# pylint: disable=import-self, invalid-name, unused-argument, too-many-lines, len-as-condition """TF: Tensorflow frontend.""" from __future__ import absolute_import as _abs from __future__ import print_function import logging # Numpy support import numpy as np import tvm from topi.util import get_const_tuple from .. import ir_pass from .. import expr as _expr from .. import op as _op __all__ = ['from_tensorflow'] def _get_relay_op(op_name): try: op = getattr(_op, op_name) except AttributeError: try: op = getattr(_op.nn, op_name) except AttributeError: op = getattr(_op.image, op_name) if not op: raise RuntimeError("Unable to map op_name {} to relay".format(op_name)) return op class AttrCvt(object): """Common attribute conveter. An AttrConverter instance is a callable: ``` attr_converter = AttrConverter(op_name, transforms={'a':'b', 'c':('d', 1)}) new_op_name, new_attr = attr_converter(attrs) ``` Parameters ---------- op_name : str or callable If set as str, returned operator name is the str. If set as callable, returned operator is the str returned by calling: `op_name = func(attr)` transforms : dict of `new_name, or (new_name, default_value, transform function)` If only a new_name is provided, it's like renaming the attribute name. If default_value if provded, then the attribute is considered as optional. If transform function is provided, the original attribute value is handled by transform function. excludes : list A list of excluded attributes that should `NOT` appear. Raise NotImplementedError if occured. disables : list A list of attributes that is disabled in relay. Log warnings. ignores : list A list of attributes that is ignored in relay. Debug level logging. extras : dict A series of additional attributes should be added anyway to the returned attribute dict. custom_check : callable A custom function takes attribute, and return True/False. Raise RuntimeError if not bool(True) returned. """ def __init__(self, op_name, transforms=None, excludes=None, disables=None, ignores=None, extras=None, custom_check=None): self._op_name = op_name self._transforms = transforms if transforms else {} self._excludes = excludes if excludes else [] self._disables = disables if disables else [] self._ignores = ignores if ignores else [] self._extras = extras if extras else {} self._custom_check = custom_check def __call__(self, inputs, attrs, *args): self._ignores.append('_output_shapes') self._ignores.append('_input_shapes') self._ignores.append('T') self._ignores.append('use_cudnn_on_gpu') self._ignores.append('_node_name') self._ignores.append('is_training') self._ignores.append('_target_layout') # apply custom check if self._custom_check: func, msg = self._custom_check if not func(attrs): raise RuntimeError("Check failed: {}".format(msg)) # get new op_name if isinstance(self._op_name, str): op_name = self._op_name else: assert callable(self._op_name), "op_name can either be string or callable" op_name = self._op_name(attrs) # convert attributes new_attrs = {} for k in attrs.keys(): if k in self._excludes: raise NotImplementedError("Attribute {} not supported yet.".format(k)) elif k in self._disables: logging.warning("Attribute %s is disabled in relay.%s", k, op_name) elif k in self._ignores: logging.debug("Attribute %s is ignored in relay.%s", k, op_name) elif k in self._transforms: new_name, defaults, transform = self._parse_default(self._transforms[k]) if defaults is None: new_attr = self._required_attr(attrs, k) else: new_attr = attrs.get(k, None) if new_attr is None: new_attrs[new_name] = defaults else: new_attrs[new_name] = transform(new_attr) else: # copy new_attrs[k] = attrs[k] # add extras new_attrs.update(self._extras) return _get_relay_op(op_name)(*inputs, **new_attrs) def _parse_default(self, target): """Helper function to parse default values.""" if not isinstance(target, (list, tuple)): k, v, t = target, None, lambda x: x elif len(target) == 1: k, v, t = target[0], None, lambda x: x elif len(target) == 2: k, v, t = target[0], target[1], lambda x: x elif len(target) > 2: k, v, t = target[0], target[1], target[2] else: k = None # should raise if not isinstance(k, str): msg = "{} is not a valid target, (name, default) expected.".format(target) raise ValueError(msg) return k, v, t def _parse_bool(self, value): """Helper function to parse default boolean values.""" if isinstance(value, str): return value.strip().lower() in ['true', '1', 't', 'y', 'yes'] return bool(value) def _required_attr(self, attr, key): """Wrapper for getting required attributes.""" assert isinstance(attr, dict) if key not in attr: raise AttributeError("Required attribute {} not found.".format(key)) return attr[key] def _get_pad_pair(input1d, kernel1d, stride1d): if input1d % stride1d == 0: pad = max(kernel1d - stride1d, 0) else: pad = max(kernel1d - (input1d % stride1d), 0) pad_before = pad // 2 pad_after = pad - pad_before return [pad_before, pad_after] def _get_name_hint(node): name = '' if hasattr(node, "name_hint"): name = node.name_hint return name def _math_name_picker(surfix): def _impl(attr): return 'broadcast_' + surfix return _impl def _dimension_picker(prefix, surfix=''): def _impl(attr): kernel = attr['kernel_shape'] if len(kernel) == 2: return prefix + '2d' + surfix raise NotImplementedError("Only 2d kernel supported.") return _impl def _dimension_constraint(): def _dim_check(attrs): if len(attrs['kernel_shape']) == 2: return True return False return _dim_check, "Only 2d kernel supported." def _infer_channels(inputs, params, transpose=False): """A hack for getting 'channles' or 'units' since tensorflow don't provide these attributes. We check the shape of weights provided to get the number. """ out_type = ir_pass.infer_type(inputs) out_shapes = [get_const_tuple(out_type.checked_type.shape)] channels = out_shapes[0][0] if not transpose else out_shapes[0][1] return channels def _rsqrt(): def _impl(inputs, attr, *args): inputs.append(tvm.relay.const(-0.5, attr['T'].name)) return AttrCvt(op_name="power")(inputs, attr) return _impl def _argx(func, func_name): """ A common wrapper for argmin and argmax operations """ def _impl(inputs, attr, params): try: # In Tensorflow, `axis` argument is a Tensor, not attribute. We # support the case where it inputs from a scalar constant. axis_input_name = inputs[1].name_hint axis_input_vlaue = [params[axis_input_name].asnumpy()[0]] except (IndexError, KeyError): raise TypeError( \ "Unsupported argument for `{}` : `axis` should be a constant".format(func_name)) return func(inputs[0], axis=axis_input_vlaue, keepdims=False) return _impl def _elemwise(name): def _impl(inputs, attr, *args): assert len(inputs) == 2, "Math op take 2 inputs, {} given".format(len(inputs)) return _get_relay_op(name)(*inputs) return _impl def _pooling(name): def _impl(inputs, attr, params): attr['data_format'] = attr['data_format'].decode("utf-8") flip_layout = False input_shape = attr['_input_shapes'][inputs[0]][0] if attr['data_format'] == 'NHWC': attr['kernel_shape'] = (attr['ksize'][1], attr['ksize'][2]) attr['strides'] = (attr['strides'][1], attr['strides'][2]) elif attr['data_format'] == 'NCHW': attr['kernel_shape'] = (attr['ksize'][2], attr['ksize'][3]) attr['strides'] = (attr['strides'][2], attr['strides'][3]) else: raise TypeError("Unsupported data_format type : {}".format(attr['data_format'])) if attr['_target_layout'] == "NCHW" and attr['data_format'] == "NHWC": tmp_shape = attr['_input_shapes'][inputs[0]][0] input_shape = [tmp_shape[ii] for ii in (0, 3, 1, 2)] inputs[0] = _op.transpose(inputs[0], axes=(0, 3, 1, 2)) attr['data_format'] = "NCHW" flip_layout = True # Fix padding attr['padding'] = attr['padding'].decode("utf-8") if attr['padding'] == 'VALID': attr['padding'] = [0, 0] elif attr['padding'] == 'SAME': stride_h, stride_w = attr['strides'] kernel_h, kernel_w = attr['kernel_shape'] if attr['data_format'] == 'NHWC': in_h = input_shape[1] in_w = input_shape[2] else: in_h = input_shape[2] in_w = input_shape[3] pad_v = _get_pad_pair(in_h, kernel_h, stride_h) pad_h = _get_pad_pair(in_w, kernel_w, stride_w) attr['padding'] = [pad_v[0], pad_h[0], pad_v[1], pad_h[1]] else: raise TypeError("Unsupported padding type : {}".format(attr['padding'])) if name == "avg_pool": attr['count_include_pad'] = False out = AttrCvt( op_name=_dimension_picker(name), transforms={ 'kernel_shape':'pool_size', 'data_format':'layout'}, ignores=['ksize'], extras={'ceil_mode': False}, custom_check=_dimension_constraint())(inputs, attr) if flip_layout: out = _op.transpose(out, axes=(0, 2, 3, 1)) return out return _impl def _conv(opname): def _impl(inputs, attr, params): attr['data_format'] = attr['data_format'].decode("utf-8") flip_layout = False # NCHW Layout require weights transpose if attr['data_format'] == 'NCHW': tmp_shape = attr['_input_shapes'][inputs[1]][0] tmp_shape = [tmp_shape[ii] for ii in (3, 2, 0, 1)] inputs[1] = _op.transpose(inputs[1], axes=(3, 2, 0, 1)) attr['_input_shapes'][inputs[1]] = [tmp_shape] input_shape = attr['_input_shapes'][inputs[0]][0] weights_shape = attr['_input_shapes'][inputs[1]][0] if attr['_target_layout'] == "NCHW" and attr['data_format'] == "NHWC": input_shape = [input_shape[ii] for ii in (0, 3, 1, 2)] inputs[0] = _op.transpose(inputs[0], axes=(0, 3, 1, 2)) if opname == 'conv': weights_shape = [weights_shape[ii] for ii in (3, 2, 0, 1)] inputs[1] = _op.transpose(inputs[1], axes=(3, 2, 0, 1)) else: weights_shape = [weights_shape[ii] for ii in (2, 3, 0, 1)] inputs[1] = _op.transpose(inputs[1], axes=(2, 3, 0, 1)) attr['data_format'] = "NCHW" attr['strides'] = [attr['strides'][ii] for ii in (0, 3, 1, 2)] flip_layout = True if attr['data_format'] == 'NHWC': kernel_h, kernel_w, _, depth_mult = weights_shape attr['kernel_shape'] = (weights_shape[0], weights_shape[1]) if opname == 'conv': attr['channels'] = weights_shape[3] else: attr['channels'] = input_shape[3] * depth_mult if 'dilations' in attr: attr['dilations'] = (attr['dilations'][0], attr['dilations'][1]) attr['strides'] = (attr['strides'][1], attr['strides'][2]) elif attr['data_format'] == 'NCHW': depth_mult, _, kernel_h, kernel_w = weights_shape attr['kernel_shape'] = (weights_shape[2], weights_shape[3]) if opname == 'conv': attr['channels'] = weights_shape[0] else: attr['channels'] = input_shape[0] * depth_mult if attr['channels'] < 0: attr['channels'] *= -1 if 'dilations' in attr: attr['dilations'] = (attr['dilations'][2], attr['dilations'][3]) attr['strides'] = (attr['strides'][2], attr['strides'][3]) else: raise TypeError("Unsupported data format type : {}".format(attr['data_format'])) if opname == 'depthwise': attr['groups'] = attr['channels'] # Fix padding attr['padding'] = attr['padding'].decode("utf-8") if attr['padding'] == 'VALID': attr['padding'] = [0, 0] elif attr['padding'] == 'SAME': stride_h, stride_w = attr['strides'] kernel_h, kernel_w = attr['kernel_shape'] if attr['data_format'] == 'NHWC': in_h = input_shape[1] in_w = input_shape[2] else: in_h = input_shape[2] in_w = input_shape[3] pad_v = _get_pad_pair(in_h, kernel_h, stride_h) pad_h = _get_pad_pair(in_w, kernel_w, stride_w) if attr['data_format'] == 'NHWC': inputs[0] = _op.nn.pad(data=inputs[0], pad_width=((0, 0), (pad_v[0], pad_v[1]), (pad_h[0], pad_h[1]), (0, 0))) else: inputs[0] = _op.nn.pad(data=inputs[0], pad_width=((0, 0), (0, 0), (pad_v[0], pad_v[1]), (pad_h[0], pad_h[1]))) attr['padding'] = [0, 0] else: raise TypeError("Unsupported padding type : {}".format(attr['padding'])) if 'kernel_layout' not in attr: if opname == 'conv': attr['kernel_layout'] = 'HWIO' if attr['data_format'] == 'NHWC' else 'OIHW' else: attr['kernel_layout'] = 'HWOI' if attr['data_format'] == 'NHWC' else 'OIHW' use_bias = len(inputs) == 3 channel_axis = 1 if attr['data_format'] == "NCHW" else 3 out = AttrCvt( op_name=_dimension_picker('conv'), transforms={ 'kernel_shape': 'kernel_size', 'data_format': 'data_layout', 'dilations': ('dilation', (0, 0)), 'group': ('groups', 1)}, custom_check=_dimension_constraint())([inputs[0], inputs[1]], attr) if use_bias: out = _op.nn.bias_add(out, inputs[2], axis=channel_axis) if flip_layout: out = _op.transpose(out, axes=(0, 2, 3, 1)) return out return _impl def _decode_image(): def _impl(inputs, attr, params): # Image decode wrapper: Expecting user to feed decoded input to next layer drop this layer. print("DecodeJpeg: It's a pass through, please handle preprocessing before input") return inputs[0] return _impl def _cast(): def _impl(inputs, attr, params): return inputs[0].astype(attr['DstT'].name) return _impl def _expand_dims(): def _impl(inputs, attr, params): dim_input = inputs.pop(1) axis = params[dim_input.name_hint] params.pop(dim_input.name_hint) return AttrCvt(op_name="expand_dims", ignores=['Tdim'], extras={'axis': int(axis.asnumpy()[0])})(inputs, attr) return _impl def _resize_bilinear(): def _impl(inputs, attr, params): attr['size'] = attr['_output_shapes'][0][1:3] inputs.pop(1) # NHWC attr['layout'] = 'NHWC' return AttrCvt(op_name="resize", ignores=['Tdim'], extras={'method': "BILINEAR"})(inputs, attr) return _impl def _check_numerics(): def _impl(inputs, attr, params): # Making a copy node assuming no need to verify return AttrCvt(op_name="copy", ignores=['message'])(inputs, attr) return _impl def _matmul(): def _impl(inputs, attr, params): channels = _infer_channels(inputs[1], params, not attr['transpose_b']) if attr['transpose_a']: inputs[0] = _op.transpose(inputs[0], axes=(1, 0)) if not