
  }
  if (rOr) dcOr = 0; /* controlling value */
  
  // complement the result if necessary
  if ( !Abc_SopGetPhase(pSop) )
    rOr ^= 1;
      
  Abc_FlowRetime_SetInitValue(pObj, rOr, dcOr);
}

/**Function*************************************************************

  Synopsis    [Sets up backward initial state computation.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_FlowRetime_SetupBackwardInit( Abc_Ntk_t * pNtk ) {
  Abc_Obj_t *pLatch, *pObj, *pPi;
  int i;
  Vec_Ptr_t *vObj = Vec_PtrAlloc(100);

  // create the network used for the initial state computation
  if (Abc_NtkIsStrash(pNtk)) {
    pManMR->pInitNtk = Abc_NtkAlloc( ABC_NTK_LOGIC, ABC_FUNC_SOP, 1 );
  } else if (Abc_NtkHasMapping(pNtk))
    pManMR->pInitNtk = Abc_NtkAlloc( pNtk->ntkType, ABC_FUNC_SOP, 1 );
  else
    pManMR->pInitNtk = Abc_NtkAlloc( pNtk->ntkType, pNtk->ntkFunc, 1 );

  // mitre inputs
  Abc_NtkForEachLatch( pNtk, pLatch, i ) {
    // map latch to initial state network
    pPi = Abc_NtkCreatePi( pManMR->pInitNtk );

    // DEBUG
    // printf("setup : mapping latch %d to PI %d\n", pLatch->Id, pPi->Id);

    // has initial state requirement?
    if (Abc_LatchIsInit0(pLatch)) {
      pObj = Abc_NtkCreateNodeInv( pManMR->pInitNtk, pPi );
      Vec_PtrPush(vObj, pObj);
    }
    else if (Abc_LatchIsInit1(pLatch)) {
      Vec_PtrPush(vObj, pPi);
    }
    
    Abc_ObjSetData( pLatch, pPi );     // if not verifying init state
    // FDATA(pLatch)->pInitObj = pPi;  // if verifying init state
  }

  // are there any nodes not DC?
  if (!Vec_PtrSize(vObj)) {
    pManMR->fSolutionIsDc = 1;
    return;
  } else 
    pManMR->fSolutionIsDc = 0;

  // mitre output

  // create n-input AND gate
  pObj = Abc_NtkCreateNodeAnd( pManMR->pInitNtk, vObj );

  Abc_ObjAddFanin( Abc_NtkCreatePo( pManMR->pInitNtk ), pObj );

  Vec_PtrFree( vObj );
}


/**Function*************************************************************

  Synopsis    [Solves backward initial state computation.]

  Description []
               
  SideEffects [Sets object copies in init ntk.]

  SeeAlso     []

***********************************************************************/
int Abc_FlowRetime_SolveBackwardInit( Abc_Ntk_t * pNtk ) {
  int i;
  Abc_Obj_t *pObj, *pInitObj;
  Vec_Ptr_t *vDelete = Vec_PtrAlloc(0);
  Abc_Ntk_t *pSatNtk;
  int result;

  assert(pManMR->pInitNtk);

  // is the solution entirely DC's?
  if (pManMR->fSolutionIsDc) {
    Vec_PtrFree(vDelete);
    Abc_NtkForEachLatch( pNtk, pObj, i ) Abc_LatchSetInitDc( pObj );
    vprintf("\tno init state computation: all-don't-care solution\n");
    return 1;
  }

  // check that network is combinational
  Abc_NtkForEachObj( pManMR->pInitNtk, pObj, i ) {
    assert(!Abc_ObjIsLatch(pObj));
    assert(!Abc_ObjIsBo(pObj));
    assert(!Abc_ObjIsBi(pObj));
  }
  
  // delete superfluous nodes
  while(Vec_PtrSize( vDelete )) {
    pObj = (Abc_Obj_t *)Vec_PtrPop( vDelete );
    Abc_NtkDeleteObj( pObj );
  }
  Vec_PtrFree(vDelete);

