Commit c94442fa by ZhangXiaoyun

Initial commit

parents
.vscode
.git
.github
.venv
cache
docker
saves
hf_cache
ms_cache
om_cache
shared_data
output
.dockerignore
.gitattributes
.gitignore
# Note: actually we do not support .env, just for reference
# api
API_HOST=
API_PORT=
API_KEY=
API_MODEL_NAME=
API_VERBOSE=
FASTAPI_ROOT_PATH=
MAX_CONCURRENT=
# general
DISABLE_VERSION_CHECK=
FORCE_CHECK_IMPORTS=
ALLOW_EXTRA_ARGS=
LLAMAFACTORY_VERBOSITY=
USE_MODELSCOPE_HUB=
USE_OPENMIND_HUB=
USE_RAY=
RECORD_VRAM=
OPTIM_TORCH=
NPU_JIT_COMPILE=
# torchrun
FORCE_TORCHRUN=
MASTER_ADDR=
MASTER_PORT=
NNODES=
NODE_RANK=
NPROC_PER_NODE=
# wandb
WANDB_DISABLED=
WANDB_PROJECT=
WANDB_API_KEY=
# gradio ui
GRADIO_SHARE=
GRADIO_SERVER_NAME=
GRADIO_SERVER_PORT=
GRADIO_ROOT_PATH=
GRADIO_IPV6=
# setup
ENABLE_SHORT_CONSOLE=
# reserved (do not use)
LLAMABOARD_ENABLED=
LLAMABOARD_WORKDIR=
# Auto detect text files and perform LF normalization
* text=auto
# Contributor Covenant Code of Conduct
## Our Pledge
We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, religion, or sexual identity
and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.
## Our Standards
Examples of behavior that contributes to a positive environment for our
community include:
* Demonstrating empathy and kindness toward other people
* Being respectful of differing opinions, viewpoints, and experiences
* Giving and gracefully accepting constructive feedback
* Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
* Focusing on what is best not just for us as individuals, but for the
overall community
Examples of unacceptable behavior include:
* The use of sexualized language or imagery, and sexual attention or
advances of any kind
* Trolling, insulting or derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing others' private information, such as a physical or email
address, without their explicit permission
* Other conduct which could reasonably be considered inappropriate in a
professional setting
## Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.
Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.
## Scope
This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.
## Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
`hoshihiyouga AT gmail DOT com`.
All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the
reporter of any incident.
## Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:
### 1. Correction
**Community Impact**: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.
**Consequence**: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.
### 2. Warning
**Community Impact**: A violation through a single incident or series
of actions.
**Consequence**: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or
permanent ban.
### 3. Temporary Ban
**Community Impact**: A serious violation of community standards, including
sustained inappropriate behavior.
**Consequence**: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.
### 4. Permanent Ban
**Community Impact**: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.
**Consequence**: A permanent ban from any sort of public interaction within
the community.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant][homepage],
version 2.0, available at
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
Community Impact Guidelines were inspired by [Mozilla's code of conduct
enforcement ladder](https://github.com/mozilla/diversity).
[homepage]: https://www.contributor-covenant.org
For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.
# Contributing to LLaMA Factory
Everyone is welcome to contribute, and we value everybody's contribution. Code contributions are not the only way to help the community. Answering questions, helping others, and improving the documentation are also immensely valuable.
It also helps us if you spread the word! Reference the library in blog posts about the awesome projects it made possible, shout out on Twitter every time it has helped you, or simply ⭐️ the repository to say thank you.
However you choose to contribute, please be mindful and respect our [code of conduct](CODE_OF_CONDUCT.md).
**This guide was heavily inspired by [transformers guide to contributing](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md).**
## Ways to contribute
There are several ways you can contribute to LLaMA Factory:
* Fix outstanding issues with the existing code.
* Submit issues related to bugs or desired new features.
* Contribute to the examples or to the documentation.
### Style guide
LLaMA Factory follows the [Google Python Style Guide](https://google.github.io/styleguide/pyguide.html), check it for details.
### Create a Pull Request
1. Fork the [repository](https://github.com/hiyouga/LLaMA-Factory) by clicking on the [Fork](https://github.com/hiyouga/LLaMA-Factory/fork) button on the repository's page. This creates a copy of the code under your GitHub user account.
2. Clone your fork to your local disk, and add the base repository as a remote:
```bash
git clone git@github.com:[username]/LLaMA-Factory.git
cd LLaMA-Factory
git remote add upstream https://github.com/hiyouga/LLaMA-Factory.git
```
3. Create a new branch to hold your development changes:
```bash
git checkout -b dev_your_branch
```
4. Set up a development environment by running the following command in a virtual environment:
```bash
pip install -e ".[dev]"
```
If LLaMA Factory was already installed in the virtual environment, remove it with `pip uninstall llamafactory` before reinstalling it in editable mode with the -e flag.
5. Check code before commit:
```bash
make commit
make style && make quality
make test
```
6. Submit changes:
```bash
git add .
git commit -m "commit message"
git fetch upstream
git rebase upstream/main
git push -u origin dev_your_branch
```
7. Create a merge request from your branch `dev_your_branch` at [origin repo](https://github.com/hiyouga/LLaMA-Factory).
name: "\U0001F41B Bug / help"
description: Create a report to help us improve the LLaMA Factory
labels: ["bug", "pending"]
body:
- type: markdown
attributes:
value: |
Issues included in **[FAQs](https://github.com/hiyouga/LLaMA-Factory/issues/4614)** or those with **insufficient** information may be closed without a response.
已经包含在 **[常见问题](https://github.com/hiyouga/LLaMA-Factory/issues/4614)** 内或提供信息**不完整**的 issues 可能不会被回复。
- type: markdown
attributes:
value: |
Please do not create issues that are not related to framework bugs under this category, use **[Discussions](https://github.com/hiyouga/LLaMA-Factory/discussions/categories/q-a)** instead.
请勿在此分类下创建和框架 bug 无关的 issues,训练问题求助请使用 **[讨论区](https://github.com/hiyouga/LLaMA-Factory/discussions/categories/q-a)**。
- type: checkboxes
id: reminder
attributes:
label: Reminder
description: |
Please ensure you have read the above rules carefully and searched the existing issues (including FAQs).
请确保您已经认真阅读了上述规则并且搜索过现有的 issues(包括常见问题)。
options:
- label: I have read the above rules and searched the existing issues.
required: true
- type: textarea
id: system-info
validations:
required: true
attributes:
label: System Info
description: |
Please share your system info with us. You can run the command **llamafactory-cli env** and copy-paste its output below.
请提供您的系统信息。您可以在命令行运行 **llamafactory-cli env** 并将其输出复制到该文本框中。
placeholder: llamafactory version, platform, python version, ...
- type: textarea
id: reproduction
validations:
required: true
attributes:
label: Reproduction
description: |
Please provide entry arguments, error messages and stack traces that reproduces the problem.
请提供入口参数,错误日志以及异常堆栈以便于我们复现问题。
value: |
```text
Put your message here.
```
- type: textarea
id: others
validations:
required: false
attributes:
label: Others
name: "\U0001F680 Feature request"
description: Submit a request for a new feature
labels: ["enhancement", "pending"]
body:
- type: markdown
attributes:
value: |
Please do not create issues that are not related to new features under this category.
请勿在此分类下创建和新特性无关的 issues。
- type: checkboxes
id: reminder
attributes:
label: Reminder
description: |
Please ensure you have read the above rules carefully and searched the existing issues.
请确保您已经认真阅读了上述规则并且搜索过现有的 issues。
options:
- label: I have read the above rules and searched the existing issues.
required: true
- type: textarea
id: description
validations:
required: true
attributes:
label: Description
description: |
A clear and concise description of the feature proposal.
请详细描述您希望加入的新功能特性。
- type: textarea
id: contribution
validations:
required: false
attributes:
label: Pull Request
description: |
Have you already created the relevant PR and submitted the code?
您是否已经创建了相关 PR 并提交了代码?
blank_issues_enabled: false
# What does this PR do?
Fixes # (issue)
## Before submitting
- [ ] Did you read the [contributor guideline](https://github.com/hiyouga/LLaMA-Factory/blob/main/.github/CONTRIBUTING.md)?
- [ ] Did you write any new necessary tests?
# Reporting Security Issues
To report a security issue, please use the GitHub Security Advisory ["Report a Vulnerability"](https://github.com/hiyouga/LLaMA-Factory/security/advisories/new) tab.
We will send a response indicating the next steps in handling your report. After the initial reply to your report, the security team will keep you informed of the progress towards a fix and full announcement, and may ask for additional information or guidance.
