Commit e75f97ef by Yaoyu Zhu

add adaptive batch size and fix bugs for history sampling

parent d08a947e
#!/bin/bash
set -x
set -euxo pipefail
project_name='DAPO'
exp_name='DAPO-Early-Qwen2.5-32B'
adv_estimator=grpo
kl_coef=0.0
kl_loss_coef=0.0
clip_ratio_low=0.2
clip_ratio_high=0.28
enable_overlong_buffer=True
overlong_buffer_len=$((1024 * 1))
overlong_penalty_factor=1.0
# An early version for DAPO
enable_filter_groups=True
train_prompt_bsz=128
train_prompt_mini_bsz=64
n_resp_per_prompt=16
use_token_level_loss=True
# Ray
RAY_ADDRESS=${RAY_ADDRESS:-"http://localhost:8265"}
WORKING_DIR=${WORKING_DIR:-"${PWD}"}
RUNTIME_ENV=${RUNTIME_ENV:-"${WORKING_DIR}/verl/trainer/runtime_env.yaml"}
NNODES=${NNODES:-16}
# Paths
# Algorithm
## Train
max_prompt_length=$((1024 * 2))
max_response_length=$((1024 * 16))
## Validation
val_top_k=-1 # 0 for HF rollout, -1 for vLLM rollout
# Performance Related Parameter
sp_size=8
use_dynamic_bsz=True
actor_ppo_max_token_len=$((max_prompt_length + max_response_length))
infer_ppo_max_token_len=$((max_prompt_length + max_response_length))
offload=True
gen_tp=4
ppo_max_token_len_per_gpu=32768
num_gpu=$(($USER_GPUS_PER_NODE * $SLURM_JOB_NUM_NODES))
export VLLM_USE_V1=1
echo "$WANDB_DIR"
echo "$SAVE_DIR"
echo "$WANDB_API_KEY"
# Set default model path if not provided
MODEL_PATH="/nfs_global/CodeV-R1-Distill-Qwen-7B"
# Train over a single node, 8 A100-80GB GPUs.
python3 -m verl.trainer.main_ppo \
algorithm.adv_estimator=grpo \
data.train_files=/nfs_global/verl/data/codev/v1/3.1k_r1_filtered/train.parquet \
data.val_files=/nfs_global/verl/data/codev/v1/3.1k_r1_filtered/test.parquet \
data.train_batch_size=${train_prompt_bsz} \
data.val_batch_size=512 \
data.max_prompt_length=2048 \
data.max_response_length=$max_response_length \
algorithm.filter_groups.enable=${enable_filter_groups} \
algorithm.filter_groups.max_num_gen_batches=999 \
algorithm.filter_groups.metric=acc \
data.gen_batch_size=$((($train_prompt_bsz * 4 + $num_gpu - 1) / $num_gpu * $num_gpu)) \
actor_rollout_ref.model.path=$MODEL_PATH \
+actor_rollout_ref.model.override_config.attention_dropout=0. \
+actor_rollout_ref.model.override_config.embd_pdrop=0. \
+actor_rollout_ref.model.override_config.resid_pdrop=0. \
actor_rollout_ref.model.enable_gradient_checkpointing=True \
+actor_rollout_ref.model.use_liger=True \
actor_rollout_ref.actor.optim.lr=1e-6 \
actor_rollout_ref.actor.optim.weight_decay=0.0 \
actor_rollout_ref.actor.use_dynamic_bsz=True\
actor_rollout_ref.actor.ppo_max_token_len_per_gpu=${ppo_max_token_len_per_gpu} \
actor_rollout_ref.model.use_remove_padding=True \
actor_rollout_ref.actor.clip_ratio_low=${clip_ratio_low} \
actor_rollout_ref.actor.clip_ratio_high=${clip_ratio_high} \
actor_rollout_ref.actor.ppo_mini_batch_size=${train_prompt_mini_bsz} \
actor_rollout_ref.actor.use_kl_loss=False \
actor_rollout_ref.actor.kl_loss_coef=0.00 \
actor_rollout_ref.actor.kl_loss_type=low_var_kl \
actor_rollout_ref.actor.entropy_coeff=0 \
actor_rollout_ref.actor.grad_clip=0.5 \
actor_rollout_ref.actor.use_token_level_loss=${use_token_level_loss} \
