abstract = "A number of recent works have proposed techniques for end-to-end learning of communication protocols among cooperative multi-agent populations, and have simultaneously found the emergence of grounded human-interpretable language in the protocols developed by the agents, learned without any human supervision! In this paper, using a Task {\&} Talk reference game between two agents as a testbed, we present a sequence of {`}negative{'} results culminating in a {`}positive{'} one {--} showing that while most agent-invented languages are effective (i.e. achieve near-perfect task rewards), they are decidedly not interpretable or compositional. In essence, we find that natural language does not emerge {`}naturally{'},despite the semblance of ease of natural-language-emergence that one may gather from recent literature. We discuss how it is possible to coax the invented languages to become more and more human-like and compositional by increasing restrictions on how two agents may communicate.",
}
@inproceedings{chaabouni-etal-2019-word,
title = "Word-order Biases in Deep-agent Emergent Communication",
author = "Chaabouni, Rahma and
Kharitonov, Eugene and
Lazaric, Alessandro and
Dupoux, Emmanuel and
Baroni, Marco",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
abstract = "Sequence-processing neural networks led to remarkable progress on many NLP tasks. As a consequence, there has been increasing interest in understanding to what extent they process language as humans do. We aim here to uncover which biases such models display with respect to {``}natural{''} word-order constraints. We train models to communicate about paths in a simple gridworld, using miniature languages that reflect or violate various natural language trends, such as the tendency to avoid redundancy or to minimize long-distance dependencies. We study how the controlled characteristics of our miniature languages affect individual learning and their stability across multiple network generations. The results draw a mixed picture. On the one hand, neural networks show a strong tendency to avoid long-distance dependencies. On the other hand, there is no clear preference for the efficient, non-redundant encoding of information that is widely attested in natural language. We thus suggest inoculating a notion of {``}effort{''} into neural networks, as a possible way to make their linguistic behavior more human-like.",
}
@article{kirby2015compression,
title={Compression and communication in the cultural evolution of linguistic structure},
author={Kirby, Simon and Tamariz, Monica and Cornish, Hannah and Smith, Kenny},