  // do some final cleanup on the network
  Abc_NtkAddDummyPoNames(pManMR->pInitNtk);
  Abc_NtkAddDummyPiNames(pManMR->pInitNtk);
  if (Abc_NtkIsLogic(pManMR->pInitNtk))
    Abc_NtkCleanup(pManMR->pInitNtk, 0);

#if defined(DEBUG_PRINT_INIT_NTK)
  Abc_NtkLevelReverse( pManMR->pInitNtk );
  Abc_NtkForEachObj( pManMR->pInitNtk, pObj, i ) 
    if (Abc_ObjLevel( pObj ) < 2)
      Abc_ObjPrint(stdout, pObj);
#endif
  
  vprintf("\tsolving for init state (%d nodes)... ", Abc_NtkObjNum(pManMR->pInitNtk));
  fflush(stdout);
#ifdef ABC_USE_CUDD
  // convert SOPs to BDD
  if (Abc_NtkHasSop(pManMR->pInitNtk))
    Abc_NtkSopToBdd( pManMR->pInitNtk );
  // convert AIGs to BDD
  if (Abc_NtkHasAig(pManMR->pInitNtk))
    Abc_NtkAigToBdd( pManMR->pInitNtk );
#else
  // convert SOPs to AIG
  if (Abc_NtkHasSop(pManMR->pInitNtk))
    Abc_NtkSopToAig( pManMR->pInitNtk );
#endif
  pSatNtk = pManMR->pInitNtk;
  
  // solve
  result = Abc_NtkMiterSat( pSatNtk, (ABC_INT64_T)500000, (ABC_INT64_T)50000000, 0, NULL, NULL );

  if (!result) { 
    vprintf("SUCCESS\n");
  } else  {    
    vprintf("FAILURE\n");
    return 0;
  }

  // clear initial values, associate PIs to latches
  Abc_NtkForEachPi( pManMR->pInitNtk, pInitObj, i ) Abc_ObjSetCopy( pInitObj, NULL );
  Abc_NtkForEachLatch( pNtk, pObj, i ) {
625
    pInitObj = (Abc_Obj_t*)Abc_ObjData( pObj );
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
    assert( Abc_ObjIsPi( pInitObj ));
    Abc_ObjSetCopy( pInitObj, pObj );
    Abc_LatchSetInitNone( pObj );

    // DEBUG
    // printf("solve : getting latch %d from PI %d\n", pObj->Id, pInitObj->Id);
  }

  // copy solution from PIs to latches
  assert(pManMR->pInitNtk->pModel);
  Abc_NtkForEachPi( pManMR->pInitNtk, pInitObj, i ) {
    if ((pObj = Abc_ObjCopy( pInitObj ))) {
      if ( pManMR->pInitNtk->pModel[i] )
        Abc_LatchSetInit1( pObj );
      else
        Abc_LatchSetInit0( pObj );
    }
  }

#if defined(DEBUG_CHECK)
  // check that all latches have initial state
  Abc_NtkForEachLatch( pNtk, pObj, i ) assert( !Abc_LatchIsInitNone( pObj ) );
#endif

  return 1;
}


/**Function*************************************************************

  Synopsis    [Updates backward initial state computation problem.]

  Description [Assumes box outputs in old positions stored w/ init values.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_FlowRetime_UpdateBackwardInit( Abc_Ntk_t * pNtk ) {
  Abc_Obj_t *pOrigObj,  *pInitObj;
  Vec_Ptr_t *vBo = Vec_PtrAlloc(100);
  Vec_Ptr_t *vPi = Vec_PtrAlloc(100);
  Abc_Ntk_t *pInitNtk = pManMR-> pInitNtk;
  Abc_Obj_t *pBuf;
  int i;

  // remove PIs from network (from BOs)
  Abc_NtkForEachObj( pNtk, pOrigObj, i )
    if (Abc_ObjIsBo(pOrigObj)) {
      pInitObj = FDATA(pOrigObj)->pInitObj;
      assert(Abc_ObjIsPi(pInitObj));

      // DEBUG
      // printf("update : freeing PI %d\n", pInitObj->Id);
      
      // create a buffer instead
      pBuf = Abc_NtkCreateNodeBuf( pInitNtk, NULL );
      Abc_FlowRetime_ClearInitToOrig( pBuf );

      Abc_ObjBetterTransferFanout( pInitObj, pBuf, 0 );
      FDATA(pOrigObj)->pInitObj = pBuf;
      pOrigObj->fMarkA = 1;

      Vec_PtrPush(vBo, pOrigObj);
      Vec_PtrPush(vPi, pInitObj);
    }
  
  // check that PIs are all free
  Abc_NtkForEachPi( pInitNtk, pInitObj, i) {
    assert( Abc_ObjFanoutNum( pInitObj ) == 0);
  }

  // add PIs to to latches
  Abc_NtkForEachLatch( pNtk, pOrigObj, i ) {
    assert(Vec_PtrSize(vPi) > 0);
702
    pInitObj = (Abc_Obj_t*)Vec_PtrPop(vPi);
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775

    // DEBUG
    // printf("update : mapping latch %d to PI %d\n", pOrigObj->Id, pInitObj->Id);

    pOrigObj->fMarkA = pOrigObj->fMarkB = 1;
    FDATA(pOrigObj)->pInitObj = pInitObj;
    Abc_ObjSetData(pOrigObj, pInitObj);
  }  

  // recursively build init network
  Vec_PtrForEachEntry( Abc_Obj_t *, vBo, pOrigObj, i )
    Abc_FlowRetime_UpdateBackwardInit_rec( pOrigObj );
  
  // clear flags
  Abc_NtkForEachObj( pNtk, pOrigObj, i )
    pOrigObj->fMarkA = pOrigObj->fMarkB = 0;

  // deallocate
  Vec_PtrFree( vBo );
  Vec_PtrFree( vPi );
}


/**Function*************************************************************

  Synopsis    [Creates a corresponding node in the init state network]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Obj_t *Abc_FlowRetime_CopyNodeToInitNtk( Abc_Obj_t *pOrigObj ) {
  Abc_Ntk_t *pNtk = pManMR->pNtk;
  Abc_Ntk_t *pInitNtk = pManMR->pInitNtk;
  Abc_Obj_t *pInitObj;
  void *pData;
  int fCompl[2];

  assert(pOrigObj);

  // what we do depends on the ntk types of original / init networks...
  
  // (0) convert BI/BO nodes to buffers
  if (Abc_ObjIsBi( pOrigObj ) || Abc_ObjIsBo( pOrigObj ) ) {
    pInitObj =  Abc_NtkCreateNodeBuf( pInitNtk, NULL );
    Abc_FlowRetime_ClearInitToOrig( pInitObj );
    return pInitObj;
  }

  // (i) strash node -> SOP node
  if (Abc_NtkIsStrash( pNtk )) {

    if (Abc_AigNodeIsConst( pOrigObj )) {
      return Abc_NtkCreateNodeConst1( pInitNtk );
    }
    if (!Abc_ObjIsNode( pOrigObj )) {
      assert(Abc_ObjFaninNum(pOrigObj) == 1);
      pInitObj =  Abc_NtkCreateNodeBuf( pInitNtk, NULL );
      Abc_FlowRetime_ClearInitToOrig( pInitObj );
      return pInitObj;
    }

    assert( Abc_ObjIsNode(pOrigObj) );
    pInitObj = Abc_NtkCreateObj( pInitNtk, ABC_OBJ_NODE );
    
    fCompl[0] = pOrigObj->fCompl0 ? 1 : 0;
    fCompl[1] = pOrigObj->fCompl1 ? 1 : 0;
    
    pData =  Abc_SopCreateAnd( (Mem_Flex_t *)pInitNtk->pManFunc, 2, fCompl );
    assert(pData);
776
    pInitObj->pData = Abc_SopRegister( (Mem_Flex_t *)pInitNtk->pManFunc, (const char*)pData );
777 778 779 780 781 782 783 784 785 786 787 788 789
  } 