Report security bugs in third-party modules to the person or team maintaining the module.
name: docker
on:
workflow_dispatch:
push:
branches:
- "main"
paths:
- "**/*.py"
- "requirements.txt"
- "docker/**"
- ".github/workflows/*.yml"
pull_request:
branches:
- "main"
paths:
- "**/*.py"
- "requirements.txt"
- "docker/**"
- ".github/workflows/*.yml"
jobs:
build:
runs-on: ubuntu-latest
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: ${{ github.ref != 'refs/heads/main' }}
environment:
name: docker
url: https://hub.docker.com/r/hiyouga/llamafactory
steps:
- name: Free up disk space
run: |
df -h
sudo rm -rf /usr/share/dotnet
sudo rm -rf /opt/ghc
sudo rm -rf /opt/hostedtoolcache
df -h
- name: Checkout
uses: actions/checkout@v4
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to Docker Hub
if: github.event_name != 'pull_request'
uses: docker/login-action@v3
with:
username: ${{ vars.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Build and push Docker image
uses: docker/build-push-action@v6
with:
context: .
file: ./docker/docker-cuda/Dockerfile
build-args: |
EXTRAS=metrics,deepspeed,liger-kernel
push: ${{ github.event_name != 'pull_request' }}
tags: docker.io/hiyouga/llamafactory:latest
cache-from: type=gha
cache-to: type=gha,mode=max
name: label_issue
on:
issues:
types:
- opened
jobs:
label_issue:
runs-on: ubuntu-latest
permissions:
issues: write
steps:
- env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
ISSUE_URL: ${{ github.event.issue.html_url }}
ISSUE_TITLE: ${{ github.event.issue.title }}
run: |
LABEL=""
NPU_KEYWORDS=(npu huawei ascend 华为 昇腾)
ISSUE_TITLE_LOWER=$(echo $ISSUE_TITLE | tr '[:upper:]' '[:lower:]')
for KEYWORD in ${NPU_KEYWORDS[@]}; do
if [[ $ISSUE_TITLE_LOWER == *$KEYWORD* ]] && [[ $ISSUE_TITLE_LOWER != *input* ]]; then
LABEL="npu"
break
fi
done
if [ -n "$LABEL" ]; then
gh issue edit $ISSUE_URL --add-label $LABEL
fi
name: publish
on:
workflow_dispatch:
release:
types:
- published
jobs:
publish:
name: Upload release to PyPI
runs-on: ubuntu-latest
environment:
name: release
url: https://pypi.org/p/llamafactory
permissions:
id-token: write
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.9"
- name: Build package
run: |
make build
- name: Publish package
uses: pypa/gh-action-pypi-publish@release/v1
name: tests
on:
workflow_dispatch:
push:
branches:
- "main"
paths:
- "**.py"
- "requirements.txt"
- ".github/workflows/*.yml"
pull_request:
branches:
- "main"
paths:
- "**.py"
- "requirements.txt"
- ".github/workflows/*.yml"
jobs:
tests:
strategy:
fail-fast: false
matrix:
python:
- "3.9"
- "3.10"
- "3.11"
- "3.12"
os:
- "ubuntu-latest"
- "windows-latest"
- "macos-13"
transformers:
- null
include: # test backward compatibility
- python: "3.9"
os: "ubuntu-latest"
transformers: "4.45.0"
- python: "3.9"
os: "ubuntu-latest"
transformers: "4.49.0"
- python: "3.9"
os: "ubuntu-latest"
transformers: "4.51.0"
runs-on: ${{ matrix.os }}
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}-${{ matrix.os }}-${{ matrix.python }}-${{ matrix.transformers }}
cancel-in-progress: ${{ github.ref != 'refs/heads/main' }}
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
OS_NAME: ${{ matrix.os }}
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python }}
cache: "pip"
cache-dependency-path: "**/requirements*.txt"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
python -m pip install ".[torch,dev]"
- name: Install transformers
if: ${{ matrix.transformers }}
run: |
python -m pip install "transformers==${{ matrix.transformers }}"
- name: Cache files
id: hf-hub-cache
uses: actions/cache@v4
with:
path: ${{ runner.temp }}/huggingface
key: huggingface-${{ matrix.os }}-${{ matrix.python }}-${{ matrix.transformers }}-${{ hashFiles('tests/version.txt') }}
- name: Check quality
run: |
make style && make quality
- name: Check license
run: |
make license
- name: Check build
run: |
make build
- name: Test with pytest
run: |
make test
env:
HF_HOME: ${{ runner.temp }}/huggingface
HF_HUB_OFFLINE: "${{ steps.hf-hub-cache.outputs.cache-hit == 'true' && '1' || '0' }}"
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
.idea/
# vscode
.vscode/
# uv
uv.lock
# custom .gitignore
hf_cache/
ms_cache/
om_cache/
cache/
config/
saves/
output/
wandb/
swanlog/
generated_predictions.jsonl
predictions_score.json
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v5.0.0
hooks:
- id: check-ast
- id: check-added-large-files
args: ['--maxkb=25000']
- id: check-merge-conflict
- id: check-yaml
- id: debug-statements
- id: end-of-file-fixer
- id: trailing-whitespace
args: [--markdown-linebreak-ext=md]
- id: no-commit-to-branch
args: ['--branch', 'main']
- repo: https://github.com/asottile/pyupgrade
rev: v3.17.0
hooks:
- id: pyupgrade
args: [--py38-plus]
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.6.9
hooks:
- id: ruff
args: [--fix]
- id: ruff-format
cff-version: 1.2.0
date-released: 2024-03
message: "If you use this software, please cite it as below."
authors:
- family-names: "Zheng"
given-names: "Yaowei"
- family-names: "Zhang"
given-names: "Richong"
- family-names: "Zhang"
given-names: "Junhao"
- family-names: "Ye"
given-names: "Yanhan"
- family-names: "Luo"
given-names: "Zheyan"
- family-names: "Feng"
given-names: "Zhangchi"
- family-names: "Ma"
given-names: "Yongqiang"
title: "LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models"
url: "https://arxiv.org/abs/2403.13372"
preferred-citation:
type: conference-paper
conference:
name: "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)"
authors:
- family-names: "Zheng"
given-names: "Yaowei"
- family-names: "Zhang"
given-names: "Richong"
- family-names: "Zhang"
given-names: "Junhao"
- family-names: "Ye"
given-names: "Yanhan"
- family-names: "Luo"
given-names: "Zheyan"
- family-names: "Feng"
given-names: "Zhangchi"
- family-names: "Ma"
given-names: "Yongqiang"
title: "LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models"
url: "https://arxiv.org/abs/2403.13372"
year: 2024
publisher: "Association for Computational Linguistics"
address: "Bangkok, Thailand"
This diff is collapsed. Click to expand it.
include LICENSE requirements.txt
.PHONY: build commit license quality style test
check_dirs := scripts src tests setup.py
build:
pip3 install build && python3 -m build
commit:
pre-commit install
pre-commit run --all-files
license:
python3 tests/check_license.py $(check_dirs)
quality:
ruff check $(check_dirs)
ruff format --check $(check_dirs)
style:
ruff check $(check_dirs) --fix
ruff format $(check_dirs)
test:
CUDA_VISIBLE_DEVICES= WANDB_DISABLED=true pytest -vv tests/
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
# Copyright 2025 the LlamaFactory team.
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import datasets
_HF_ENDPOINT = os.getenv("HF_ENDPOINT", "https://huggingface.co")
_DESCRIPTION = "BELLE multiturn chat dataset."
_CITATION = """\
@article{belle2023exploring,
title={Exploring the Impact of Instruction Data Scaling on Large Language Models},
author={Yunjie Ji, Yong Deng, Yan Gong, Yiping Peng, Qiang Niu, Lei Zhang, Baochang Ma, Xiangang Li},
journal={arXiv preprint arXiv:2303.14742},
year={2023}
}
"""
_HOMEPAGE = f"{_HF_ENDPOINT}/datasets/BelleGroup/multiturn_chat_0.8M"
_LICENSE = "gpl-3.0"
_URL = f"{_HF_ENDPOINT}/datasets/BelleGroup/multiturn_chat_0.8M/resolve/main/multiturn_chat_0.8M.json"
class BelleMultiturn(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("0.0.0")
def _info(self):
features = datasets.Features(
{"conversations": [{"from": datasets.Value("string"), "value": datasets.Value("string")}]}
)
return datasets.DatasetInfo(
description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
file_path = dl_manager.download(_URL)
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": file_path})]
def _generate_examples(self, filepath: str):
with open(filepath, encoding="utf-8") as f:
for key, row in enumerate(f):
data = json.loads(row)
conversations = []
prompt = data["instruction"].strip()
response = data["output"].strip()
assist_idx = prompt.rfind("Assistant:")
human_idx = prompt.rfind("Human:")
query = prompt[human_idx + 6 : assist_idx].strip()
prompt = prompt[:human_idx].strip()
conversations.insert(0, {"from": "gpt", "value": response})
conversations.insert(0, {"from": "human", "value": query})
while prompt.rfind("Assistant:") != -1:
assist_idx = prompt.rfind("Assistant:")
human_idx = prompt.rfind("Human:")
if human_idx != -1:
old_query = prompt[human_idx + 6 : assist_idx].strip()
old_resp = prompt[assist_idx + 10 :].strip()
conversations.insert(0, {"from": "gpt", "value": old_resp})
conversations.insert(0, {"from": "human", "value": old_query})
else:
break
prompt = prompt[:human_idx].strip()
yield key, {"conversations": conversations}
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
# Copyright 2025 the LlamaFactory team.
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import datasets
_HF_ENDPOINT = os.getenv("HF_ENDPOINT", "https://huggingface.co")
_DESCRIPTION = "Human preference data about helpfulness and harmlessness."
_CITATION = ""
_HOMEPAGE = f"{_HF_ENDPOINT}/datasets/Anthropic/hh-rlhf"
_LICENSE = "mit"
_URL = f"{_HF_ENDPOINT}/datasets/Anthropic/hh-rlhf/resolve/main/"
_URLS = {
"train": [
_URL + "harmless-base/train.jsonl.gz",
_URL + "helpful-base/train.jsonl.gz",
_URL + "helpful-online/train.jsonl.gz",
_URL + "helpful-rejection-sampled/train.jsonl.gz",
],
"test": [
_URL + "harmless-base/test.jsonl.gz",
_URL + "helpful-base/test.jsonl.gz",
_URL + "helpful-online/test.jsonl.gz",
_URL + "helpful-rejection-sampled/test.jsonl.gz",
],
}
class HhRlhfEn(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("0.0.0")
def _info(self) -> datasets.DatasetInfo:
features = datasets.Features(
{
"instruction": datasets.Value("string"),
"chosen": datasets.Value("string"),
"rejected": datasets.Value("string"),
"history": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
file_path = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": file_path["train"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": file_path["test"]}),
]
def _generate_examples(self, filepaths: list[str]):
key = 0
for filepath in filepaths:
with open(filepath, encoding="utf-8") as f:
for row in f:
data = json.loads(row)
chosen = data["chosen"]
rejected = data["rejected"]
assist_idx = rejected.rfind("\n\nAssistant: ")
r_reject = rejected[assist_idx + 13 :].strip()
assist_idx = chosen.rfind("\n\nAssistant: ")
r_accept = chosen[assist_idx + 13 :].strip()
human_idx = chosen.rfind("\n\nHuman: ")
query = chosen[human_idx + 9 : assist_idx].strip()
prompt = chosen[:human_idx]
history = []
while prompt.rfind("\n\nAssistant: ") != -1:
assist_idx = prompt.rfind("\n\nAssistant: ")
human_idx = prompt.rfind("\n\nHuman: ")
if human_idx != -1:
old_query = prompt[human_idx + 9 : assist_idx].strip()
old_resp = prompt[assist_idx + 13 :].strip()
history.insert(0, (old_query, old_resp))
else:
break
prompt = prompt[:human_idx]
yield key, {"instruction": query, "chosen": r_accept, "rejected": r_reject, "history": history}
key += 1
This source diff could not be displayed because it is too large. You can view the blob instead.