attr['transpose_b']: inputs[1] = _op.transpose(inputs[1], axes=(1, 0)) return AttrCvt(op_name="dense", extras={'units': channels}, ignores=['transpose_a', 'transpose_b', 'T'])(inputs, attr) return _impl def _identity(): def _impl(inputs, attr, params): return inputs[0] return _impl def _concatV2(): def _impl(inputs, attr, params): pop_node = inputs.pop(len(inputs)-1) axis = params[pop_node.name_hint] params.pop(pop_node.name_hint) return AttrCvt( op_name="concatenate", ignores=['T', 'N', 'Tidx'], extras={'axis': int(axis.asnumpy()[0])})([inputs], attr) return _impl def _concat(): def _impl(inputs, attr, params): pop_node = inputs.pop(0) axis = params[pop_node.name_hint] params.pop(pop_node.name_hint) return AttrCvt( op_name="concatenate", ignores=['N'], extras={'axis': int(axis.asnumpy()[0])})([inputs], attr) return _impl def _pack(): def _impl(inputs, attr, params): axis = int(attr["axis"]) inputs_reshaped = [_op.expand_dims(i, axis=axis, num_newaxis=1) for i in inputs] return _op.concatenate(inputs_reshaped, axis) return _impl def _reshape(): def _impl(inputs, attr, params): try: pop_node = inputs[1] shape_arg = params.pop(pop_node.name_hint) inputs.pop(1) return AttrCvt( op_name="reshape", extras={'newshape':tuple(shape_arg.asnumpy())}, ignores=['Tshape'])(inputs, attr) except KeyError: # Shape operator is already pruned, hence # try to infer shape by precompute prune if possible. if all(in_node in params for in_node in inputs[1].list_input_names()): func = _expr.Function(ir_pass.free_vars(inputs[1]), inputs[1]) with tvm.relay.build_config(opt_level=0): graph, lib, params = tvm.relay.build(func, target="llvm", params=params) ctx = tvm.context("llvm", 0) from tvm.contrib import graph_runtime m = graph_runtime.create(graph, lib, ctx) m.set_input(**params) m.run() params_new = m.get_output(0) inputs.pop(1) return AttrCvt( op_name="reshape", extras={'newshape':tuple(params_new.asnumpy().flatten())}, ignores=['Tshape'])(inputs, attr) raise RuntimeError("Reshape with dynamic shape input not supported yet.") return _impl def _bias_add(): def _impl(inputs, attr, params): return _op.add(inputs[0], inputs[1]) return _impl def _squeeze(): def _impl(inputs, attr, params): if len(attr['squeeze_dims']) == 0: attr['squeeze_dims'] = None return AttrCvt( op_name="squeeze", transforms={'squeeze_dims':'axis'}, ignores=['T'])(inputs, attr) return _impl def _fused_batch_norm(): def _impl(inputs, attr, params): # Tensorflow: (data, gamma, beta, moving_mean, moving_variance) # Relay: (data, gamma, beta, moving_mean, moving_varience) axis = 3 need_cast = False if 'data_format' in attr: attr['data_format'] = attr['data_format'].decode("utf-8") if attr['data_format'] == 'NCHW': axis = 1 if 'U' in attr: need_cast = True inputs[0] = _op.cast(inputs[0], dtype=attr['U'].name) out = AttrCvt(op_name='batch_norm', transforms={'scale_after_normalization':'scale', 'variance_epsilon':'epsilon'}, extras={'axis': axis}, ignores=['data_format', 'U'], disables=['momentum'])(inputs, attr) if need_cast: out = _op.cast(out, dtype=attr['T'].name) return out return _impl def _batch_norm(): def _impl(inputs, attr, params): # Rearrange inputs from # (data, moving_mean, moving_variance, beta, gamma) # to # (data, gamma, beta, moving_mean, moving_var) new_inputs = [inputs[0], inputs[4], inputs[3], inputs[1], inputs[2]] axis = 3 if 'data_format' in attr: attr['data_format'] = attr['data_format'].decode("utf-8") if attr['data_format'] == 'NCHW': axis = 1 return AttrCvt( op_name='batch_norm', transforms={'scale_after_normalization':'scale', 'variance_epsilon':'epsilon'}, extras={'axis': axis}, ignores=['data_format'], disables=['momentum'])(new_inputs, attr) return _impl def _relu6(): def _impl(inputs, attr, params): return _op.clip(inputs[0], a_min=0, a_max=6) return _impl def _shape(): def _impl(inputs, attr, params): return np.array(attr['_input_shapes'][inputs[0]][0], dtype='int32') return _impl def _fill(): def _impl(inputs, attr, params): fill_arg = params.pop(inputs.pop(1).name_hint) return _op.full(tvm.relay.const(fill_arg.asnumpy()[0], attr['T'].name), attr['_output_shapes'][0], attr['T'].name) return _impl def _lrn(): def _impl(inputs, attr, params): attr_new = {} depth_radius = attr.get('depth_radius', 5) size = (depth_radius * 2) + 1 attr_new['axis'] = 3 # Fix axis, NHWC format attr_new['size'] = size attr_new['bias'] = attr.get('bias', 1) attr_new['alpha'] = attr.get('alpha', 1) * size attr_new['beta'] = attr.get('beta', 0.5) return