/*! * Copyright (c) 2016 by Contributors * \file operation.h * \brief Operation node can generate one or multiple Tensors */ #ifndef TVM_OPERATION_H_ #define TVM_OPERATION_H_ #include <string> #include <vector> #include <unordered_map> #include "./expr.h" #include "./tensor.h" #include "./schedule.h" #include "./arithmetic.h" #include "./buffer.h" namespace tvm { using arith::IntSet; /*! * \brief Temporary data structure to store union * of bounds of each axis of Tensor. */ struct TensorDom { // constructor explicit TensorDom(int ndim) : data(ndim) {} /*! \brief The domain data */ std::vector<std::vector<IntSet> > data; }; /*! * \brief Base class of all operation nodes */ class OperationNode : public FunctionBaseNode { public: /*! \brief optional name of the operation */ std::string name; /*! \return name of the operation */ const std::string& func_name() const final { return name; } /*! * \return The list of iteration variable at root * \note root_iter_vars dedides the shape of the outputs. */ virtual Array<IterVar> root_iter_vars() const = 0; /*! * \brief Get data type. i-th output tensor. * \param i The output index. * \return type of i-th output. */ virtual Type output_dtype(size_t i) const = 0; /*! * \brief Get shape of i-th output tensor. * \param i The output index. * \return shape of i-th output. */ virtual Array<Expr> output_shape(size_t i) const = 0; /*! * \brief List all the input Tensors. * \return List if input tensors. */ virtual Array<Tensor> InputTensors() const = 0; /*! * \brief Replace the input of the operation by pattern specified by rmap. * * \param self The reference to self. * \param rmap The replacement map. * \return self if nothing is replaced, otherwise return replaced op. */ virtual Operation ReplaceInputs( const Operation& self, const std::unordered_map<Tensor, Tensor>& rmap) const = 0; /*! * \brief Propagate the bounds to inputs * \param self The reference to self. * \param dom_map the domain map of Variables(corresponds to root_iter_vars) * \param out_dom_map The output domain. * The function is only asked to fill the bounds for Tensors that * is already in the out_dom_map */ virtual void PropBoundToInputs( const Operation& self, const std::unordered_map<const Variable*, IntSet>& dom_map, std::unordered_map<Tensor, TensorDom>* out_dom_map) const = 0; /*! * \brief Gather the bound from output tensor. * Set the range of each root_iter_vars in the op to out_dom_map * * \param self The reference to self. * \param tensor_dom Domain map of Tensor->access set of each dimension. * \param out_dom_map The output domain map of each IterVar to be setted. */ virtual void GatherBound( const Operation& self, const std::unordered_map<Tensor, TensorDom>& tensor_dom, std::unordered_map<IterVar, Range>* out_dom_map) const = 0; /*! * \brief Build the Realize statement that realizes * the op's output tensors. * \param self The reference to self. * \param realize_map The realization domain map of the operators. * \param body The body that is going to get * \return A realization statement that wraps body. */ virtual Stmt BuildRealize( const Operation& self, const std::unordered_map<IterVar, Range>& realize_map, const Stmt& body) const = 0; /*! * \brief Build the statement that provide the output tensors. * \param stage The schedule stage of the op. * \param dom_map The domain map of all iteration domains. * \return A statement that add production and wraps consumer. */ virtual Stmt BuildProvide( const Stage& stage, const std::unordered_map<IterVar, Range>& dom_map) const = 0; static constexpr const char* _type_key = "Operation"; TVM_DECLARE_BASE_NODE_INFO(OperationNode, Node); }; /*! * \brief A placeholder op represents an input placeholder. */ class PlaceholderOpNode : public OperationNode { public: /*! \brief The shape of the input */ Array<Expr> shape; /*! \brief The data type of the input. */ Type dtype; // override behavior. int num_outputs() const final; Array<IterVar> root_iter_vars() const final; Type output_dtype(size_t i) const final; Array<Expr> output_shape(size_t i) const final; Array<Tensor> InputTensors() const final; Operation ReplaceInputs( const Operation& self, const std::unordered_map<Tensor, Tensor>& rmap) const final; void PropBoundToInputs( const Operation& self, const std::unordered_map<const Variable*, IntSet>& dom_map, std::unordered_map<Tensor, TensorDom>* out_dom_map) const final; void GatherBound( const Operation& self, const std::unordered_map<Tensor, TensorDom>& tensor_dom, std::unordered_map<IterVar, Range>* out_dom_map) const final; Stmt BuildRealize( const Operation& self, const std::unordered_map<IterVar, Range>& realize_map, const Stmt& body) const final; Stmt BuildProvide( const Stage& stage, const std::unordered_map<IterVar, Range>& dom_map) const final; void VisitAttrs(AttrVisitor* v) final { v->Visit("name", &name); v->Visit("shape", &shape); v->Visit("dtype", &dtype); } static Operation make(std::string name, Array<Expr> shape, Type dtype); static constexpr const char* _type_key = "PlaceholderOp"; TVM_DECLARE_NODE_TYPE_INFO(PlaceholderOpNode, OperationNode); }; /*! * \brief A Compute op that compute a tensor on certain domain. */ class ComputeOpNode : public OperationNode { public: /*! \brief IterVar on each axis */ Array<IterVar> axis; /*! \brief IterVar on each reduction axis, if the body is a Reduce */ Array<IterVar> reduce_axis; /*! \brief the compute expression */ Expr body; /*! \brief constructor */ ComputeOpNode() {} // override functions int num_outputs() const final; Array<IterVar> root_iter_vars() const final; Type output_dtype(size_t i) const final; Array<Expr> output_shape(size_t i) const final; Array<Tensor> InputTensors() const final; Operation ReplaceInputs( const Operation& self, const std::unordered_map<Tensor, Tensor>& rmap) const final; void PropBoundToInputs( const Operation& self, const std::unordered_map<const Variable*, IntSet>& dom_map, std::unordered_map<Tensor, TensorDom>* out_dom_map) const final; void GatherBound( const Operation& self, const std::unordered_map<Tensor, TensorDom>& tensor_dom, std::unordered_map<IterVar, Range>* out_dom_map) const final; Stmt BuildRealize( const Operation& self, const std::unordered_map<IterVar, Range>& realize_map, const Stmt& body) const final; Stmt BuildProvide( const Stage& stage, const std::unordered_map<IterVar, Range>& dom_map) const final; void VisitAttrs(AttrVisitor* v) final { v->Visit("name", &name); v->Visit("axis", &axis); v->Visit("reduce_axis", &reduce_axis); v->Visit("body", &body); } static Operation make(std::string name, Array<IterVar> axis, Expr body); static constexpr const char* _type_key = "ComputeOp"; TVM_DECLARE_NODE_TYPE_INFO(ComputeOpNode, OperationNode); }; /*! * \brief Symbolic scan. */ class ScanOpNode : public OperationNode { public: /*! \brief IterVar to scan over */ IterVar scan_axis; /*! \brief the initialization tensors */ Array<Tensor> init; /*! \brief the update function represented by tensor */ Array<Tensor> update; /*! \brief The placeholder to refer as states in update. */ Array<Tensor> state_placeholder; /*! * \brief the inputs to the scan, these are optionally provided * But they can be helpful to provide hints to speedup get of scan body. */ Array<Tensor> inputs; /*! * \brief Spatial axis to indicate spatial dimension of each output. * They corresponds to flattened spatial axis of the outputs. * * [output[0].axis[1], output[0].axis[2]... output[k].axis[j]...] * These are auxiliary data structure for storing result of bound inference. * They do not corresponds to splittable iterations, thus the name comes * with underscore. */ Array<IterVar> spatial_axis_; /*! \brief constructor */ ScanOpNode() {} // override behavior. int num_outputs() const final; Array<IterVar> root_iter_vars() const final; Type output_dtype(size_t i) const final; Array<Expr> output_shape(size_t i) const final; Array<Tensor> InputTensors() const final; Operation ReplaceInputs( const Operation& self, const std::unordered_map<Tensor, Tensor>& rmap) const final; void PropBoundToInputs( const Operation& self, const std::unordered_map<const Variable*, IntSet>& dom_map, std::unordered_map<Tensor, TensorDom>* out_dom_map) const final; void GatherBound( const Operation& self, const std::unordered_map<Tensor, TensorDom>& tensor_dom, std::unordered_map<IterVar, Range>* out_dom_map) const final; Stmt BuildRealize( const Operation& self, const std::unordered_map<IterVar, Range>& realize_map, const Stmt& body) const final; Stmt BuildProvide( const Stage& stage, const std::unordered_map<IterVar, Range>& dom_map) const final; void VisitAttrs(AttrVisitor* v) final { v->Visit("name", &name); v->Visit("scan_axis", &scan_axis); v->Visit("init", &init); v->Visit("update", &update); v->Visit("state_placeholder", &state_placeholder); v->Visit("inputs", &inputs); v->Visit("spatial_axis_", &spatial_axis_); } static