[
{
"messages": [
{
"content": "<audio>What's that sound?",
"role": "user"
},
{
"content": "It is the sound of glass shattering.",
"role": "assistant"
}
],
"audios": [
"mllm_demo_data/1.mp3"
]
},
{
"messages": [
{
"content": "<audio>What can you hear?",
"role": "user"
},
{
"content": "A woman is coughing.",
"role": "assistant"
}
],
"audios": [
"mllm_demo_data/2.wav"
]
},
{
"messages": [
{
"content": "<audio>What does the person say?",
"role": "user"
},
{
"content": "Mister Quiller is the apostle of the middle classes and we are glad to welcome his gospel.",
"role": "assistant"
}
],
"audios": [
"mllm_demo_data/3.flac"
]
}
]
[
{
"messages": [
{
"content": "<image>Who are they?",
"role": "user"
},
{
"content": "They're Kane and Gretzka from Bayern Munich.",
"role": "assistant"
},
{
"content": "What are they doing?<image>",
"role": "user"
},
{
"content": "They are celebrating on the soccer field.",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/1.jpg",
"mllm_demo_data/1.jpg"
]
},
{
"messages": [
{
"content": "<image>Who is he?",
"role": "user"
},
{
"content": "He's Thomas Muller from Bayern Munich.",
"role": "assistant"
},
{
"content": "Why is he on the ground?",
"role": "user"
},
{
"content": "Because he's sliding on his knees to celebrate.",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/2.jpg"
]
},
{
"messages": [
{
"content": "<image>Please describe this image",
"role": "user"
},
{
"content": "Chinese astronaut Gui Haichao is giving a speech.",
"role": "assistant"
},
{
"content": "What has he accomplished?",
"role": "user"
},
{
"content": "He was appointed to be a payload specialist on Shenzhou 16 mission in June 2022, thus becoming the first Chinese civilian of Group 3 in space on 30 May 2023. He is responsible for the on-orbit operation of space science experimental payloads.",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/3.jpg"
]
},
{
"messages": [
{
"content": "<image>他们是谁?",
"role": "user"
},
{
"content": "他们是拜仁慕尼黑的凯恩和格雷茨卡。",
"role": "assistant"
},
{
"content": "他们在做什么?<image>",
"role": "user"
},
{
"content": "他们在足球场上庆祝。",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/1.jpg",
"mllm_demo_data/1.jpg"
]
},
{
"messages": [
{
"content": "<image>他是谁?",
"role": "user"
},
{
"content": "他是来自拜仁慕尼黑的托马斯·穆勒。",
"role": "assistant"
},
{
"content": "他为什么在地上?",
"role": "user"
},
{
"content": "因为他正在双膝跪地滑行庆祝。",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/2.jpg"
]
},
{
"messages": [
{
"content": "<image>请描述这张图片",
"role": "user"
},
{
"content": "中国宇航员桂海潮正在讲话。",
"role": "assistant"
},
{
"content": "他取得过哪些成就?",
"role": "user"
},
{
"content": "他于2022年6月被任命为神舟十六号任务的有效载荷专家,从而成为2023年5月30日进入太空的首位平民宇航员。他负责在轨操作空间科学实验有效载荷。",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/3.jpg"
]
}
]
[
{
"messages": [
{
"content": "<video><audio>What is the video describing?",
"role": "user"
},
{
"content": "A girl who is drawing a picture of a guitar and feel nervous.",
"role": "assistant"
}
],
"videos": [
"mllm_demo_data/4.mp4"
],
"audios": [
"mllm_demo_data/4.mp3"
]
},
{
"messages": [
{
"content": "<video><audio>What does this girl say?",
"role": "user"
},
{
"content": "She says: 'Hello! Take a look at what am I drawing!'",
"role": "assistant"
}
],
"videos": [
"mllm_demo_data/4.mp4"
],
"audios": [
"mllm_demo_data/4.mp3"
]
},
{
"messages": [
{
"content": "<video><audio>What is this girl drawing with?",
"role": "user"
},
{
"content": "She is drawing with an iPad.",
"role": "assistant"
}
],
"videos": [
"mllm_demo_data/4.mp4"
],
"audios": [
"mllm_demo_data/4.mp3"
]
}
]
[
{
"messages": [
{
"content": "<video>Why is this video funny?",
"role": "user"
},
{
"content": "Because a baby is reading, and he is so cute!",
"role": "assistant"
}
],
"videos": [
"mllm_demo_data/1.mp4"
]
},
{
"messages": [
{
"content": "<video>What is she doing?",
"role": "user"
},
{
"content": "She is cooking.",
"role": "assistant"
}
],
"videos": [
"mllm_demo_data/2.avi"
]
},
{
"messages": [
{
"content": "<video>What's in the video?",
"role": "user"
},
{
"content": "A baby is playing in the living room.",
"role": "assistant"
}
],
"videos": [
"mllm_demo_data/3.mp4"
]
}
]
# Copyright 2025 the LlamaFactory team.
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import datasets
_HF_ENDPOINT = os.getenv("HF_ENDPOINT", "https://huggingface.co")
_DESCRIPTION = "UltraChat: Large-scale, Informative, and Diverse Multi-round Dialogue Data."
_CITATION = """\
@misc{UltraChat,
author = {Ding, Ning and Chen, Yulin and Xu, Bokai and Hu, Shengding and others},
title = {UltraChat: A Large-scale Auto-generated Multi-round Dialogue Data},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\\url{https://github.com/thunlp/ultrachat}},
}
"""
_HOMEPAGE = f"{_HF_ENDPOINT}/datasets/stingning/ultrachat"
_LICENSE = "cc-by-nc-4.0"
_BASE_DATA_URL = f"{_HF_ENDPOINT}/datasets/stingning/ultrachat/resolve/main/train_{{idx}}.jsonl"
class UltraChat(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("0.0.0")
def _info(self):
features = datasets.Features(
{"conversations": [{"from": datasets.Value("string"), "value": datasets.Value("string")}]}
)
return datasets.DatasetInfo(
description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
file_paths = [dl_manager.download(_BASE_DATA_URL.format(idx=idx)) for idx in range(10)] # multiple shards
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": file_paths})]
def _generate_examples(self, filepaths: list[str]):
for filepath in filepaths:
with open(filepath, encoding="utf-8") as f:
for row in f:
try:
data = json.loads(row)
except Exception:
continue
key: int = data["id"]
content: list[str] = data["data"]
if len(content) % 2 == 1:
content.pop(-1)
if len(content) < 2:
continue
conversations = [
{"from": "human" if i % 2 == 0 else "gpt", "value": content[i]} for i in range(len(content))
]
yield key, {"conversations": conversations}
This source diff could not be displayed because it is too large. You can view the blob instead.
# https://hub.docker.com/r/hiyouga/pytorch/tags
ARG BASE_IMAGE=hiyouga/pytorch:th2.6.0-cu124-flashattn2.7.4-cxx11abi0-devel
FROM ${BASE_IMAGE}
# Installation arguments
ARG PIP_INDEX=https://pypi.org/simple
ARG EXTRAS=metrics
ARG INSTALL_FLASHATTN=false
ARG HTTP_PROXY=""
# Define environments
ENV MAX_JOBS=16
ENV FLASH_ATTENTION_FORCE_BUILD=TRUE
ENV VLLM_WORKER_MULTIPROC_METHOD=spawn
ENV DEBIAN_FRONTEND=noninteractive
ENV NODE_OPTIONS=""
ENV PIP_ROOT_USER_ACTION=ignore
ENV http_proxy="${HTTP_PROXY}"
ENV https_proxy="${HTTP_PROXY}"
# Use Bash instead of default /bin/sh
SHELL ["/bin/bash", "-c"]
# Set the working directory
WORKDIR /app
# Change pip source
RUN pip config set global.index-url "${PIP_INDEX}" && \
pip config set global.extra-index-url "${PIP_INDEX}" && \
pip install --no-cache-dir --upgrade pip packaging wheel setuptools
# Install the requirements
COPY requirements.txt /app
RUN pip install --no-cache-dir -r requirements.txt
# Copy the rest of the application into the image
COPY . /app
# Install LLaMA Factory
RUN pip install --no-cache-dir -e ".[${EXTRAS}]" --no-build-isolation
# Rebuild flash attention
RUN if [ "${INSTALL_FLASHATTN}" == "true" ]; then \
pip uninstall -y ninja && \
pip install --no-cache-dir ninja && \
pip install --no-cache-dir flash-attn --no-build-isolation; \
fi
# Set up volumes
# VOLUME [ "/root/.cache/huggingface", "/app/shared_data", "/app/output" ]
# Expose port 7860 for LLaMA Board
ENV GRADIO_SERVER_PORT=7860
EXPOSE 7860
# Expose port 8000 for API service
ENV API_PORT=8000
EXPOSE 8000
# unset proxy
ENV http_proxy=
ENV https_proxy=
# Reset pip config
RUN pip config unset global.index-url && \
pip config unset global.extra-index-url
# Start from the pytorch official image (ubuntu-22.04 + cuda-12.4.1 + python-3.11)
# https://hub.docker.com/r/pytorch/pytorch/tags
FROM pytorch/pytorch:2.6.0-cuda12.4-cudnn9-devel
# Define environments
ENV MAX_JOBS=16
ENV VLLM_WORKER_MULTIPROC_METHOD=spawn
ENV DEBIAN_FRONTEND=noninteractive
ENV NODE_OPTIONS=""
ENV PIP_ROOT_USER_ACTION=ignore
# Define installation arguments
ARG APT_SOURCE=https://mirrors.tuna.tsinghua.edu.cn/ubuntu/
ARG PIP_INDEX=https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
# Set apt source
RUN cp /etc/apt/sources.list /etc/apt/sources.list.bak && \
{ \
echo "deb ${APT_SOURCE} jammy main restricted universe multiverse"; \
echo "deb ${APT_SOURCE} jammy-updates main restricted universe multiverse"; \
echo "deb ${APT_SOURCE} jammy-backports main restricted universe multiverse"; \
echo "deb ${APT_SOURCE} jammy-security main restricted universe multiverse"; \
} > /etc/apt/sources.list
# Install systemctl and wget
RUN apt-get update && \
apt-get install -y -o Dpkg::Options::="--force-confdef" systemd wget && \
apt-get clean
# Install git and vim
RUN apt-get update && \
apt-get install -y git vim && \
apt-get clean
# Install gcc and g++
RUN apt-get update && \
apt-get install -y gcc g++ && \
apt-get clean
# Change pip source
RUN pip config set global.index-url "${PIP_INDEX}" && \
pip config set global.extra-index-url "${PIP_INDEX}" && \
pip install --no-cache-dir --upgrade pip packaging wheel setuptools
# Install flash-attn-2.7.4.post1 (cxx11abi=False)
RUN wget -nv https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu12torch2.6cxx11abiFALSE-cp311-cp311-linux_x86_64.whl && \
pip install --no-cache-dir flash_attn-2.7.4.post1+cu12torch2.6cxx11abiFALSE-cp311-cp311-linux_x86_64.whl
# Install flashinfer-0.2.2.post1+cu124 (cxx11abi=False)
RUN wget -nv https://github.com/flashinfer-ai/flashinfer/releases/download/v0.2.2.post1/flashinfer_python-0.2.2.post1+cu124torch2.6-cp38-abi3-linux_x86_64.whl && \
pip install --no-cache-dir flashinfer_python-0.2.2.post1+cu124torch2.6-cp38-abi3-linux_x86_64.whl
# Reset pip config
RUN pip config unset global.index-url && \
pip config unset global.extra-index-url
services:
llamafactory:
build:
dockerfile: ./docker/docker-cuda/Dockerfile
context: ../..