  // (ii) mapped node -> SOP node
  else if (Abc_NtkHasMapping( pNtk )) {
    if (!pOrigObj->pData) {
      // assume terminal...
      assert(Abc_ObjFaninNum(pOrigObj) == 1);

      pInitObj =  Abc_NtkCreateNodeBuf( pInitNtk, NULL );
      Abc_FlowRetime_ClearInitToOrig( pInitObj );
      return pInitObj;
    }

790 791 792
    pInitObj = Abc_NtkCreateObj( pInitNtk, (Abc_ObjType_t)Abc_ObjType(pOrigObj) );
    pData = Mio_GateReadSop((Mio_Gate_t*)pOrigObj->pData);
    assert( Abc_SopGetVarNum((char*)pData) == Abc_ObjFaninNum(pOrigObj) );
793
    
794
    pInitObj->pData = Abc_SopRegister( (Mem_Flex_t *)pInitNtk->pManFunc, (const char*)pData );
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
  } 

  // (iii) otherwise, duplicate obj
  else {
    pInitObj = Abc_NtkDupObj( pInitNtk, pOrigObj, 0 );
    
    // copy phase
    pInitObj->fPhase = pOrigObj->fPhase;
  }

  assert(pInitObj);
  return pInitObj;
}

/**Function*************************************************************

  Synopsis    [Updates backward initial state computation problem.]

  Description [Creates a duplicate node in the initial state network 
               corresponding to a node in the original circuit.  If
               fRecurse is set, the procedure recurses on and connects
               the new node to its fan-ins.  A latch in the original
               circuit corresponds to a PI in the initial state network.
               An existing PI may be supplied by pUseThisPi, and if the
               node is a latch, it will be used; otherwise the PI is
               saved in the list vOtherPis and subsequently used for
               another latch.]
               
  SideEffects [Nodes that have a corresponding initial state node
               are marked with fMarkA.  Nodes that have been fully
               connected in the initial state network are marked with
               fMarkB.]

  SeeAlso     []

***********************************************************************/
Abc_Obj_t* Abc_FlowRetime_UpdateBackwardInit_rec( Abc_Obj_t *pOrigObj) {
  Abc_Obj_t *pOrigFanin, *pInitFanin, *pInitObj;
  int i;

  assert(pOrigObj);

  // should never reach primary IOs
  assert(!Abc_ObjIsPi(pOrigObj));
  assert(!Abc_ObjIsPo(pOrigObj));

  // skip bias nodes
  if (FTEST(pOrigObj, BIAS_NODE)) 
    return NULL;

  // does an init node already exist?
  if(!pOrigObj->fMarkA) {

    pInitObj = Abc_FlowRetime_CopyNodeToInitNtk( pOrigObj );

    Abc_FlowRetime_SetInitToOrig( pInitObj, pOrigObj );
    FDATA(pOrigObj)->pInitObj = pInitObj;

    pOrigObj->fMarkA = 1;
  } else {
    pInitObj = FDATA(pOrigObj)->pInitObj;
  }
  assert(pInitObj);
    
  // have we already connected this object?
  if (!pOrigObj->fMarkB) {

    // create and/or connect fanins
    Abc_ObjForEachFanin( pOrigObj, pOrigFanin, i ) {
      // should not reach BOs (i.e. the start of the next frame)
      // the new latch bounday should lie before it
      assert(!Abc_ObjIsBo( pOrigFanin ));
      pInitFanin = Abc_FlowRetime_UpdateBackwardInit_rec( pOrigFanin );
      Abc_ObjAddFanin( pInitObj, pInitFanin );
    }

    pOrigObj->fMarkB = 1;
  }

  return pInitObj;
}


/**Function*************************************************************

  Synopsis    [Verifies backward init state computation.]

