/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ /*! * \file compute_expr.h * \brief Utility to invoke certan compute operations. */ #ifndef TVM_ARITH_COMPUTE_EXPR_H_ #define TVM_ARITH_COMPUTE_EXPR_H_ #include <tvm/tir/expr.h> #include <limits> #include <algorithm> namespace tvm { namespace arith { /*! * \brief Compute the expression with the given binary op. * \param lhs The left operand * \param rhs The right operand * \tparam Op the computation operator * \return The result. */ template<typename OP> inline PrimExpr Compute(PrimExpr lhs, PrimExpr rhs) { return OP::make(lhs, rhs); } /*! * \brief Compute an reduction with Op * \param values The input values. * \param empty_value The value when return if it is empty, can be Expr() * which will cause an error to be rasied. * \tparam Op The computation operator * \return The result. */ template<typename Op> inline PrimExpr ComputeReduce( const Array<PrimExpr>& values, PrimExpr empty_value); inline bool GetConst(PrimExpr e, int64_t* out) { if (e.dtype().is_vector()) return false; const int64_t* v = tir::as_const_int(e); if (v) { *out = *v; return true; } else { return false; } } // get a small constant int inline bool GetConstInt(PrimExpr e, int* out) { int64_t v1 = 0; if (GetConst(e, &v1)) { if (v1 > static_cast<int64_t>( std::numeric_limits<int>::max())) return false; *out = static_cast<int>(v1); return true; } return false; } template<> inline PrimExpr Compute<tir::AddNode>(PrimExpr a, PrimExpr b) { return a + b; } template<> inline PrimExpr Compute<tir::SubNode>(PrimExpr a, PrimExpr b) { return a - b; } template<> inline PrimExpr Compute<tir::MulNode>(PrimExpr a, PrimExpr b) { return a * b; } template<> inline PrimExpr Compute<tir::DivNode>(PrimExpr a, PrimExpr b) { return truncdiv(a, b); } template<> inline PrimExpr Compute<tir::ModNode>(PrimExpr a, PrimExpr b) { return truncmod(a, b); } template<> inline PrimExpr Compute<tir::MaxNode>(PrimExpr a, PrimExpr b) { return max(a, b); } template<> inline PrimExpr Compute<tir::MinNode>(PrimExpr a, PrimExpr b) { return min(a, b); } template<typename Op> inline PrimExpr ComputeReduce(const Array<PrimExpr>& values, PrimExpr empty_value) { if (values.size() == 0U) { CHECK(empty_value.defined()); return empty_value; } PrimExpr res = values[0]; for (size_t i = 1; i < values.size(); ++i) { res = Compute<Op>(res, values[i]); } return res; } } // namespace arith } // namespace tvm #endif // TVM_ARITH_COMPUTE_EXPR_H_