args:
PIP_INDEX: https://pypi.org/simple
EXTRAS: metrics
container_name: llamafactory
ports:
- "7860:7860"
- "8000:8000"
ipc: host
tty: true
# shm_size: "16gb" # ipc: host is set
stdin_open: true
command: bash
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: "all"
capabilities: [ gpu ]
restart: unless-stopped
# https://hub.docker.com/r/ascendai/cann/tags
ARG BASE_IMAGE=ascendai/cann:8.0.0-910b-ubuntu22.04-py3.11
FROM ${BASE_IMAGE}
# Installation arguments
ARG PIP_INDEX=https://pypi.org/simple
ARG EXTRAS=torch-npu,metrics
ARG HTTP_PROXY=""
# Define environments
ENV MAX_JOBS=16
ENV FLASH_ATTENTION_FORCE_BUILD=TRUE
ENV VLLM_WORKER_MULTIPROC_METHOD=spawn
ENV DEBIAN_FRONTEND=noninteractive
ENV NODE_OPTIONS=""
ENV PIP_ROOT_USER_ACTION=ignore
ENV http_proxy="${HTTP_PROXY}"
ENV https_proxy="${HTTP_PROXY}"
# Use Bash instead of default /bin/sh
SHELL ["/bin/bash", "-c"]
# Set the working directory
WORKDIR /app
# Change pip source
RUN pip config set global.index-url "${PIP_INDEX}" && \
pip config set global.extra-index-url "${PIP_INDEX}" && \
pip install --no-cache-dir --upgrade pip packaging wheel setuptools
# Install the requirements
COPY requirements.txt /app
RUN pip install --no-cache-dir -r requirements.txt
# Copy the rest of the application into the image
COPY . /app
# Install LLaMA Factory
RUN pip install --no-cache-dir -e ".[${EXTRAS}]" --no-build-isolation
# Set up volumes
# VOLUME [ "/root/.cache/huggingface", "/app/shared_data", "/app/output" ]
# Expose port 7860 for LLaMA Board
ENV GRADIO_SERVER_PORT=7860
EXPOSE 7860
# Expose port 8000 for API service
ENV API_PORT=8000
EXPOSE 8000
# unset proxy
ENV http_proxy=
ENV https_proxy=
# Reset pip config
RUN pip config unset global.index-url && \
pip config unset global.extra-index-url
services:
llamafactory:
build:
dockerfile: ./docker/docker-npu/Dockerfile
context: ../..
args:
PIP_INDEX: https://pypi.org/simple
EXTRAS: torch-npu,metrics
container_name: llamafactory
volumes:
- /usr/local/dcmi:/usr/local/dcmi
- /usr/local/bin/npu-smi:/usr/local/bin/npu-smi
- /usr/local/Ascend/driver:/usr/local/Ascend/driver
- /etc/ascend_install.info:/etc/ascend_install.info
ports:
- "7860:7860"
- "8000:8000"
ipc: host
tty: true
# shm_size: "16gb" # ipc: host is set
stdin_open: true
command: bash
devices:
- /dev/davinci0
- /dev/davinci_manager
- /dev/devmm_svm
- /dev/hisi_hdc
restart: unless-stopped
# https://hub.docker.com/r/rocm/pytorch/tags
ARG BASE_IMAGE=rocm/pytorch:rocm6.4.1_ubuntu22.04_py3.10_pytorch_release_2.6.0
FROM ${BASE_IMAGE}
# Installation arguments
ARG PIP_INDEX=https://pypi.org/simple
ARG EXTRAS=metrics
ARG INSTALL_FLASHATTN=false
ARG HTTP_PROXY=""
ARG PYTORCH_INDEX=https://download.pytorch.org/whl/rocm6.3
# Define environments
ENV MAX_JOBS=16
ENV FLASH_ATTENTION_FORCE_BUILD=TRUE
ENV VLLM_WORKER_MULTIPROC_METHOD=spawn
ENV DEBIAN_FRONTEND=noninteractive
ENV NODE_OPTIONS=""
ENV PIP_ROOT_USER_ACTION=ignore
ENV http_proxy="${HTTP_PROXY}"
ENV https_proxy="${HTTP_PROXY}"
# Use Bash instead of default /bin/sh
SHELL ["/bin/bash", "-c"]
# Set the working directory
WORKDIR /app
# Change pip source
RUN pip config set global.index-url "${PIP_INDEX}" && \
pip config set global.extra-index-url "${PIP_INDEX}" && \
pip install --no-cache-dir --upgrade pip packaging wheel setuptools
# Reinstall pytorch rocm
RUN pip uninstall -y torch torchvision torchaudio && \
pip install --no-cache-dir --pre torch torchvision torchaudio --index-url "${PYTORCH_INDEX}"
# Install the requirements
COPY requirements.txt /app
RUN pip install --no-cache-dir -r requirements.txt
# Copy the rest of the application into the image
COPY . /app
# Install LLaMA Factory
RUN pip install --no-cache-dir -e ".[${EXTRAS}]" --no-build-isolation
# Rebuild flash attention
RUN if [ "${INSTALL_FLASHATTN}" == "true" ]; then \
pip uninstall -y ninja && \
pip install --no-cache-dir ninja && \
pip install --no-cache-dir flash-attn --no-build-isolation; \
fi
# Set up volumes
# VOLUME [ "/root/.cache/huggingface", "/app/shared_data", "/app/output" ]
# Expose port 7860 for LLaMA Board
ENV GRADIO_SERVER_PORT=7860
EXPOSE 7860
# Expose port 8000 for API service
ENV API_PORT=8000
EXPOSE 8000
# unset proxy
ENV http_proxy=
ENV https_proxy=
# Reset pip config
RUN pip config unset global.index-url && \
pip config unset global.extra-index-url
services:
llamafactory:
build:
dockerfile: ./docker/docker-rocm/Dockerfile
context: ../..
args:
PIP_INDEX: https://pypi.org/simple
EXTRAS: metrics
container_name: llamafactory
ports:
- "7860:7860"
- "8000:8000"
ipc: host
tty: true
# shm_size: "16gb" # ipc: host is set
stdin_open: true
command: bash
devices:
- /dev/kfd:/dev/kfd
- /dev/dri:/dev/dri
restart: unless-stopped
# Copyright 2025 the LlamaFactory team.
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import datasets
import pandas as pd
_CITATION = """\
@article{huang2023ceval,
title={C-Eval: A Multi-Level Multi-Discipline Chinese Evaluation Suite for Foundation Models},
author={Huang, Yuzhen and Bai, Yuzhuo and Zhu, Zhihao and others},
journal={arXiv preprint arXiv:2305.08322},
year={2023}
}
"""
_DESCRIPTION = """\
C-Eval is a comprehensive Chinese evaluation suite for foundation models.
It consists of 13948 multi-choice questions spanning 52 diverse disciplines and four difficulty levels.
"""
_HOMEPAGE = "https://cevalbenchmark.com"
_LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License"
_URL = "ceval.zip"
task_list = [
"computer_network",
"operating_system",
"computer_architecture",
"college_programming",
"college_physics",
"college_chemistry",
"advanced_mathematics",
"probability_and_statistics",
"discrete_mathematics",
"electrical_engineer",
"metrology_engineer",
"high_school_mathematics",
"high_school_physics",
"high_school_chemistry",
"high_school_biology",
"middle_school_mathematics",
"middle_school_biology",
"middle_school_physics",
"middle_school_chemistry",
"veterinary_medicine",
"college_economics",
"business_administration",
"marxism",
"mao_zedong_thought",
"education_science",
"teacher_qualification",
"high_school_politics",
"high_school_geography",
"middle_school_politics",
"middle_school_geography",
"modern_chinese_history",
"ideological_and_moral_cultivation",
"logic",
"law",
"chinese_language_and_literature",
"art_studies",
"professional_tour_guide",
"legal_professional",
"high_school_chinese",
"high_school_history",
"middle_school_history",
"civil_servant",
"sports_science",
"plant_protection",
"basic_medicine",
"clinical_medicine",
"urban_and_rural_planner",
"accountant",
"fire_engineer",
"environmental_impact_assessment_engineer",
"tax_accountant",
"physician",
]
class CevalConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
class Ceval(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
CevalConfig(
name=task_name,
)
for task_name in task_list
]
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("int32"),
"question": datasets.Value("string"),
"A": datasets.Value("string"),
"B": datasets.Value("string"),
"C": datasets.Value("string"),
"D": datasets.Value("string"),
"answer": datasets.Value("string"),
"explanation": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URL)
task_name = self.config.name
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, "test", f"{task_name}_test.csv"),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir, "val", f"{task_name}_val.csv"),
},
),
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, "dev", f"{task_name}_dev.csv"),
},
),
]
def _generate_examples(self, filepath):
df = pd.read_csv(filepath, encoding="utf-8")
for i, instance in enumerate(df.to_dict(orient="records")):
if "answer" not in instance.keys():
instance["answer"] = ""
if "explanation" not in instance.keys():
instance["explanation"] = ""
yield i, instance
{
"accountant": {
"name": "注册会计师",
"category": "Other"
},
"advanced_mathematics": {
"name": "高等数学",
"category": "STEM"
},
"art_studies": {
"name": "艺术学",
"category": "Humanities"
},
"basic_medicine": {
"name": "基础医学",
"category": "Other"
},
"business_administration": {
"name": "工商管理",
"category": "Social Sciences"
},
"chinese_language_and_literature": {
"name": "中国语言文学",
"category": "Humanities"
},
"civil_servant": {
"name": "公务员",
"category": "Other"
},
"clinical_medicine": {
"name": "临床医学",
"category": "Other"
},
"college_chemistry": {
"name": "大学化学",
"category": "STEM"
},
"college_economics": {
"name": "大学经济学",
"category": "Social Sciences"
},
"college_physics": {
"name": "大学物理",
"category": "STEM"
},
"college_programming": {
"name": "大学编程",
"category": "STEM"
},
"computer_architecture": {
"name": "计算机组成",
"category": "STEM"
},
"computer_network": {
"name": "计算机网络",
"category": "STEM"
},
"discrete_mathematics": {
"name": "离散数学",
"category": "STEM"
},
"education_science": {
"name": "教育学",
"category": "Social Sciences"
},
"electrical_engineer": {
"name": "注册电气工程师",
"category": "STEM"
},
"environmental_impact_assessment_engineer": {
"name": "环境影响评价工程师",
"category": "Other"
},
"fire_engineer": {
"name": "注册消防工程师",
"category": "Other"
},
"high_school_biology": {
"name": "高中生物",
"category": "STEM"
},
"high_school_chemistry": {
"name": "高中化学",
"category": "STEM"
},
"high_school_chinese": {
"name": "高中语文",
"category": "Humanities"
},
"high_school_geography": {
"name": "高中地理",
"category": "Social Sciences"
},
"high_school_history": {
"name": "高中历史",
"category": "Humanities"
},
"high_school_mathematics": {
"name": "高中数学",
"category": "STEM"
},
"high_school_physics": {
"name": "高中物理",
"category": "STEM"
},
"high_school_politics": {
"name": "高中政治",
"category": "Social Sciences"
},
"ideological_and_moral_cultivation": {
"name": "思想道德修养与法律基础",
"category": "Humanities"
},
"law": {
"name": "法学",
"category": "Humanities"
},
"legal_professional": {
"name": "法律职业资格",
"category": "Humanities"
},
"logic": {
"name": "逻辑学",
"category": "Humanities"
},
"mao_zedong_thought": {
"name": "毛泽东思想和中国特色社会主义理论体系概论",
"category": "Social Sciences"
},
"marxism": {
"name": "马克思主义基本原理",
"category": "Social Sciences"
},
"metrology_engineer": {
"name": "注册计量师",
"category": "STEM"
},
"middle_school_biology": {
"name": "初中生物",
"category": "STEM"
},
"middle_school_chemistry": {
"name": "初中化学",
"category": "STEM"
},
"middle_school_geography": {
"name": "初中地理",
"category": "Social Sciences"
},
"middle_school_history": {
"name": "初中历史",
"category": "Humanities"
},
"middle_school_mathematics": {
"name": "初中数学",
"category": "STEM"
},
"middle_school_physics": {
"name": "初中物理",
"category": "STEM"
},
"middle_school_politics": {
"name": "初中政治",
"category": "Social Sciences"
},
"modern_chinese_history": {
"name": "近代史纲要",
"category": "Humanities"
},
"operating_system": {
"name": "操作系统",
"category": "STEM"
},
"physician": {
"name": "医师资格",
"category": "Other"
},
"plant_protection": {
"name": "植物保护",
"category": "Other"
},
"probability_and_statistics": {
"name": "概率统计",
"category": "STEM"
},
"professional_tour_guide": {
"name": "导游资格",
"category": "Humanities"
},
"sports_science": {
"name": "体育学",
"category": "Other"
},
"tax_accountant": {
"name": "税务师",
"category": "Other"
},
"teacher_qualification": {
"name": "教师资格",
"category": "Social Sciences"
},
"urban_and_rural_planner": {
"name": "注册城乡规划师",
"category": "Other"
},
"veterinary_medicine": {
"name": "兽医学",
"category": "STEM"
}
}
# Copyright 2025 the LlamaFactory team.
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import datasets
import pandas as pd
_CITATION = """\
@article{li2023cmmlu,
title={CMMLU: Measuring massive multitask language understanding in Chinese},
author={Haonan Li and Yixuan Zhang and Fajri Koto and Yifei Yang and others,
journal={arXiv preprint arXiv:2306.09212},
year={2023}
}
"""
_DESCRIPTION = """\
CMMLU is a comprehensive Chinese assessment suite specifically designed to evaluate the advanced knowledge
and reasoning abilities of LLMs within the Chinese language and cultural context.
"""
_HOMEPAGE = "https://github.com/haonan-li/CMMLU"
_LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License"
_URL = "cmmlu.zip"
task_list = [
"agronomy",
"anatomy",
"ancient_chinese",
"arts",
"astronomy",
"business_ethics",
"chinese_civil_service_exam",
"chinese_driving_rule",
"chinese_food_culture",
"chinese_foreign_policy",
"chinese_history",
"chinese_literature",
"chinese_teacher_qualification",
"clinical_knowledge",
"college_actuarial_science",
"college_education",
"college_engineering_hydrology",
"college_law",
"college_mathematics",
"college_medical_statistics",
"college_medicine",
"computer_science",
"computer_security",
"conceptual_physics",
"construction_project_management",
"economics",
"education",
"electrical_engineering",
"elementary_chinese",
"elementary_commonsense",
"elementary_information_and_technology",
"elementary_mathematics",
"ethnology",
"food_science",
"genetics",
"global_facts",
"high_school_biology",
"high_school_chemistry",
"high_school_geography",
"high_school_mathematics",
"high_school_physics",
"high_school_politics",
"human_sexuality",
"international_law",
"journalism",
"jurisprudence",
"legal_and_moral_basis",
"logical",
"machine_learning",
"management",
"marketing",
"marxist_theory",
"modern_chinese",
"nutrition",
"philosophy",
"professional_accounting",
"professional_law",
"professional_medicine",
"professional_psychology",
"public_relations",
"security_study",
"sociology",
"sports_science",
"traditional_chinese_medicine",
"virology",
"world_history",
"world_religions",
]
class CMMLUConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super().__init__(version=datasets.Version("1.0.1"), **kwargs)
class CMMLU(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
CMMLUConfig(
name=task_name,
)
for task_name in task_list
]
def _info(self):
features = datasets.Features(
{
"question": datasets.Value("string"),
"A": datasets.Value("string"),
"B": datasets.Value("string"),
"C": datasets.Value("string"),
"D": datasets.Value("string"),
"answer": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URL)
task_name = self.config.name
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, f"test/{task_name}.csv"),
},
),
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, f"dev/{task_name}.csv"),
},
),
]
def _generate_examples(self, filepath):
df = pd.read_csv(filepath, header=0, index_col=0, encoding="utf-8")
for i, instance in enumerate(df.to_dict(orient="records")):
question = instance.pop("Question", "")
answer = instance.pop("Answer", "")
instance["question"] = question
instance["answer"] = answer
yield i, instance
{
"agronomy": {
"name": "农学",
"category": "Other"
},
"anatomy": {
"name": "解剖学",
"category": "STEM"
},
"ancient_chinese": {
"name": "古汉语",
"category": "Social Sciences"
},
"arts": {
"name": "艺术学",
"category": "Humanities"
},
"astronomy": {
"name": "天文学",
"category": "STEM"
},
"business_ethics": {
"name": "商业伦理",
"category": "Social Sciences"
},
"chinese_civil_service_exam": {
"name": "中国公务员考试",
"category": "Social Sciences"
},
"chinese_driving_rule": {
"name": "中国驾驶规则",
"category": "Other"
},
"chinese_food_culture": {
"name": "中国饮食文化",
"category": "Social Sciences"
},
"chinese_foreign_policy": {
"name": "中国外交政策",
"category": "Social Sciences"
},
"chinese_history": {
"name": "中国历史",
"category": "Humanities"
},
"chinese_literature": {
"name": "中国文学",
"category": "Humanities"
},
"chinese_teacher_qualification": {
"name": "中国教师资格",
"category": "Social Sciences"
},
"college_actuarial_science": {
"name": "大学精算学",
"category": "STEM"
},
"college_education": {
"name": "大学教育学",
"category": "Social Sciences"
},
"college_engineering_hydrology": {
"name": "大学工程水文学",
"category": "STEM"
},
"college_law": {
"name": "大学法律",
"category": "Humanities"
},
"college_mathematics": {
"name": "大学数学",
"category": "STEM"
},
"college_medical_statistics": {
"name": "大学医学统计",
"category": "STEM"
},
"clinical_knowledge": {
"name": "临床知识",
"category": "Other"