Operation make(std::string name, IterVar axis, Array<Tensor> init, Array<Tensor> update, Array<Tensor> state_placeholder, Array<Tensor> input); static constexpr const char* _type_key = "ScanOp"; TVM_DECLARE_NODE_TYPE_INFO(ScanOpNode, OperationNode); }; /*! * \brief External computation that cannot be splitted. */ class ExternOpNode : public OperationNode { public: /*! \brief The input tensors */ Array<Tensor> inputs; /*! \brief Symbolic placeholder representationinputs */ Array<Buffer> input_placeholders; /*! \brief Symbolic placeholder representation of outputs */ Array<Buffer> output_placeholders; /*! \brief the statement that generates the computation. */ Stmt body; /*! \brief constructor */ ExternOpNode() {} // override functions int num_outputs() const final; Array<IterVar> root_iter_vars() const final; Type output_dtype(size_t i) const final; Array<Expr> output_shape(size_t i) const final; Array<Tensor> InputTensors() const final; Operation ReplaceInputs( const Operation& self, const std::unordered_map<Tensor, Tensor>& rmap) const final; void PropBoundToInputs( const Operation& self, const std::unordered_map<const Variable*, IntSet>& dom_map, std::unordered_map<Tensor, TensorDom>* out_dom_map) const final; void GatherBound( const Operation& self, const std::unordered_map<Tensor, TensorDom>& tensor_dom, std::unordered_map<IterVar, Range>* out_dom_map) const final; Stmt BuildRealize( const Operation& self, const std::unordered_map<IterVar, Range>& realize_map, const Stmt& body) const final; Stmt BuildProvide( const Stage& stage, const std::unordered_map<IterVar, Range>& dom_map) const final; void VisitAttrs(AttrVisitor* v) final { v->Visit("name", &name); v->Visit("inputs", &inputs); v->Visit("body", &body); } static Operation make(std::string name, Array<Tensor> inputs, Array<Buffer> input_placeholders, Array<Buffer> output_placeholders, Stmt body); static constexpr const char* _type_key = "ExternOp"; TVM_DECLARE_NODE_TYPE_INFO(ExternOpNode, OperationNode); }; /*! \brief The compute function to specify the input source of a Tensor */ using FCompute = std::function<Expr (const Array<Var>& i)>; /*! * \brief create a place holder tensor. * \param shape The shape of the tensor. * \param dtype the data type of the tensor. * \param name The name of the Tensor. */ Tensor placeholder(Array<Expr> shape, Type dtype = Float(32), std::string name = "placeholder"); /*! * \brief Construct a new tensor by computing over shape, * using the computation rule: result_tensor[axis] = fcompute(axis) * \param shape Shape of the tensor. * \param fcompute The compute function to create the tensor. * \param name The optional name of the tensor. */ Tensor compute(Array<Expr> shape, FCompute fcompute, std::string name = "tensor"); /*! * \brief Construct new tensors by scan. * * \param init The intialize tensor of first K steps. * \param update The update tensor indicated the updated result after each timestamp. * \param state_placeholder The placeholder for the states. * \param inputs The inputs to the scan body, this is optional, * but recommended to provide concrete information about scan body. * \param name The optional name of the tensor. */ Array<Tensor> scan(Array<Tensor> init, Array<Tensor> update, Array<Tensor> state_placeholder, Array<Tensor> inputs = Array<Tensor>(), std::string name = "scan"); // same as compute, specialized for different fcompute function inline Tensor compute(Array<Expr> shape, std::function<Expr(Var)> f, std::string name = "tensor") { FCompute fc = [f] (const Array<Var>& i) { return f(i[0]); }; return compute(shape, fc, name); } inline Tensor compute(Array<Expr> shape, std::function<Expr(Var, Var)> f, std::string name = "tensor") { FCompute fc = [f] (const Array<Var>& i) { return f(i[0], i[1]); }; return compute(shape, fc, name); } inline Tensor compute(Array<Expr> shape, std::function<Expr(Var, Var, Var)> f, std::string name = "tensor") { FCompute fc = [f] (const Array<Var>& i) { return f(i[0], i[1], i[2]); }; return compute(shape, fc, name); } inline Tensor compute(Array<Expr> shape, std::function<Expr(Var, Var, Var, Var)> f, std::string name = "tensor") { FCompute fc = [f] (const Array<Var>& i) { return f(i[0], i[1], i[2], i[3]); }; return compute(shape, fc, name); } // inline function. inline const OperationNode* Operation::operator->() const { return static_cast<const OperationNode*>(node_.get()); } } // namespace tvm #endif // TVM_OPERATION_H_