actor_rollout_ref.model.enable_gradient_checkpointing=True \
actor_rollout_ref.actor.fsdp_config.param_offload=False \
actor_rollout_ref.actor.fsdp_config.optimizer_offload=False \
actor_rollout_ref.rollout.log_prob_max_token_len_per_gpu=$(($ppo_max_token_len_per_gpu*2)) \
actor_rollout_ref.rollout.tensor_model_parallel_size=4 \
actor_rollout_ref.rollout.name=vllm \
actor_rollout_ref.rollout.n=${n_resp_per_prompt} \
actor_rollout_ref.rollout.val_kwargs.n=4 \
actor_rollout_ref.rollout.temperature=1.0 \
actor_rollout_ref.rollout.val_kwargs.temperature=1.0 \
actor_rollout_ref.rollout.val_kwargs.do_sample=True \
actor_rollout_ref.rollout.gpu_memory_utilization=0.8 \
actor_rollout_ref.rollout.enforce_eager=False \
actor_rollout_ref.rollout.free_cache_engine=False \
reward_model.reward_manager=prime \
actor_rollout_ref.ref.fsdp_config.param_offload=True \
custom_reward_function.overlong_buffer.enable=${enable_overlong_buffer} \
custom_reward_function.overlong_buffer.len=${overlong_buffer_len} \
custom_reward_function.overlong_buffer.penalty_factor=${overlong_penalty_factor} \
custom_reward_function.train.path=verl/utils/reward_score/codev.py \
custom_reward_function.train.name=compute_score_wrapper \
custom_reward_function.train.continuous_reward.enable=False \
algorithm.kl_ctrl.kl_coef=0.0 \
trainer.critic_warmup=0 \
trainer.logger=['console','wandb'] \
trainer.project_name='codev' \
trainer.experiment_name='codev-7b-3.1kdata' \
trainer.n_gpus_per_node=$USER_GPUS_PER_NODE \
trainer.nnodes=$SLURM_JOB_NUM_NODES \
+trainer.val_before_train=False \
trainer.default_local_dir=$SAVE_DIR \
trainer.resume_mode=auto \
trainer.default_hdfs_dir=null \
trainer.save_freq=20 \
trainer.test_freq=20 \
trainer.total_epochs=100 "${@:1}"
# custom_reward_function.path=/nfs_global/S/zhuyaoyu/projects/dapo/verl/utils/reward_score/codev.py \
\ No newline at end of file
#!/bin/bash
set -x
set -euxo pipefail
project_name='DAPO'
exp_name='DAPO-Early-Qwen2.5-32B'
adv_estimator=grpo
kl_coef=0.0
kl_loss_coef=0.0
clip_ratio_low=0.2
clip_ratio_high=0.28
enable_overlong_buffer=True
overlong_buffer_len=$((1024 * 1))
overlong_penalty_factor=1.0
# An early version for DAPO
enable_filter_groups=True
train_prompt_bsz=128
train_prompt_mini_bsz=64
n_resp_per_prompt=16
use_token_level_loss=True
# Ray
RAY_ADDRESS=${RAY_ADDRESS:-"http://localhost:8265"}
WORKING_DIR=${WORKING_DIR:-"${PWD}"}
RUNTIME_ENV=${RUNTIME_ENV:-"${WORKING_DIR}/verl/trainer/runtime_env.yaml"}
NNODES=${NNODES:-16}
# Paths
# Algorithm
## Train
max_prompt_length=$((1024 * 2))
max_response_length=$((1024 * 16))
## Validation
val_top_k=-1 # 0 for HF rollout, -1 for vLLM rollout
# Performance Related Parameter
sp_size=8
use_dynamic_bsz=True
actor_ppo_max_token_len=$((max_prompt_length + max_response_length))
infer_ppo_max_token_len=$((max_prompt_length + max_response_length))
offload=True
gen_tp=4
ppo_max_token_len_per_gpu=32768
num_gpu=$(($USER_GPUS_PER_NODE * $SLURM_JOB_NUM_NODES))
export VLLM_USE_V1=1
echo "$WANDB_DIR"
echo "$SAVE_DIR"
echo "$WANDB_API_KEY"
# Set default model path if not provided
MODEL_PATH="/nfs_global/CodeV-R1-Distill-Qwen-7B"