  Description [This procedure requires the BOs to store the original
               latch values and the latches to store the new values:
               both in the INIT_0 and INIT_1 flags in the Flow_Data
               structure.  (This is not currently the case in the rest
               of the code.)  Also, can not verify backward state
               computations that span multiple combinational frames.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_FlowRetime_VerifyBackwardInit( Abc_Ntk_t * pNtk ) {
  Abc_Obj_t *pObj, *pFanin;
  int i;

  vprintf("\t\tupdating init state\n");

  Abc_NtkIncrementTravId( pNtk );

  Abc_NtkForEachObj( pNtk, pObj, i )
    if (Abc_ObjIsBo( pObj )) {
      pFanin = Abc_ObjFanin0(pObj);
      Abc_FlowRetime_VerifyBackwardInit_rec( pFanin );

      if (FTEST(pObj, INIT_CARE)) {
        if(FTEST(pObj, INIT_CARE) != FTEST(pFanin, INIT_CARE)) {
          printf("ERROR: expected val=%d care=%d and got val=%d care=%d\n",
                 FTEST(pObj, INIT_1)?1:0, FTEST(pObj, INIT_CARE)?1:0, 
                 FTEST(pFanin, INIT_1)?1:0, FTEST(pFanin, INIT_CARE)?1:0 );

        }
      }
    }
}

void Abc_FlowRetime_VerifyBackwardInit_rec( Abc_Obj_t * pObj ) {
  Abc_Obj_t *pNext;
  int i;

  assert(!Abc_ObjIsBo(pObj)); // should never reach the inputs
  assert(!Abc_ObjIsPi(pObj)); // should never reach the inputs

  // visited?
  if (Abc_NodeIsTravIdCurrent(pObj)) return;
  Abc_NodeSetTravIdCurrent(pObj);

  if (Abc_ObjIsLatch(pObj)) {
    FUNSET(pObj, INIT_CARE);
    if (Abc_LatchIsInit0(pObj))
      FSET(pObj, INIT_0);
    else if (Abc_LatchIsInit1(pObj))
      FSET(pObj, INIT_1);
    return;
  }

  Abc_ObjForEachFanin( pObj, pNext, i ) {
    Abc_FlowRetime_VerifyBackwardInit_rec( pNext );
  }
  
  Abc_FlowRetime_SimulateNode( pObj );
}

/**Function*************************************************************

  Synopsis    [Constrains backward retiming for initializability.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_FlowRetime_PartialSat(Vec_Ptr_t *vNodes, int cut) {
  Abc_Ntk_t *pPartNtk, *pInitNtk = pManMR->pInitNtk;
  Abc_Obj_t *pObj, *pNext, *pPartObj, *pPartNext, *pPo;
  int i, j, result;

  assert( Abc_NtkPoNum( pInitNtk ) == 1 );

  pPartNtk = Abc_NtkAlloc( pInitNtk->ntkType, pInitNtk->ntkFunc, 0 );

  // copy network
  Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pObj, i ) {
    pObj->Level = i;
    assert(!Abc_ObjIsPo( pObj ));

    if (i < cut && !pObj->fMarkA) {
      pPartObj = Abc_NtkCreatePi( pPartNtk );
      Abc_ObjSetCopy( pObj, pPartObj );
    } else {
      // copy node
      pPartObj = Abc_NtkDupObj( pPartNtk, pObj, 0 );
      // copy complementation
      pPartObj->fPhase = pObj->fPhase;
   