AttrCvt(op_name='lrn')(inputs, attr_new) return _impl def _sum(): def _impl(inputs, attr, params): axis = params.pop(inputs[1].name_hint).asnumpy() # convert to tuple for preventing invalid parameter format error axis = tuple(axis) return AttrCvt( op_name='sum', extras={'axis': axis}, transforms={'keep_dims':'keepdims'}, ignores=['name', 'Tidx'])([inputs[0]], attr) return _impl def _square(): def _impl(inputs, attr, params): return _op.multiply(inputs[0], inputs[0]) return _impl def _gather_v2(): "Tensorflow now support only gatherv2" def _impl(inputs, attr, params): axis = params[inputs.pop(2).name_hint].asnumpy()[0] new_input = [] new_input.append(inputs.pop(0)) new_input.append(inputs.pop(0)) return AttrCvt(op_name="take", extras={'axis': tvm.const(axis, 'int32')}, ignores=['Tindices', 'Tparams', 'validate_indices', \ 'Taxis', '_class'])(new_input, attr) return _impl def _infer_out_shapes(inputs, params): """A method to get the output shape of an intermediate node in the relay graph.""" out_type = ir_pass.infer_type(inputs) out_shapes = [get_const_tuple(out_type.checked_type.shape)] return out_shapes def _stridedSlice(): def _impl(inputs, attr, params): """Strided Slice. Operator description: https://www.tensorflow.org/api_docs/python/tf/strided_slice Tensorflow mask validation: https://github.com/tensorflow/tensorflow/blob/master/ tensorflow/core/util/strided_slice_op.cc#L147-L368 """ begin = params.pop(inputs[1].name_hint).asnumpy().tolist() end = params.pop(inputs[2].name_hint).asnumpy().tolist() stride = params.pop(inputs[3].name_hint).asnumpy().tolist() begin_mask = int(attr.get('begin_mask', 0)) end_mask = int(attr.get('end_mask', 0)) ellipsis_mask = int(attr.get('ellipsis_mask', 0)) new_axis_mask = int(attr.get('new_axis_mask', 0)) shrink_axis_mask = int(attr.get('shrink_axis_mask', 0)) data_shape = attr['_input_shapes'][inputs[0]] data_dim = len(data_shape[0]) stride_dim = len(stride) def _transform_mask(stride_dim, ellipsis_mask): """Handle mask inputs to create new begin, end, stride and output shape""" m_begin = [0] * data_dim m_end = [0] * data_dim m_stride = [0] * data_dim fshape_indices = [] #Count new axis after ellipsis_mask, consider while applying ellipsis_mask. ellipsis_seen = False new_axes_after_ellipsis = 0 for i in range(stride_dim): mask = 1 << i if ellipsis_seen and (mask & new_axis_mask) != 0: new_axes_after_ellipsis += 1 if (mask & ellipsis_mask) != 0: ellipsis_seen = True if not ellipsis_seen: #Used later for extending the stride attributes in the below loop. ellipsis_mask |= (1 << stride_dim) stride_dim += 1 final_index = 0 for index in range(stride_dim): mask = 1 << index if mask & ellipsis_mask: #Identify the end index for applying ellipsis_mask to_index = min(((data_dim - (stride_dim-index)) + 1 \ + new_axes_after_ellipsis), data_dim) for i in range(final_index, to_index): m_begin[final_index] = 0 m_end[final_index] = data_shape[0][final_index] m_stride[final_index] = 1 fshape_indices.append(final_index) final_index += 1 elif mask &new_axis_mask: fshape_indices.append(-1) elif not mask & new_axis_mask: if final_index == len(m_begin): break if mask & begin_mask: m_begin[final_index] = data_shape[0][final_index] \ if stride[index] < 0 else 0 elif begin[index]: m_begin[final_index] = begin[index] if mask & end_mask: m_end[final_index] = 0 if stride[index] < 0 \ else data_shape[0][final_index] elif end[index]: m_end[final_index] = end[index] m_stride[final_index] = stride[index] if mask & shrink_axis_mask: #Tensorflow make axis with shrink_axis_mask as dimension 1 m_begin[final_index] = data_shape[0][final_index] + begin[index] \ if begin[index] < 0 else begin[index] m_end[final_index] = begin[index] + 1 m_stride[final_index] = 1 fshape_indices.append(-2) else: fshape_indices.append(final_index) final_index += 1 return m_begin, m_end, m_stride, fshape_indices fshape_indices = None if begin_mask or end_mask or ellipsis_mask or new_axis_mask or shrink_axis_mask: begin, end, stride, fshape_indices = _transform_mask(stride_dim, ellipsis_mask) out = _op.strided_slice(inputs[0], begin=begin, end=end, strides=stride) out_shape = _infer_out_shapes(out, params)[0] if not fshape_indices: fshape_indices = range(len(out_shape)) #Create final output shape. final_output = [] for gather_index in fshape_indices: if gather_index == -1: final_output.append(1) elif gather_index == -2: pass else: final_output.append(out_shape[gather_index]) return _op.reshape(out, newshape=tuple(final_output)) return _impl def _pad(name): def _impl(inputs, attr, params): padlist_key = inputs[1].name_hint if padlist_key in params: padlist = params.pop(padlist_key).asnumpy() else: raise RuntimeError("Required parameter {} not fount.".format(padlist_key)) paddings = tuple([tuple(l) for l in padlist]) attr['pad_width'] = paddings attr['pad_value'] = 0 new_inputs = [inputs[0]] if name == 'PadV2': constant_values = params.pop(inputs[2].name_hint).asnumpy() attr['pad_value'] = constant_values[0] return AttrCvt( op_name='pad', ignores=['Tpaddings'],)(new_inputs, attr) return _impl def _transpose(): def _impl(inputs, attr, params): # If perm is not specified, axes is left empty, # otherwise its value is get from params param_name = _get_name_hint(inputs[1]) if param_name in params: axes = tuple(params.get(param_name).asnumpy()) else: axes = None return _op.transpose(inputs[0], axes=axes) return _impl def _rank(): def _impl(inputs, attr, params): input_shapes = attr['_input_shapes'][inputs[0]] assert len(inputs) == 1 name = attr["_node_name"] params[name] = tvm.nd.array([len(input_shapes[0])]) return [_expr.var(name, shape=params[name].shape, dtype='int32')] return _impl def _range(): def _impl(inputs, attr, params): start = params.pop(inputs[0].name_hint).asnumpy()[0] limit = params.pop(inputs[1].name_hint).asnumpy()[0] delta = params.pop(inputs[2].name_hint).asnumpy()[0] name = attr["_node_name"] params[name] = tvm.nd.array([start, limit, delta]) return [_expr.var(name, shape=params[name].shape, dtype='int32')] return _impl def _elu(): def _impl(inputs, attr, params): alpha = tvm.relay.const(-1.0, attr['T'].name) return alpha * _op.nn.relu(tvm.relay.const(1, attr['T'].name) \ - _op.exp(inputs[0])) + _op.nn.relu(inputs[0]) return _impl def _selu(): def _impl(inputs, attr, params): alpha = tvm.relay.const(-1.6732632423543772848170429916717, attr['T'].name) gamma = tvm.relay.const(1.0507009873554804934193349852946, attr['T'].name) return gamma * (alpha * _op.nn.relu(tvm.relay.const(1, attr['T'].name) \ - _op.exp(inputs[0])) + _op.nn.relu(inputs[0])) return _impl def _mean(): def _impl(inputs, attr, params): axis = params.pop(inputs[1].name_hint) return AttrCvt(op_name="mean", ignores=['Tdim', 'Tidx'], transforms={'keep_dims': 'keepdims'}, extras={'axis': tuple(axis.asnumpy())})([inputs[0]], attr) return _impl def _broadcast(name): def _impl(inputs, attr, params): return AttrCvt( op_name=name, ignores=['name', 'Tidx'] )(inputs, attr) return _impl def _softmax(): def _impl(inputs, attr, params): return AttrCvt(op_name='softmax', transforms={'axis': ('axis', 1)})([inputs[0]], attr) return _impl # compatible operators that do NOT require any conversion. _identity_list = [] # _convert_map defines maps of name to converter functor(callable) # for 1 to 1 mapping, use Renamer if nothing but name is different # use AttrCvt if attributes need to be converted # for 1 to N mapping(composed), use custom callable functions # for N to 1 mapping, currently not supported(?) _convert_map = { 'ArgMax' : _argx(_op.argmax, 'argmax'), 'ArgMin' : _argx(_op.argmin, 'argmin'), 'AvgPool' : _pooling('avg_pool'), 'BatchNormWithGlobalNormalization' : _batch_norm(), 'BiasAdd' : _bias_add(), 'Cast' : _cast(), 'Ceil' : AttrCvt('ceil'), 'CheckNumerics' : _check_numerics(), 'Concat' : _concat(), 'ConcatV2' : _concatV2(), 'Conv2D' : _conv('conv'), 'DecodeJpeg' : _decode_image(), 'Elu' : _elu(), 'ExpandDims' : _expand_dims(), 'Floor' : AttrCvt('floor'), 'Identity' : _identity(), 'MatMul' : _matmul(), 'MaxPool' : _pooling('max_pool'), 'Add' : _elemwise('add'), 'Sub' : _elemwise('subtract'), 'Mul' : _elemwise('multiply'), 'Maximum' : _elemwise('maximum'), 'Minimum' : _elemwise('minimum'), 'Sum' : _sum(), 'Square' : _square(), 'Pack' : _pack(), 'LeakyRelu' : AttrCvt('leaky_relu'), 'Relu' : AttrCvt('relu'), 'Reshape' : _reshape(), 'ResizeBilinear' : _resize_bilinear(), 'Selu' : _selu(), 'Softmax' : _softmax(), 'Rsqrt' : _rsqrt(), 'Squeeze' : _squeeze(), 'FusedBatchNorm' : _fused_batch_norm(), 'FusedBatchNormV2' : _fused_batch_norm(), 'Relu6' : _relu6(), 'DepthwiseConv2dNative' : _conv('depthwise'), 'Shape' : _shape(), 'Sigmoid' : AttrCvt('sigmoid'), 'Fill' : _fill(), 'GatherV2' : _gather_v2(), 'StridedSlice' : _stridedSlice(), 'LRN' : _lrn(), 'Pad' : _pad('Pad'), 'PadV2' : _pad('PadV2'), 'Range' : _range(), 'Rank' : _rank(), 'Transpose' : _transpose(), 'Tanh' : AttrCvt('tanh'), 'Mean' : _mean(), 'Less' : _broadcast('less'), 