},
"college_medicine": {
"name": "大学医学",
"category": "Other"
},
"computer_science": {
"name": "计算机科学",
"category": "STEM"
},
"computer_security": {
"name": "计算机安全",
"category": "Other"
},
"conceptual_physics": {
"name": "概念物理学",
"category": "STEM"
},
"construction_project_management": {
"name": "建设工程管理",
"category": "Other"
},
"economics": {
"name": "经济学",
"category": "Social Sciences"
},
"education": {
"name": "教育学",
"category": "Social Sciences"
},
"elementary_chinese": {
"name": "小学语文",
"category": "Social Sciences"
},
"elementary_commonsense": {
"name": "小学常识",
"category": "Other"
},
"elementary_information_and_technology": {
"name": "小学信息技术",
"category": "Other"
},
"electrical_engineering": {
"name": "电气工程",
"category": "STEM"
},
"elementary_mathematics": {
"name": "初等数学",
"category": "STEM"
},
"ethnology": {
"name": "民族学",
"category": "Social Sciences"
},
"food_science": {
"name": "食品科学",
"category": "Other"
},
"genetics": {
"name": "遗传学",
"category": "STEM"
},
"global_facts": {
"name": "全球事实",
"category": "Humanities"
},
"high_school_biology": {
"name": "高中生物",
"category": "STEM"
},
"high_school_chemistry": {
"name": "高中化学",
"category": "STEM"
},
"high_school_geography": {
"name": "高中地理",
"category": "Social Sciences"
},
"high_school_mathematics": {
"name": "高中数学",
"category": "STEM"
},
"high_school_physics": {
"name": "高中物理学",
"category": "STEM"
},
"high_school_politics": {
"name": "高中政治",
"category": "Social Sciences"
},
"human_sexuality": {
"name": "人类性行为",
"category": "Other"
},
"international_law": {
"name": "国际法学",
"category": "Humanities"
},
"journalism": {
"name": "新闻学",
"category": "Social Sciences"
},
"jurisprudence": {
"name": "法理学",
"category": "Humanities"
},
"legal_and_moral_basis": {
"name": "法律与道德基础",
"category": "Other"
},
"logical": {
"name": "逻辑学",
"category": "Humanities"
},
"machine_learning": {
"name": "机器学习",
"category": "STEM"
},
"management": {
"name": "管理学",
"category": "Social Sciences"
},
"marketing": {
"name": "市场营销",
"category": "Social Sciences"
},
"marxist_theory": {
"name": "马克思主义理论",
"category": "Humanities"
},
"modern_chinese": {
"name": "现代汉语",
"category": "Social Sciences"
},
"nutrition": {
"name": "营养学",
"category": "Other"
},
"philosophy": {
"name": "哲学",
"category": "Humanities"
},
"professional_accounting": {
"name": "专业会计",
"category": "Social Sciences"
},
"professional_law": {
"name": "专业法学",
"category": "Humanities"
},
"professional_medicine": {
"name": "专业医学",
"category": "Other"
},
"professional_psychology": {
"name": "专业心理学",
"category": "Social Sciences"
},
"public_relations": {
"name": "公共关系",
"category": "Social Sciences"
},
"security_study": {
"name": "安全研究",
"category": "Social Sciences"
},
"sociology": {
"name": "社会学",
"category": "Social Sciences"
},
"sports_science": {
"name": "体育学",
"category": "Other"
},
"traditional_chinese_medicine": {
"name": "中医中药",
"category": "Other"
},
"virology": {
"name": "病毒学",
"category": "STEM"
},
"world_history": {
"name": "世界历史",
"category": "Humanities"
},
"world_religions": {
"name": "世界宗教",
"category": "Humanities"
}
}
{
"abstract_algebra": {
"name": "abstract algebra",
"category": "STEM"
},
"anatomy": {
"name": "anatomy",
"category": "Other"
},
"astronomy": {
"name": "astronomy",
"category": "STEM"
},
"business_ethics": {
"name": "business ethics",
"category": "Other"
},
"clinical_knowledge": {
"name": "clinical knowledge",
"category": "Other"
},
"college_biology": {
"name": "college biology",
"category": "STEM"
},
"college_chemistry": {
"name": "college chemistry",
"category": "STEM"
},
"college_computer_science": {
"name": "college computer science",
"category": "STEM"
},
"college_mathematics": {
"name": "college mathematics",
"category": "STEM"
},
"college_medicine": {
"name": "college medicine",
"category": "Other"
},
"college_physics": {
"name": "college physics",
"category": "STEM"
},
"computer_security": {
"name": "computer security",
"category": "STEM"
},
"conceptual_physics": {
"name": "conceptual physics",
"category": "STEM"
},
"econometrics": {
"name": "econometrics",
"category": "Social Sciences"
},
"electrical_engineering": {
"name": "electrical engineering",
"category": "STEM"
},
"elementary_mathematics": {
"name": "elementary mathematics",
"category": "STEM"
},
"formal_logic": {
"name": "formal logic",
"category": "Humanities"
},
"global_facts": {
"name": "global facts",
"category": "Other"
},
"high_school_biology": {
"name": "high school biology",
"category": "STEM"
},
"high_school_chemistry": {
"name": "high school chemistry",
"category": "STEM"
},
"high_school_computer_science": {
"name": "high school computer science",
"category": "STEM"
},
"high_school_european_history": {
"name": "high school european history",
"category": "Humanities"
},
"high_school_geography": {
"name": "high school geography",
"category": "Social Sciences"
},
"high_school_government_and_politics": {
"name": "high school government and politics",
"category": "Social Sciences"
},
"high_school_macroeconomics": {
"name": "high school macroeconomics",
"category": "Social Sciences"
},
"high_school_mathematics": {
"name": "high school mathematics",
"category": "STEM"
},
"high_school_microeconomics": {
"name": "high school microeconomics",
"category": "Social Sciences"
},
"high_school_physics": {
"name": "high school physics",
"category": "STEM"
},
"high_school_psychology": {
"name": "high school psychology",
"category": "Social Sciences"
},
"high_school_statistics": {
"name": "high school statistics",
"category": "STEM"
},
"high_school_us_history": {
"name": "high school us history",
"category": "Humanities"
},
"high_school_world_history": {
"name": "high school world history",
"category": "Humanities"
},
"human_aging": {
"name": "human aging",
"category": "Other"
},
"human_sexuality": {
"name": "human sexuality",
"category": "Social Sciences"
},
"international_law": {
"name": "international law",
"category": "Humanities"
},
"jurisprudence": {
"name": "jurisprudence",
"category": "Humanities"
},
"logical_fallacies": {
"name": "logical fallacies",
"category": "Humanities"
},
"machine_learning": {
"name": "machine learning",
"category": "STEM"
},
"management": {
"name": "management",
"category": "Other"
},
"marketing": {
"name": "marketing",
"category": "Other"
},
"medical_genetics": {
"name": "medical genetics",
"category": "Other"
},
"miscellaneous": {
"name": "miscellaneous",
"category": "Other"
},
"moral_disputes": {
"name": "moral disputes",
"category": "Humanities"
},
"moral_scenarios": {
"name": "moral scenarios",
"category": "Humanities"
},
"nutrition": {
"name": "nutrition",
"category": "Other"
},
"philosophy": {
"name": "philosophy",
"category": "Humanities"
},
"prehistory": {
"name": "prehistory",
"category": "Humanities"
},
"professional_accounting": {
"name": "professional accounting",
"category": "Other"
},
"professional_law": {
"name": "professional law",
"category": "Humanities"
},
"professional_medicine": {
"name": "professional medicine",
"category": "Other"
},
"professional_psychology": {
"name": "professional psychology",
"category": "Social Sciences"
},
"public_relations": {
"name": "public relations",
"category": "Social Sciences"
},
"security_studies": {
"name": "security studies",
"category": "Social Sciences"
},
"sociology": {
"name": "sociology",
"category": "Social Sciences"
},
"us_foreign_policy": {
"name": "us foreign policy",
"category": "Social Sciences"
},
"virology": {
"name": "virology",
"category": "Other"
},
"world_religions": {
"name": "world religions",
"category": "Humanities"
}
}
# Copyright 2025 the LlamaFactory team.
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import datasets
import pandas as pd
_CITATION = """\
@article{hendryckstest2021,
title={Measuring Massive Multitask Language Understanding},
author={Dan Hendrycks and Collin Burns and others},
journal={Proceedings of the International Conference on Learning Representations (ICLR)},
year={2021}
}
"""
_DESCRIPTION = """\
Measuring Massive Multitask Language Understanding by Dan Hendrycks, Collin Burns, Steven Basart,
Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt (ICLR 2021).
"""
_HOMEPAGE = "https://github.com/hendrycks/test"
_LICENSE = "MIT"
_URL = "mmlu.zip"
task_list = [
"high_school_european_history",
"business_ethics",
"clinical_knowledge",
"medical_genetics",
"high_school_us_history",
"high_school_physics",
"high_school_world_history",
"virology",
"high_school_microeconomics",
"econometrics",
"college_computer_science",
"high_school_biology",
"abstract_algebra",
"professional_accounting",
"philosophy",
"professional_medicine",
"nutrition",
"global_facts",
"machine_learning",
"security_studies",
"public_relations",
"professional_psychology",
"prehistory",
"anatomy",
"human_sexuality",
"college_medicine",
"high_school_government_and_politics",
"college_chemistry",
"logical_fallacies",
"high_school_geography",
"elementary_mathematics",
"human_aging",
"college_mathematics",
"high_school_psychology",
"formal_logic",
"high_school_statistics",
"international_law",
"high_school_mathematics",
"high_school_computer_science",
"conceptual_physics",
"miscellaneous",
"high_school_chemistry",
"marketing",
"professional_law",
"management",
"college_physics",
"jurisprudence",
"world_religions",
"sociology",
"us_foreign_policy",
"high_school_macroeconomics",
"computer_security",
"moral_scenarios",
"moral_disputes",
"electrical_engineering",
"astronomy",
"college_biology",
]
class MMLUConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
class MMLU(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
MMLUConfig(
name=task_name,
)
for task_name in task_list
]
def _info(self):
features = datasets.Features(
{
"question": datasets.Value("string"),
"A": datasets.Value("string"),
"B": datasets.Value("string"),
"C": datasets.Value("string"),
"D": datasets.Value("string"),
"answer": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URL)
task_name = self.config.name
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, "data", "test", f"{task_name}_test.csv"),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir, "data", "val", f"{task_name}_val.csv"),
},
),
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, "data", "dev", f"{task_name}_dev.csv"),
},
),
]
def _generate_examples(self, filepath):
df = pd.read_csv(filepath, header=None)
df.columns = ["question", "A", "B", "C", "D", "answer"]
yield from enumerate(df.to_dict(orient="records"))
We provide diverse examples about fine-tuning LLMs.
Make sure to execute these commands in the `LLaMA-Factory` directory.
## Table of Contents
- [LoRA Fine-Tuning](#lora-fine-tuning)
- [QLoRA Fine-Tuning](#qlora-fine-tuning)
- [Full-Parameter Fine-Tuning](#full-parameter-fine-tuning)
- [Merging LoRA Adapters and Quantization](#merging-lora-adapters-and-quantization)
- [Inferring LoRA Fine-Tuned Models](#inferring-lora-fine-tuned-models)
- [Extras](#extras)
Use `CUDA_VISIBLE_DEVICES` (GPU) or `ASCEND_RT_VISIBLE_DEVICES` (NPU) to choose computing devices.
By default, LLaMA-Factory uses all visible computing devices.
Basic usage:
```bash
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
```
Advanced usage:
```bash
CUDA_VISIBLE_DEVICES=0,1 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml \
learning_rate=1e-5 \
logging_steps=1
```
```bash
bash examples/train_lora/llama3_lora_sft.sh
```
## Examples
### LoRA Fine-Tuning
#### (Continuous) Pre-Training
```bash
llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml
```
#### Supervised Fine-Tuning
```bash
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
```
#### Multimodal Supervised Fine-Tuning
```bash
llamafactory-cli train examples/train_lora/qwen2_5vl_lora_sft.yaml
```
#### DPO/ORPO/SimPO Training
```bash
llamafactory-cli train examples/train_lora/llama3_lora_dpo.yaml
```
#### Multimodal DPO/ORPO/SimPO Training
```bash
llamafactory-cli train examples/train_lora/qwen2_5vl_lora_dpo.yaml
```
#### Reward Modeling
```bash
llamafactory-cli train examples/train_lora/llama3_lora_reward.yaml
```
#### PPO Training
```bash
llamafactory-cli train examples/train_lora/llama3_lora_ppo.yaml
```
#### KTO Training
```bash
llamafactory-cli train examples/train_lora/llama3_lora_kto.yaml
```
#### Preprocess Dataset
It is useful for large dataset, use `tokenized_path` in config to load the preprocessed dataset.
```bash
llamafactory-cli train examples/train_lora/llama3_preprocess.yaml
```
#### Evaluating on MMLU/CMMLU/C-Eval Benchmarks
```bash
llamafactory-cli eval examples/train_lora/llama3_lora_eval.yaml
```
#### Supervised Fine-Tuning on Multiple Nodes
```bash
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
```
#### Supervised Fine-Tuning with DeepSpeed ZeRO-3 (Weight Sharding)
```bash
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml
```
#### Supervised Fine-Tuning with Ray on 4 GPUs
```bash
USE_RAY=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ray.yaml
```
### QLoRA Fine-Tuning
#### Supervised Fine-Tuning with 4/8-bit Bitsandbytes/HQQ/EETQ Quantization (Recommended)
```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_otfq.yaml
```
#### Supervised Fine-Tuning with 4-bit Bitsandbytes Quantization on Ascend NPU
```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_bnb_npu.yaml
```
#### Supervised Fine-Tuning with 4/8-bit GPTQ Quantization
```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_gptq.yaml
```
#### Supervised Fine-Tuning with 4-bit AWQ Quantization
```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_awq.yaml
```
#### Supervised Fine-Tuning with 2-bit AQLM Quantization
```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml
```
### Full-Parameter Fine-Tuning
#### Supervised Fine-Tuning on Single Node
```bash
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
```
#### Supervised Fine-Tuning on Multiple Nodes
```bash
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
```
### Elastic and Fault-Tolerant Supervised Fine-Tuning on Multiple Nodes
To launch an elastic job with `MAX_RESTARTS` failures retries, run the following on at least `MIN_NNODES` nodes and at most `MAX_NNODES` nodes. `RDZV_ID` should be set as a unique job id (shared by all nodes participating in the job). See also [torchrun](https://docs.pytorch.org/docs/stable/elastic/run.html).
```bash
FORCE_TORCHRUN=1 MIN_NNODES=1 MAX_NNODES=3 MAX_RESTARTS=3 RDZV_ID=llamafactory MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
```
#### Multimodal Supervised Fine-Tuning
```bash
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/qwen2_5vl_full_sft.yaml
```
### Merging LoRA Adapters and Quantization
#### Merge LoRA Adapters
Note: DO NOT use quantized model or `quantization_bit` when merging LoRA adapters.
```bash
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
```
#### Quantizing Model using AutoGPTQ
```bash
llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
```
### Save Ollama modelfile
```bash
llamafactory-cli export examples/merge_lora/llama3_full_sft.yaml
```
### Inferring LoRA Fine-Tuned Models
#### Evaluation using vLLM's Multi-GPU Inference
```
python scripts/vllm_infer.py --model_name_or_path meta-llama/Meta-Llama-3-8B-Instruct --template llama3 --dataset alpaca_en_demo
python scripts/eval_bleu_rouge.py generated_predictions.jsonl
```
#### Use CLI ChatBox
```bash
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
```
#### Use Web UI ChatBox
```bash
llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
```
#### Launch OpenAI-style API
```bash
llamafactory-cli api examples/inference/llama3_lora_sft.yaml
```
### Extras
#### Full-Parameter Fine-Tuning using GaLore
```bash
llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
```
#### Full-Parameter Fine-Tuning using APOLLO
```bash
llamafactory-cli train examples/extras/apollo/llama3_full_sft.yaml
```
#### Full-Parameter Fine-Tuning using BAdam
```bash
llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
```
#### Full-Parameter Fine-Tuning using Adam-mini
```bash
llamafactory-cli train examples/extras/adam_mini/qwen2_full_sft.yaml
```
#### Full-Parameter Fine-Tuning using Muon
```bash
llamafactory-cli train examples/extras/muon/qwen2_full_sft.yaml
```
#### LoRA+ Fine-Tuning
```bash
llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
```
#### PiSSA Fine-Tuning
```bash
llamafactory-cli train examples/extras/pissa/llama3_lora_sft.yaml
```
#### Mixture-of-Depths Fine-Tuning
```bash
llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
```
#### LLaMA-Pro Fine-Tuning
```bash
bash examples/extras/llama_pro/expand.sh
llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
```
#### FSDP+QLoRA Fine-Tuning
```bash
bash examples/extras/fsdp_qlora/train.sh
```
我们提供了多样化的大模型微调示例脚本。
请确保在 `LLaMA-Factory` 目录下执行下述命令。
## 目录
- [LoRA 微调](#lora-微调)
- [QLoRA 微调](#qlora-微调)
- [全参数微调](#全参数微调)
- [合并 LoRA 适配器与模型量化](#合并-lora-适配器与模型量化)
- [推理 LoRA 模型](#推理-lora-模型)
- [杂项](#杂项)
使用 `CUDA_VISIBLE_DEVICES`(GPU)或 `ASCEND_RT_VISIBLE_DEVICES`(NPU)选择计算设备。
LLaMA-Factory 默认使用所有可见的计算设备。
基础用法:
```bash
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
```
高级用法:
```bash
CUDA_VISIBLE_DEVICES=0,1 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml \
learning_rate=1e-5 \
logging_steps=1
```
```bash
bash examples/train_lora/llama3_lora_sft.sh
```
## 示例
### LoRA 微调
#### (增量)预训练
```bash
llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml
```
#### 指令监督微调
```bash
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
```
#### 多模态指令监督微调
```bash
llamafactory-cli train examples/train_lora/qwen2_5vl_lora_sft.yaml
```
#### DPO/ORPO/SimPO 训练
```bash
llamafactory-cli train examples/train_lora/llama3_lora_dpo.yaml
```
#### 多模态 DPO/ORPO/SimPO 训练
```bash
llamafactory-cli train examples/train_lora/qwen2_5vl_lora_dpo.yaml
```
#### 奖励模型训练
```bash
llamafactory-cli train examples/train_lora/llama3_lora_reward.yaml
```
#### PPO 训练
```bash
llamafactory-cli train examples/train_lora/llama3_lora_ppo.yaml
```
#### KTO 训练
```bash
llamafactory-cli train examples/train_lora/llama3_lora_kto.yaml
```
#### 预处理数据集
对于大数据集有帮助,在配置中使用 `tokenized_path` 以加载预处理后的数据集。
```bash
llamafactory-cli train examples/train_lora/llama3_preprocess.yaml
```
#### 在 MMLU/CMMLU/C-Eval 上评估
```bash
llamafactory-cli eval examples/train_lora/llama3_lora_eval.yaml
```
#### 多机指令监督微调
```bash
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
```
### 支持弹性和容错的多机指令监督微调
要启动一个支持弹性节点和容错的多机指令微调,在每个节点上执行以下命令。弹性节点数量范围为 `MIN_NNODES:MAX_NNODES`,每个节点最多允许因为错误重启 `MAX_RESTARTS` 次。`RDZV_ID` 应设置为一个唯一的作业 ID(由参与该作业的所有节点共享)。更多新可以参考官方文档 [torchrun](https://docs.pytorch.org/docs/stable/elastic/run.html)
```bash
FORCE_TORCHRUN=1 MIN_NNODES=1 MAX_NNODES=3 MAX_RESTARTS=3 RDZV_ID=llamafactory MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
```
#### 使用 DeepSpeed ZeRO-3 平均分配显存
```bash
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml
```
#### 使用 Ray 在 4 张 GPU 上微调
```bash
USE_RAY=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ray.yaml
```
### QLoRA 微调
#### 基于 4/8 比特 Bitsandbytes/HQQ/EETQ 量化进行指令监督微调(推荐)
```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_otfq.yaml
```
#### 在 NPU 上基于 4 比特 Bitsandbytes 量化进行指令监督微调
```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_bnb_npu.yaml
```
#### 基于 4/8 比特 GPTQ 量化进行指令监督微调
```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_gptq.yaml
```
#### 基于 4 比特 AWQ 量化进行指令监督微调
```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_awq.yaml
```
#### 基于 2 比特 AQLM 量化进行指令监督微调
```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml
```
### 全参数微调
#### 在单机上进行指令监督微调
```bash
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
```
#### 在多机上进行指令监督微调
```bash
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
```
#### 多模态指令监督微调
```bash
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/qwen2_5vl_full_sft.yaml
```
### 合并 LoRA 适配器与模型量化
#### 合并 LoRA 适配器
注:请勿使用量化后的模型或 `quantization_bit` 参数来合并 LoRA 适配器。
```bash
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
```
#### 使用 AutoGPTQ 量化模型
```bash
llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
```
### 保存 Ollama 配置文件
```bash
llamafactory-cli export examples/merge_lora/llama3_full_sft.yaml
```
### 推理 LoRA 模型
#### 使用 vLLM 多卡推理评估
```
python scripts/vllm_infer.py --model_name_or_path meta-llama/Meta-Llama-3-8B-Instruct --template llama3 --dataset alpaca_en_demo
python scripts/eval_bleu_rouge.py generated_predictions.jsonl
```
#### 使用命令行对话框
```bash
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