      // connect fanins
      Abc_ObjForEachFanin( pObj, pNext, j ) {   
        pPartNext = Abc_ObjCopy( pNext );
        assert(pPartNext);
        Abc_ObjAddFanin( pPartObj, pPartNext );
      }
    }

    assert(pObj->pCopy == pPartObj);
  }
  
  // create PO
  pPo = Abc_NtkCreatePo( pPartNtk );
  pNext = Abc_ObjFanin0( Abc_NtkPo( pInitNtk, 0 ) );
  pPartNext = Abc_ObjCopy( pNext );
  assert( pPartNext );
  Abc_ObjAddFanin( pPo, pPartNext );
  
  // check network
#if defined(DEBUG_CHECK)
  Abc_NtkAddDummyPoNames(pPartNtk);
  Abc_NtkAddDummyPiNames(pPartNtk);
  Abc_NtkCheck( pPartNtk );
#endif

  result = Abc_NtkMiterSat( pPartNtk, (ABC_INT64_T)500000, (ABC_INT64_T)50000000, 0, NULL, NULL );

  Abc_NtkDelete( pPartNtk );
 
  return !result;
}


/**Function*************************************************************

  Synopsis    [Constrains backward retiming for initializability.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_FlowRetime_ConstrainInit( ) {
  Vec_Ptr_t *vNodes;
  int low, high, mid;
  int i, n, lag;
  Abc_Obj_t *pObj = NULL, *pOrigObj;
  InitConstraint_t *pConstraint = ABC_ALLOC( InitConstraint_t, 1 );

  memset( pConstraint, 0, sizeof(InitConstraint_t) );

  assert(pManMR->pInitNtk);

  vprintf("\tsearch for initial state conflict...\n");

  vNodes = Abc_NtkDfs(pManMR->pInitNtk, 0);
  n = Vec_PtrSize(vNodes);
  // also add PIs to vNodes
  Abc_NtkForEachPi(pManMR->pInitNtk, pObj, i) 
    Vec_PtrPush(vNodes, pObj);
  Vec_PtrReorder(vNodes, n);

#if defined(DEBUG_CHECK)
    assert(!Abc_FlowRetime_PartialSat( vNodes, 0 ));
#endif

  // grow initialization constraint
  do {
    vprintf("\t\t");

    // find element to add to set...
    low = 0, high = Vec_PtrSize(vNodes);
    while (low != high-1) {
      mid = (low + high) >> 1;
      
      if (!Abc_FlowRetime_PartialSat( vNodes, mid )) {
        low = mid;
        vprintf("-");
      } else {
        high = mid;
        vprintf("*");
      }
      fflush(stdout);
    }
      
#if defined(DEBUG_CHECK)
    assert(Abc_FlowRetime_PartialSat( vNodes, high ));
    assert(!Abc_FlowRetime_PartialSat( vNodes, low ));
#endif
    
    // mark its TFO
1072
    pObj = (Abc_Obj_t*)Vec_PtrEntry( vNodes, low );
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
    Abc_NtkMarkCone_rec( pObj, 1 );
    vprintf("   conflict term = %d ", low);

#if 0
    printf("init ------\n");
    Abc_ObjPrint(stdout, pObj);
    printf("\n");
    Abc_ObjPrintNeighborhood( pObj, 1 );
    printf("------\n");
#endif

    // add node to constraint
    Abc_FlowRetime_GetInitToOrig( pObj, &pOrigObj, &lag );
    assert(pOrigObj);
    vprintf(" <=> %d/%d\n", Abc_ObjId(pOrigObj), lag);

#if 0    
    printf("orig ------\n");
    Abc_ObjPrint(stdout, pOrigObj);
    printf("\n");
    Abc_ObjPrintNeighborhood( pOrigObj, 1 );
    printf("------\n");
#endif
    Vec_IntPush( &pConstraint->vNodes, Abc_ObjId(pOrigObj) );
    Vec_IntPush( &pConstraint->vLags, lag );

  } while (Abc_FlowRetime_PartialSat( vNodes, Vec_PtrSize(vNodes) ));

  pConstraint->pBiasNode = NULL;

  // add constraint
  Vec_PtrPush( pManMR->vInitConstraints, pConstraint );

  // clear marks
  Abc_NtkForEachObj( pManMR->pInitNtk, pObj, i)
    pObj->fMarkA = 0;

  // free
  Vec_PtrFree( vNodes );
}


/**Function*************************************************************

  Synopsis    [Removes nodes to bias against uninitializable cuts.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_FlowRetime_RemoveInitBias( ) {
  // Abc_Ntk_t *pNtk = pManMR->pNtk;
  Abc_Obj_t *pBiasNode;
  InitConstraint_t *pConstraint;
  int i;

  Vec_PtrForEachEntry( InitConstraint_t *, pManMR->vInitConstraints, pConstraint, i ) {
    pBiasNode = pConstraint->pBiasNode;
    pConstraint->pBiasNode = NULL;

    if (pBiasNode)
      Abc_NtkDeleteObj(pBiasNode);
  }
}


/**Function*************************************************************

  Synopsis    [Connects the bias node to one of the constraint vertices.]

  Description [ACK!
               Currently this is dumb dumb hack.
               What should we do with biases that belong on BOs?  These
               move through the circuit.
               Currently, the bias gets marked on the fan-in of BO
               and the bias gets implemented on every BO fan-out of a
               node.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static void Abc_FlowRetime_ConnectBiasNode(Abc_Obj_t *pBiasNode, Abc_Obj_t *pObj, int biasLag) {
  Abc_Obj_t *pCur, *pNext;
  int i;
  int lag;
  Vec_Ptr_t *vNodes = Vec_PtrAlloc(1);
  Vec_Int_t *vLags = Vec_IntAlloc(1);
  Abc_Ntk_t *pNtk = Abc_ObjNtk( pObj );
  
  Vec_PtrPush( vNodes, pObj );
  Vec_IntPush( vLags, 0 );

  Abc_NtkIncrementTravId( pNtk );

  while (Vec_PtrSize( vNodes )) {
1173
    pCur = (Abc_Obj_t*)Vec_PtrPop( vNodes );
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
    lag = Vec_IntPop( vLags );

    if (Abc_NodeIsTravIdCurrent( pCur )) continue;
    Abc_NodeSetTravIdCurrent( pCur );

    if (!Abc_ObjIsLatch(pCur) &&
        !Abc_ObjIsBo(pCur) &&
        Abc_FlowRetime_GetLag(pObj)+lag == biasLag ) {

      // printf("biasing : ");
      // Abc_ObjPrint(stdout,  pCur );
#if 1
      FSET( pCur, BLOCK );
#else
      Abc_ObjAddFanin( pCur, pBiasNode );
#endif
    }

    Abc_ObjForEachFanout( pCur, pNext, i ) {
      if (Abc_ObjIsBi(pNext) ||
          Abc_ObjIsLatch(pNext) ||
          Abc_ObjIsBo(pNext) ||
          Abc_ObjIsBo(pCur)) {
        Vec_PtrPush( vNodes, pNext );
        Vec_IntPush( vLags, lag - Abc_ObjIsLatch(pNext) ? 1 : 0 );
      }
    }
  }

  Vec_PtrFree( vNodes );
  Vec_IntFree( vLags );
}

/**Function*************************************************************

  Synopsis    [Adds nodes to bias against uninitializable cuts.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_FlowRetime_AddInitBias( ) {
  Abc_Ntk_t *pNtk = pManMR->pNtk;
  Abc_Obj_t *pBiasNode, *pObj;
  InitConstraint_t *pConstraint;
  int i, j, id;
  const int nConstraints = Vec_PtrSize( pManMR->vInitConstraints );

  pManMR->pDataArray = ABC_REALLOC( Flow_Data_t, pManMR->pDataArray, pManMR->nNodes + (nConstraints*(pManMR->iteration+1)) );
  memset(pManMR->pDataArray + pManMR->nNodes, 0, sizeof(Flow_Data_t)*(nConstraints*(pManMR->iteration+1)));

  vprintf("\t\tcreating %d bias structures\n", nConstraints);