# Train over a single node, 8 A100-80GB GPUs.
python3 -m verl.trainer.main_ppo \
algorithm.adv_estimator=grpo \
data.train_files=/nfs_global/verl/data/codev/v1/3.1k_r1_filtered/train.parquet \
data.val_files=/nfs_global/verl/data/codev/v1/3.1k_r1_filtered/test.parquet \
data.train_batch_size=${train_prompt_bsz} \
data.val_batch_size=512 \
data.max_prompt_length=2048 \
data.max_response_length=$max_response_length \
algorithm.filter_groups.enable=${enable_filter_groups} \
algorithm.filter_groups.accelerate=False \
algorithm.filter_groups.max_num_gen_batches=999 \
algorithm.filter_groups.metric=acc \
data.gen_batch_size=$((($train_prompt_bsz * 2 + $num_gpu - 1) / $num_gpu * $num_gpu)) \
actor_rollout_ref.model.path=$MODEL_PATH \
+actor_rollout_ref.model.override_config.attention_dropout=0. \
+actor_rollout_ref.model.override_config.embd_pdrop=0. \
+actor_rollout_ref.model.override_config.resid_pdrop=0. \
actor_rollout_ref.model.enable_gradient_checkpointing=True \
+actor_rollout_ref.model.use_liger=True \
actor_rollout_ref.actor.optim.lr=1e-6 \
actor_rollout_ref.actor.optim.weight_decay=0.0 \
actor_rollout_ref.actor.use_dynamic_bsz=True\
actor_rollout_ref.actor.ppo_max_token_len_per_gpu=${ppo_max_token_len_per_gpu} \
actor_rollout_ref.model.use_remove_padding=True \
actor_rollout_ref.actor.clip_ratio_low=${clip_ratio_low} \
actor_rollout_ref.actor.clip_ratio_high=${clip_ratio_high} \
actor_rollout_ref.actor.ppo_mini_batch_size=${train_prompt_mini_bsz} \
actor_rollout_ref.actor.use_kl_loss=False \
actor_rollout_ref.actor.kl_loss_coef=0.00 \
actor_rollout_ref.actor.kl_loss_type=low_var_kl \
actor_rollout_ref.actor.entropy_coeff=0 \
actor_rollout_ref.actor.grad_clip=0.5 \
actor_rollout_ref.actor.use_token_level_loss=${use_token_level_loss} \
actor_rollout_ref.model.enable_gradient_checkpointing=True \
actor_rollout_ref.actor.fsdp_config.param_offload=False \
actor_rollout_ref.actor.fsdp_config.optimizer_offload=False \
actor_rollout_ref.rollout.log_prob_max_token_len_per_gpu=$(($ppo_max_token_len_per_gpu*2)) \
actor_rollout_ref.rollout.tensor_model_parallel_size=4 \
actor_rollout_ref.rollout.name=vllm \
actor_rollout_ref.rollout.n=${n_resp_per_prompt} \
actor_rollout_ref.rollout.val_kwargs.n=4 \
actor_rollout_ref.rollout.temperature=1.0 \
actor_rollout_ref.rollout.val_kwargs.temperature=1.0 \
actor_rollout_ref.rollout.val_kwargs.do_sample=True \
actor_rollout_ref.rollout.gpu_memory_utilization=0.8 \
actor_rollout_ref.rollout.enforce_eager=False \
actor_rollout_ref.rollout.free_cache_engine=False \
reward_model.reward_manager=prime \
actor_rollout_ref.ref.fsdp_config.param_offload=True \
custom_reward_function.overlong_buffer.enable=${enable_overlong_buffer} \
custom_reward_function.overlong_buffer.len=${overlong_buffer_len} \
custom_reward_function.overlong_buffer.penalty_factor=${overlong_penalty_factor} \
custom_reward_function.train.path=verl/utils/reward_score/codev.py \
custom_reward_function.train.name=compute_score_wrapper \
custom_reward_function.train.continuous_reward.enable=False \
algorithm.kl_ctrl.kl_coef=0.0 \
trainer.critic_warmup=0 \
trainer.logger=['console','wandb'] \
trainer.project_name='codev' \
trainer.experiment_name='codev-7b-3.1kdata' \
trainer.n_gpus_per_node=$USER_GPUS_PER_NODE \
trainer.nnodes=$SLURM_JOB_NUM_NODES \
+trainer.val_before_train=False \
trainer.default_local_dir=$SAVE_DIR \
trainer.resume_mode=auto \
trainer.default_hdfs_dir=null \
trainer.save_freq=20 \
trainer.test_freq=20 \
trainer.total_epochs=100 "${@:1}"
# custom_reward_function.path=/nfs_global/S/zhuyaoyu/projects/dapo/verl/utils/reward_score/codev.py \
\ No newline at end of file
......@@ -203,6 +203,7 @@ algorithm:
kl_coef: 0.001
filter_groups:
enable: False # We try to avoid forgetting to set enable
accelerate: True # accelerate DAPO
metric: null # acc / score / seq_reward / seq_final_reward / ...
max_num_gen_batches: 0 # Non-positive values mean no upper limit
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment