# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Testing topi gemm operator for VTA""" import os import json from collections import namedtuple import numpy as np import tvm from tvm import autotvm from tvm.contrib import util from tvm.contrib.pickle_memoize import memoize import topi import topi.testing import vta from vta import program_fpga, reconfig_runtime import vta.testing from vta.testing import simulator # FIXME: we need a custom clip operator to circumvent a pattern detection limitation @tvm.tag_scope(tag=topi.tag.ELEMWISE) def my_clip(x, a_min, a_max): """Unlike topi's current clip, put min and max into two stages.""" const_min = tvm.const(a_min, x.dtype) const_max = tvm.const(a_max, x.dtype) x = tvm.compute(x.shape, lambda *i: tvm.min(x(*i), const_max), name="clipA") x = tvm.compute(x.shape, lambda *i: tvm.max(x(*i), const_min), name="clipB") return x def run_gemm(env, remote, target, batch_size, in_feat, out_feat, check_correctness=True, print_ir=True, samples=4): # Perform packing only if we are targeting the accelerator if "arm_cpu" in target.keys: data_pack = False elif "vta" in target.keys: data_pack = True # Derive shapes depending upon packing a_shape = (batch_size, in_feat) w_shape = (out_feat, in_feat) if data_pack: data_shape = (batch_size//env.BATCH, in_feat//env.BLOCK_IN, env.BATCH, env.BLOCK_IN) kernel_shape = (out_feat//env.BLOCK_OUT, in_feat//env.BLOCK_IN, env.BLOCK_OUT, env.BLOCK_IN) else: data_shape = a_shape kernel_shape = w_shape data = tvm.placeholder(data_shape, name="data", dtype=env.inp_dtype) kernel = tvm.placeholder(kernel_shape, name="kernel", dtype=env.wgt_dtype) # Define base computation schedule with target: res = topi.nn.dense( data, kernel, out_dtype=env.acc_dtype) res = topi.right_shift(res, 8) res = my_clip(res, 0, (1 << env.OUT_WIDTH - 1) - 1) res = topi.cast(res, env.out_dtype) # Derive base schedule s = topi.generic.schedule_dense([res]) if print_ir: print(vta.lower(s, [data, kernel, res], simple_mode=True)) # Derive number of ops num_ops = 2 * batch_size * in_feat * out_feat # @memoize("vta.tests.test_benchmark_topi.dense.verify") def get_ref_data(): # derive min max for act, wgt types (max non inclusive) a_min, a_max = 0 - (1 << (env.INP_WIDTH - 1)), (1 << (env.INP_WIDTH - 1)) w_min, w_max = 0 - (1 << (env.WGT_WIDTH - 1)), (1 << (env.WGT_WIDTH - 1)) a_np = np.random.randint(a_min, a_max, size=a_shape).astype(data.dtype) w_np = np.random.randint(w_min, w_max, size=w_shape).astype(kernel.dtype) r_np = np.dot(a_np.astype(env.acc_dtype), w_np.T.astype(env.acc_dtype)).astype(env.acc_dtype) return a_np, w_np, r_np # Data in original format data_np, kernel_np, res_ref = get_ref_data() if data_pack: data_np = data_np.reshape( batch_size//env.BATCH, env.BATCH, in_feat//env.BLOCK_IN, env.BLOCK_IN).transpose((0, 2, 1, 3)) kernel_np = kernel_np.reshape( out_feat//env.BLOCK_OUT, env.BLOCK_OUT, in_feat//env.BLOCK_IN, env.BLOCK_IN).transpose((0, 2, 1, 3)) # Build if "vta" in target.keys: mod = vta.build(s, [data, kernel, res], target=target, target_host=env.target_host, name="dense") else: mod = tvm.build(s, [data, kernel, res], target=target, target_host=env.target_host, name="dense") temp = util.tempdir() mod.save(temp.relpath("dense.o")) remote.upload(temp.relpath("dense.o")) f = remote.load_module("dense.o") ctx = remote.context(str(target)) res_np = np.zeros(topi.util.get_const_tuple(res.shape)).astype(res.dtype) data_arr = tvm.nd.array(data_np, ctx) kernel_arr = tvm.nd.array(kernel_np, ctx) res_arr = tvm.nd.array(res_np, ctx) time_f = f.time_evaluator("dense", ctx, number=samples) # In vta sim mode, collect simulator runtime statistics stats = {} cost = None if env.TARGET in ["sim", "tsim"]: # Check if we're in local RPC mode (allows us to rebuild the # runtime on the fly when varying the VTA designs) local_rpc = int(os.environ.get("VTA_LOCAL_SIM_RPC", "0")) if local_rpc: if env.TARGET == "sim": remote.get_function("vta.simulator.profiler_clear")() else: remote.get_function("vta.tsim.profiler_clear")() cost = time_f(data_arr, kernel_arr, res_arr) if env.TARGET == "sim": stats = json.loads(remote.get_function("vta.simulator.profiler_status")()) else: stats = json.loads(remote.get_function("vta.tsim.profiler_status")()) else: simulator.clear_stats() cost = time_f(data_arr, kernel_arr, res_arr) stats = simulator.stats() else: cost = time_f(data_arr, kernel_arr, res_arr) # Check correctness correct = False if check_correctness: res_orig = res_arr.asnumpy() if data_pack: res_orig = res_orig.reshape(batch_size, out_feat) res_ref = res_ref >> 8 res_ref = np.clip(res_ref, 0, (1 << env.OUT_WIDTH - 1) - 1) res_ref = res_ref.astype(env.out_dtype) correct = np.allclose(res_orig, res_ref) gops = (num_ops / cost.mean) / float(10 ** 9) status = "PASSED" if correct else "FAILED" if "arm_cpu" in target.keys: device = "CPU" elif "vta" in target.keys: device = "VTA" print("%s DENSE TEST %s: Time cost = %g sec/op, %g GOPS" % (device, status, cost.mean, gops)) return correct, cost, stats def test_gemm(device="vta", batch=128, in_feat=128, out_feat=128): def _run(env, remote): if device == "vta": target = env.target if env.TARGET not in ["sim", "tsim"]: assert tvm.module.enabled("rpc") program_fpga(remote, bitstream=None) reconfig_runtime(remote) elif device == "arm_cpu": target = env.target_vta_cpu with autotvm.tophub.context(target): # load pre-tuned schedule parameters run_gemm(env, remote, target, batch, in_feat, out_feat) vta.testing.run(_run) if __name__ == "__main__": test_gemm("vta", 16, 512, 1008)