  Vec_PtrForEachEntry(InitConstraint_t*, pManMR->vInitConstraints, pConstraint, i ) {
    if (pConstraint->pBiasNode) continue;
    
 //   printf("\t\t\tbias %d...\n", i);
    pBiasNode = Abc_NtkCreateBlackbox( pNtk );

    Vec_IntForEachEntry( &pConstraint->vNodes, id, j ) {
      pObj = Abc_NtkObj(pNtk, id);
      Abc_FlowRetime_ConnectBiasNode(pBiasNode, pObj, Vec_IntEntry(&pConstraint->vLags, j));
    }

    // pConstraint->pBiasNode = pBiasNode;
  }
}


/**Function*************************************************************

  Synopsis    [Clears mapping from init node to original node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_FlowRetime_ClearInitToOrig( Abc_Obj_t *pInit )
{
  int id = Abc_ObjId( pInit );
  
  // grow data structure if necessary
  if (id >= pManMR->sizeInitToOrig) {
    int oldSize = pManMR->sizeInitToOrig;
    pManMR->sizeInitToOrig = 1.5*id + 10;
1265
    pManMR->pInitToOrig = (NodeLag_t*)realloc(pManMR->pInitToOrig, sizeof(NodeLag_t)*pManMR->sizeInitToOrig);
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
    memset( &(pManMR->pInitToOrig[oldSize]), 0, sizeof(NodeLag_t)*(pManMR->sizeInitToOrig-oldSize) );
  }
  assert( pManMR->pInitToOrig );

  pManMR->pInitToOrig[id].id = -1;
}


/**Function*************************************************************

  Synopsis    [Sets mapping from init node to original node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_FlowRetime_SetInitToOrig( Abc_Obj_t *pInit, Abc_Obj_t *pOrig)
{
  int lag;
  int id = Abc_ObjId( pInit );
  
  // grow data structure if necessary
  if (id >= pManMR->sizeInitToOrig) {
    int oldSize = pManMR->sizeInitToOrig;
    pManMR->sizeInitToOrig = 1.5*id + 10;
1294
    pManMR->pInitToOrig = (NodeLag_t*)realloc(pManMR->pInitToOrig, sizeof(NodeLag_t)*pManMR->sizeInitToOrig);
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
    memset( &(pManMR->pInitToOrig[oldSize]), 0, sizeof(NodeLag_t)*(pManMR->sizeInitToOrig-oldSize) );
  }
  assert( pManMR->pInitToOrig );

  // ignore BI, BO, and latch nodes
  if (Abc_ObjIsBo(pOrig) || Abc_ObjIsBi(pOrig) || Abc_ObjIsLatch(pOrig)) {
    Abc_FlowRetime_ClearInitToOrig(pInit);
    return;
  }

  // move out of latch boxes
  lag = Abc_FlowRetime_ObjFirstNonLatchBox(pOrig, &pOrig);

  pManMR->pInitToOrig[id].id = Abc_ObjId(pOrig);
  pManMR->pInitToOrig[id].lag = Abc_FlowRetime_GetLag(pOrig) + lag;
}


/**Function*************************************************************

  Synopsis    [Gets mapping from init node to original node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_FlowRetime_GetInitToOrig( Abc_Obj_t *pInit, Abc_Obj_t **pOrig, int *lag ) {

  int id = Abc_ObjId( pInit );
  int origId;

  assert(id < pManMR->sizeInitToOrig);

  origId = pManMR->pInitToOrig[id].id;

  if (origId < 0) {
    assert(Abc_ObjFaninNum(pInit));
    Abc_FlowRetime_GetInitToOrig( Abc_ObjFanin0(pInit), pOrig, lag);
    return;
  }

  *pOrig = Abc_NtkObj(pManMR->pNtk, origId);
  *lag = pManMR->pInitToOrig[id].lag;
}
ABC_NAMESPACE_IMPL_END