```
#### 使用浏览器对话框
```bash
llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
```
#### 启动 OpenAI 风格 API
```bash
llamafactory-cli api examples/inference/llama3_lora_sft.yaml
```
### 杂项
#### 使用 GaLore 进行全参数训练
```bash
llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
```
#### 使用 APOLLO 进行全参数训练
```bash
llamafactory-cli train examples/extras/apollo/llama3_full_sft.yaml
```
#### 使用 BAdam 进行全参数训练
```bash
llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
```
#### 使用 Adam-mini 进行全参数训练
```bash
llamafactory-cli train examples/extras/adam_mini/qwen2_full_sft.yaml
```
#### 使用 Muon 进行全参数训练
```bash
llamafactory-cli train examples/extras/muon/qwen2_full_sft.yaml
```
#### LoRA+ 微调
```bash
llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
```
#### PiSSA 微调
```bash
llamafactory-cli train examples/extras/pissa/llama3_lora_sft.yaml
```
#### 深度混合微调
```bash
llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
```
#### LLaMA-Pro 微调
```bash
bash examples/extras/llama_pro/expand.sh
llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
```
#### FSDP+QLoRA 微调
```bash
bash examples/extras/fsdp_qlora/train.sh
```
compute_environment: LOCAL_MACHINE
debug: false
distributed_type: FSDP
downcast_bf16: 'no'
fsdp_config:
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_backward_prefetch: BACKWARD_PRE
fsdp_forward_prefetch: false
fsdp_cpu_ram_efficient_loading: true
fsdp_offload_params: false
fsdp_sharding_strategy: FULL_SHARD
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sync_module_states: true
fsdp_use_orig_params: true
machine_rank: 0
main_training_function: main
mixed_precision: bf16 # or fp16
num_machines: 1 # the number of nodes
num_processes: 2 # the number of GPUs in all nodes
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
compute_environment: LOCAL_MACHINE
debug: false
distributed_type: FSDP
downcast_bf16: 'no'
fsdp_config:
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_backward_prefetch: BACKWARD_PRE
fsdp_forward_prefetch: false
fsdp_cpu_ram_efficient_loading: true
fsdp_offload_params: true # offload may affect training speed
fsdp_sharding_strategy: FULL_SHARD
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sync_module_states: true
fsdp_use_orig_params: true
machine_rank: 0
main_training_function: main
mixed_precision: bf16 # or fp16
num_machines: 1 # the number of nodes
num_processes: 2 # the number of GPUs in all nodes
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
{
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"zero_allow_untested_optimizer": true,
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"zero_optimization": {
"stage": 0,
"allgather_partitions": true,
"allgather_bucket_size": 5e8,
"overlap_comm": false,
"reduce_scatter": true,
"reduce_bucket_size": 5e8,
"contiguous_gradients": true,
"round_robin_gradients": true
}
}
{
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"zero_allow_untested_optimizer": true,
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"zero_optimization": {
"stage": 2,
"allgather_partitions": true,
"allgather_bucket_size": 5e8,
"overlap_comm": false,
"reduce_scatter": true,
"reduce_bucket_size": 5e8,
"contiguous_gradients": true,
"round_robin_gradients": true
}
}
{
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"zero_allow_untested_optimizer": true,
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"zero_optimization": {
"stage": 2,
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
},
"allgather_partitions": true,
"allgather_bucket_size": 5e8,
"overlap_comm": false,
"reduce_scatter": true,
"reduce_bucket_size": 5e8,
"contiguous_gradients": true,
"round_robin_gradients": true
}
}
{
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"zero_allow_untested_optimizer": true,
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"zero_optimization": {
"stage": 3,
"overlap_comm": false,
"contiguous_gradients": true,
"sub_group_size": 1e9,
"reduce_bucket_size": "auto",
"stage3_prefetch_bucket_size": "auto",
"stage3_param_persistence_threshold": "auto",
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9,
"stage3_gather_16bit_weights_on_model_save": true
}
}
{
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"zero_allow_untested_optimizer": true,
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
},
"offload_param": {
"device": "cpu",
"pin_memory": true
},
"overlap_comm": false,
"contiguous_gradients": true,
"sub_group_size": 1e9,
"reduce_bucket_size": "auto",
"stage3_prefetch_bucket_size": "auto",
"stage3_param_persistence_threshold": "auto",
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9,
"stage3_gather_16bit_weights_on_model_save": true
}
}
### model
model_name_or_path: Qwen/Qwen2-1.5B-Instruct
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: full
use_adam_mini: true
### dataset
dataset: identity,alpaca_en_demo
template: qwen
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/qwen2-1_5b/full/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
### eval
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: full
use_apollo: true
apollo_layerwise: true # choices: [true, false], use false for DDP training
apollo_target: all
apollo_rank: 128
apollo_scale: 32.0
apollo_scale_type: channel
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/full/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 1 # use 1 for layerwise apollo
learning_rate: 1.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
pure_bf16: true
ddp_timeout: 180000000
### eval
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: full
use_badam: true
badam_mode: layer
badam_switch_mode: ascending
badam_switch_interval: 50
badam_verbose: 2
# deepspeed: examples/deepspeed/ds_z3_config.json
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/full/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
### eval
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
quantization_bit: 4
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: lora
lora_rank: 8
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
### eval
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500
#!/bin/bash
# DO NOT use GPTQ/AWQ model in FSDP+QLoRA
CUDA_VISIBLE_DEVICES=0,1 accelerate launch \
--config_file examples/accelerate/fsdp_config.yaml \
src/train.py examples/extras/fsdp_qlora/llama3_lora_sft.yaml
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: full
use_galore: true
galore_layerwise: true # choices: [true, false], use false for DDP training
galore_target: all
galore_rank: 128
galore_scale: 2.0
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/full/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 1 # use 1 for layerwise galore
learning_rate: 1.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
pure_bf16: true
ddp_timeout: 180000000
### eval
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500
#!/bin/bash
python scripts/llama_pro.py \
--model_name_or_path meta-llama/Meta-Llama-3-8B-Instruct \
--output_dir models/llama3-8b-pro \
--num_expand 8
### model
model_name_or_path: models/llama3-8b-pro
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: freeze
freeze_trainable_layers: 8
freeze_trainable_modules: all
use_llama_pro: true
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b-pro/freeze/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
### eval
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: lora
lora_rank: 8
lora_target: all
loraplus_lr_ratio: 16.0
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
### eval
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: full
mixture_of_depths: convert
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b-mod/full/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
optim: paged_adamw_8bit
learning_rate: 1.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
pure_bf16: true
ddp_timeout: 180000000
### eval
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500
### model
model_name_or_path: Qwen/Qwen2-1.5B-Instruct
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: full
use_muon: true
### dataset
dataset: identity,alpaca_en_demo
template: qwen
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/qwen2-1_5b/full/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
### eval
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500
# The batch generation can be SLOW using this config.
# For faster inference, we recommend to use `scripts/vllm_infer.py`.
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
adapter_name_or_path: saves/llama3-8b/lora/sft
trust_remote_code: true
### method
stage: sft
do_predict: true
finetuning_type: lora
### dataset
eval_dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 2048
max_samples: 50
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/lora/predict
overwrite_output_dir: true
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### eval
per_device_eval_batch_size: 1
predict_with_generate: true
ddp_timeout: 180000000
#!/bin/bash
python scripts/pissa_init.py \
--model_name_or_path meta-llama/Meta-Llama-3-8B-Instruct \
--output_dir models/llama3-8b-pissa
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: lora
lora_rank: 8
lora_target: all
pissa_init: true
pissa_iter: 16
pissa_convert: true
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
### eval
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
template: llama3
infer_backend: huggingface # choices: [huggingface, vllm, sglang]
trust_remote_code: true
model_name_or_path: saves/llama3-8b/full/sft
template: llama3
infer_backend: huggingface # choices: [huggingface, vllm, sglang]
trust_remote_code: true
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
adapter_name_or_path: saves/llama3-8b/lora/sft
template: llama3
infer_backend: huggingface # choices: [huggingface, vllm, sglang]
trust_remote_code: true
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment