Commit ef75968e by Zidong Du

~

parent 751b9c33
......@@ -33,15 +33,20 @@ R\left(c_0,s_0\right) & R\left(c_0,s_0\right)
\end{equation}
Each column of $M$ correspond to the semantic information carried by one symbol. In a perfectly compositional language, each symbol represents one specific concept exclusively. Therefore, the similarity between the columns of $M$ and a one-hot vector is align with the compositionality of the emergent language.
Finally, we define \emph{raw mutual information similarity} (denoted as $S_0$) as the average cosine similarity of $M$ columns and one-hot vectors, as Equation~\ref{eq:mis2}. Furthermore, MIS (denoted as $S$) is the normalized raw mutual information similarity into the $[0,1]$ value range.
Finally, we define \emph{raw mutual information similarity} ($MIS_0$)
as the average cosine similarity of $M$ columns and one-hot vectors, as
Equation~\ref{eq:mis2}. Furthermore, $MIS$ is the normalized raw mutual
information similarity into the $[0,1]$ value range, which can be computed with
following formula:
\begin{equation}\label{eq:mis2}\begin{aligned}
S_0 &= \frac{1}{2}\sum_{j=0}^1\frac{\max_{i=0,1}RI\left(c_i,s_j\right)}{\epsilon + \sqrt{\sum_{i=0}^{1}RI^2\left(c_i,s_j\right)}}, \epsilon > 0\\
S &= 2S_0 - 1
MIS_0 &= \frac{1}{2}\sum_{j=0}^1\frac{\max_{i=0,1}RI\left(c_i,s_j\right)}{\epsilon + \sqrt{\sum_{i=0}^{1}RI^2\left(c_i,s_j\right)}}, \epsilon > 0\\
MIS &= 2MIS_0 - 1
\end{aligned}\end{equation}
Generalized to $m$ symbols and $n$ objects, $S$ is as Equation~\ref{eq:mis}
Generalized to $m$ symbols and $n$ objects, $MIS$ can be computed with
following formula:
\begin{equation}\label{eq:mis2}\begin{aligned}
S_0 &= \frac{1}{m}\sum_{j=0}^{m-1}\frac{\max_{i\in[0,n-1]}R\left(c_i,s_j\right)}{\epsilon + \sqrt{\sum_{i=0}^{n-1}R^2\left(c_i,s_j\right)}}, \epsilon > 0\\
S &= \frac{n\cdot S_0 - 1}{n-1}
MIS_0 &= \frac{1}{m}\sum_{j=0}^{m-1}\frac{\max_{i\in[0,n-1]}R\left(c_i,s_j\right)}{\epsilon + \sqrt{\sum_{i=0}^{n-1}R^2\left(c_i,s_j\right)}}, \epsilon > 0\\
MIS &= \frac{n\cdot MIS_0 - 1}{n-1}
\end{aligned}\end{equation}
\begin{figure}[t]
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment