"""External function interface to NNPACK libraroes.""" from __future__ import absolute_import as _abs from .. import api as _api from .. import intrin as _intrin def fully_connected_inference(lhs, rhs): """Create an extern op that compute fully connected of 1D tensor lhs and 2D tensor rhs with nnpack. Parameters ---------- lhs : Tensor lhs 1D array input[input_channels] of FP32 elements rhs : Tensor lhs 2D matrix kernel[output_channels][input_channels] of FP32 elements Returns ------- C : Tensor lhs 1D array out[output_channels] of FP32 elements. """ m = rhs.shape[0] return _api.extern( (m, ), [lhs, rhs], lambda ins, outs: _intrin.call_packed( "tvm.contrib.nnpack.fully_connected_inference", ins[0], ins[1], outs[0]), name="C") def fully_connected_output(lhs, rhs): """Create an extern op that compute fully connected of 2D tensor lhs and 2D tensor rhs with nnpack. Parameters ---------- lhs : Tensor lhs 2D matrix input[batch_size][input_channels] of FP32 elements rhs : Tensor lhs 2D matrix kernel[output_channels][input_channels] of FP32 elements Returns ------- C : Tensor lhs 2D array out[batch_size][output_channels] of FP32 elements. """ n = lhs.shape[0] m = rhs.shape[0] return _api.extern( (n, m), [lhs, rhs], lambda ins, outs: _intrin.call_packed( "tvm.contrib.nnpack.fully_connected_output", ins[0], ins[1], outs[0]), name="C") def convolution_inference(data, kernel, bias, padding, stride): """Create an extern op to do inference convolution of 3D tensor data and 4D tensor kernel and 1D tensor bias with nnpack. Parameters ---------- data : Tensor data 3D tensor input[input_channels][input_height][input_width] of FP32 elements. kernel : Tensor kernel 4D tensor kernel[output_channels][input_channels][kernel_height] [kernel_width] of FP32 elements. bias : Tensor bias 1D array bias[output_channels][input_channels][kernel_height] [kernel_width] of FP32 elements. padding : list padding A 4-dim list of [pad_top, pad_bottom, pad_left, pad_right], which indicates the padding around the feature map. stride : list stride A 2-dim list of [stride_height, stride_width], which indicates the stride. Returns ------- output : Tensor output 3D tensor output[output_channels][output_height][output_width] of FP32 elements. """ assert isinstance(padding, list) and len(padding) == 4 assert isinstance(stride, list) and len(stride) == 2 _, input_height, input_width = data.shape output_channels, _, kernel_height, kernel_width = kernel.shape output_height = (input_height + padding[0] + padding[1] - kernel_height) + 1 output_width = (input_width + padding[0] + padding[1] - kernel_width) + 1 return _api.extern( (output_channels, output_height, output_width), [data, kernel, bias], lambda ins, outs: _intrin.call_packed( "tvm.contrib.nnpack.convolution_inference", ins[0], ins[1], ins[2], outs[0], padding[0], padding[1], padding[2], padding[3], stride[0], stride[1]), name="C") def convolution_output(data, kernel, bias, padding): """Create an extern op to compute convolution of 4D tensor data and 4D tensor kernel and 1D tensor bias with nnpack. Parameters ---------- data : Tensor data 4D tensor input[batch_size][input_channels][input_height] [input_width] of FP32 elements. kernel : Tensor kernel 4D tensor kernel[output_channels][input_channels][kernel_height] [kernel_width] of FP32 elements. bias : Tensor bias 1D array bias[output_channels][input_channels][kernel_height] [kernel_width] of FP32 elements. padding : list padding A 4-dim list of [pad_top, pad_bottom, pad_left, pad_right], which indicates the padding around the feature map. Returns ------- output : Tensor output 4D tensor output[batch_size][output_channels][output_height] [output_width] of FP32 elements. """ assert isinstance(padding, list) and len(padding) == 4 batch, _, input_height, input_width = data.shape output_channels, _, kernel_height, kernel_width = kernel.shape output_height = (input_height + padding[0] + padding[1] - kernel_height) + 1 output_width = (input_width + padding[0] + padding[1] - kernel_width) + 1 return _api.extern( (batch, output_channels, output_height, output_width), [data, kernel, bias], lambda ins, outs: _intrin.call_packed( "tvm.contrib.nnpack.convolution_output", ins[0], ins[1], ins[2], outs[0], padding[0], padding[1], padding[2], padding[3]), name="C")