# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""Test builder and runner"""
import logging
import time

import numpy as np

import tvm
from tvm import autotvm
from test_autotvm_common import get_sample_task, bad_matmul
from tvm.autotvm.measure.measure import Runner, MeasureResult, MeasureErrorNo

def test_task_tuner_without_measurement():
    """test task and tuner without measurement"""
    task, target = get_sample_task()

    class DummyRunner(Runner):
        def __init__(self):
            super(DummyRunner, self).__init__(1, 1)

        def run(self, measure_inputs, build_results):
            return [MeasureResult((np.random.random(),), 0, 0.2, time.time())
                    for _ in range(len(measure_inputs))]

        def get_build_kwargs(self):
            return {}

    measure_option = autotvm.measure_option(
        builder=autotvm.LocalBuilder(),
        runner=DummyRunner()
    )

    logging.info("%s", task.config_space)

    for tuner_class in [autotvm.tuner.RandomTuner,
                        autotvm.tuner.GridSearchTuner,
                        autotvm.tuner.GATuner,
                        autotvm.tuner.XGBTuner]:
        tuner = tuner_class(task)
        tuner.tune(n_trial=10, measure_option=measure_option)
        assert tuner.best_flops > 1

def test_check_correctness():
    task, target = get_sample_task()

    measure_option = autotvm.measure_option(
        builder=autotvm.LocalBuilder(),
        runner=autotvm.LocalRunner(check_correctness=True)
    )

    def _callback_correct(tuner, measure_inputs, measure_results):
        for inp, res in zip(measure_inputs, measure_results):
            assert res.error_no == 0

    tuner = autotvm.tuner.RandomTuner(task)
    tuner.tune(n_trial=2, measure_option=measure_option,
               callbacks=[_callback_correct])

    # a bad template
    n = 128
    target = tvm.target.create("llvm -device=bad_device")
    task = autotvm.task.create(bad_matmul, args=(n, n, n, 'float32'), target=target)

    def _callback_wrong(tuner, measure_inputs, measure_results):
        for inp, res in zip(measure_inputs, measure_results):
            assert res.error_no == MeasureErrorNo.WRONG_ANSWER

    tuner = autotvm.tuner.RandomTuner(task)
    tuner.tune(n_trial=2, measure_option=measure_option,
               callbacks=[_callback_wrong])


if __name__ == '__main__':
    logging.basicConfig(level=logging.INFO)

    test_task_tuner_without_measurement()
    test_check_correctness()