'Greater' : _broadcast('greater'), 'LessEqual' : _broadcast('less_equal'), 'GreaterEqual' : _broadcast('greater_equal'), 'Equal' : _broadcast('equal'), 'NotEqual' : _broadcast('not_equal'), } def _LSTMBlockCell(): def _impl(inputs, in_state_c, in_state_h, attr, params): """LSTM Block cell. Calculations are described in: https://github.com/tensorflow/tensorflow/blob/ r1.8/tensorflow/contrib/rnn/python/ops/lstm_ops.py#L41-L114 Parameters ---------- inputs : relay.Expr Input data in_state_c: list of relay.Expr Cell state input values for all the layers in_state_h: list of relay.Expr Hidden state input values for all the layers attrs : dict Dict of operator attributes params : dict List of pretrained weights and bias Returns ------- sym : relay.Expr Converted relay.Expr output: relay.Expr Output state value. """ in_data = inputs[0] in_weight = inputs[3] in_bias = inputs[7] forget_bias = attr.pop('forget_bias') input_shape = attr['_input_shapes'][inputs[0]] weight_shape = attr['_input_shapes'][inputs[3]] batch_size, input_size = input_shape[0][0], input_shape[0][1] num_hidden_layers = weight_shape[0][1] num_hidden = num_hidden_layers // 4 in_data = _op.reshape(in_data, newshape=(batch_size, input_size)) ixh = _op.concatenate([in_data, in_state_h], axis=1) in_weight = _op.transpose(in_weight, axes=None) gates = _op.nn.dense(ixh, in_weight, units=num_hidden_layers) gates_bias = _op.add(gates, in_bias) gate_list = _op.split(gates_bias, indices_or_sections=4, axis=1) in_gate = _op.sigmoid(gate_list[0]) in_transform = _op.tanh(gate_list[1]) forget_gate = _op.sigmoid(gate_list[2]) forget_gate = _op.add(forget_gate, tvm.relay.const(forget_bias, attr['T'].name)) out_gate = _op.sigmoid(gate_list[3]) next_c = _op.add(_op.multiply(forget_gate, in_state_c), _op.multiply(in_gate, in_transform)) next_h = out_gate * _op.tanh(next_c) out_state = _op.concatenate([next_c, next_h], axis=1) out_state = _op.reshape(out_state, newshape=(2, batch_size, num_hidden)) return next_h, out_state return _impl # _convert_map_rnn defines maps of rnn operator name to # converter functor(callable) for 1 to 1 mapping. _convert_map_rnn = { 'LSTMBlockCell' : _LSTMBlockCell(), } class RecurrentNetworks(object): """Recurrent network layer handlers. Handle Layer operations. ToDo: Operators like RNN/GRU layer concepts also can be handled here Parameters ---------- nodes : list list of graph nodes used for tensorflow parsing. out_rnn : list List of RecurrentNetwork outputs. This output will be appended to the 'head' nodes of the graph. graph : tensorflow graph definition object The loaded tensorflow GraphDef convert_map : dict Dict of name : callable, where name is the op's name that require conversion to relay, callable are functions which take attrs and return (new_op_name, new_attrs) """ def __init__(self, nodes, out_rnn, graph, convert_map): self._graph = graph self._convert_map = convert_map self._nodes = nodes self._out_rnn = out_rnn self._cur_lstm_layer = 0 self._layer_name_list = [] self._recurrent_ops_layer_map = { 'LSTMBlockCell' : self._LSTMBlockCellLayer(), } def _LSTMBlockCellLayer(self): """LSTMBlockCell layer handler. Parameters ---------- op_name : str Operator name, eg:LSTMBlockCell layer_name : str list Layer name is used for creating the state input placeholder. inputs : relay.Expr Input data attrs : dict Dict of operator attributes params : dict List of pretrained weights and bias num_layers : int Total number of LSTM layer presented in the graph Returns ------- sym : relay.Expr The returned relay Expr """ def _impl(op_name, layer_name, inputs, attrs, params, num_layers): in_state_c_name = layer_name+'_c' in_state_h_name = layer_name+'_h' def _init_state(num_layers, batch_size, num_hidden): """Create the initial states for the first layer in the graph.""" in_state_c = [_expr.var(in_state_c_name, shape=(num_layers, batch_size, num_hidden), dtype='float32')] in_state_h = [_expr.var(in_state_h_name, shape=(num_layers, batch_size, num_hidden), dtype='float32')] return in_state_c, in_state_h def _get_cur_input_state(in_state_c, in_state_h, num_layers, layer, batch_size, num_hidden): """Select the appropriate states for the current layer""" in_state_c_tup = _op.split(in_state_c[0], indices_or_sections=num_layers, axis=0) in_state_h_tup = _op.split(in_state_h[0], indices_or_sections=num_layers, axis=0) cur_in_state_c = _op.reshape(in_state_c_tup[layer], newshape=(batch_size, num_hidden)) cur_in_state_h = _op.reshape(in_state_h_tup[layer], newshape=(batch_size, num_hidden)) return cur_in_state_c, cur_in_state_h def _LSTMBlockCellWrapper(inputs, attr, params, num_layers, layer): """LSTM cell warapper to prepare the inputs""" input_shape = attr['_input_shapes'][inputs[0]] weight_shape = attr['_input_shapes'][inputs[3]] batch_size = input_shape[0][0] num_hidden = weight_shape[0][1] // 4 if layer == 0: #Create initial states placeholder in case of first layer in_state_c, in_state_h = _init_state(num_layers, batch_size, num_hidden) else: in_state_c = self._nodes[in_state_c_name] in_state_h = self._nodes[in_state_h_name] cur_in_state_c, cur_in_state_h = _get_cur_input_state( \ in_state_c, in_state_h, num_layers, layer, batch_size, num_hidden) output, out_state = self._convert_map[op_name](inputs, cur_in_state_c, cur_in_state_h, attr, params) return output, out_state, in_state_c, in_state_h sym, cur_out_state, in_state_c, in_state_h = \ _LSTMBlockCellWrapper(inputs, attrs, params, num_layers, self._cur_lstm_layer) self._nodes[in_state_c_name] = in_state_c self._nodes[in_state_h_name] = in_state_h cur_out_state = _op.expand_dims(cur_out_state, axis=0, num_newaxis=1) self._out_rnn.append(cur_out_state) self._cur_lstm_layer += 1 return sym return _impl def process_op(self, op_name, inputs, attrs, params): """Process recurrent layer operators. List '_recurrent_ops_layer_map' map each Layer based operators with its layer handlers. Total number of layers are calculated to form the input data shapes. Parameters ---------- op_name : str Operator name, such as LSTMBlockCell inputs : relay.Expr Input data attrs : dict Dict of operator attributes params : dict List of pretrained weights and bias Returns ------- sym : relay.Expr Returns relay.Expr """ def _get_abs_layer_name(node): """Identify the layer name is already handled. Return the absolute name """ if not self._layer_name_list: self._layer_name_list.append(node.name) return node.name for _name in self._layer_name_list: if _name in node.name: abs_name = _name else: self._layer_name_list.append(node.name) abs_name = node.name return abs_name #Find number of layers of this same operator node in the graph #and also read the inputs name for the current op. num_layers = 0 for _, node in enumerate(self._graph.node): if node.op == op_name: layer_name = _get_abs_layer_name(node) num_layers += 1 sym = self._recurrent_ops_layer_map[op_name](op_name, layer_name, inputs, attrs, params, num_layers) return sym class GraphProto(object): """ A helper class for handling relay graph copying from Tensorflow GraphDef. Definition: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/graph.proto """ def __init__(self): self._nodes = {} self._params = {} self._output_shapes = {} self._num_param = 0 self._num_rnn_layer = False def from_tensorflow(self, graph, layout="NHWC", shape=None, outputs=None): """Construct relay nodes from tensorflow graph definition - GraphDef. Follow the tensorflow graph definition to parse and convert it to Relay. Some of the assumptions listed below. -> All Placeholders are considered as graph input. -> All Const nodes are params. -> Last node is assumed as graph output. -> _output_shapes : Graph should be frozen with add_shapes=True. Or user can pass input shape dictionaly optionally. -> DecodeJpeg, ResizeBilinear: These are dummy operators. Hence user should handle preprocessing outside. -> CheckNumerics: No implementation as of now for this. Just copies input to output. Parameters ---------- graph : tensorflow graph definition object The loaded tensorflow GraphDef layout : target layout to be used (Optional) NCHW only supported now to enable NHWC models on GPU. shape : Dictionary of input dimensions (Optional) Graph level input shape dictionary. Returns ------- sym : relay.op The returned relay operator params : dict A dict of name: tvm.nd.array pairs, used as pretrained weights """ try: from tensorflow.python.framework import tensor_util except ImportError as e: raise ImportError( "Unable to import tensorflow which is required {}".format(e)) missing_operators = self._parse_import_prerequisites(graph) if missing_operators: raise NotImplementedError( \ "The following operators are not implemented: {}".format(missing_operators)) # Parse the nodes to re-create TF graph using Relay operators. for node in graph.node: # Tensorflow doesn't have seperate list for params extraction. # Operator name 'Const' is treated as a parameter to build params dict. input_shapes = {} attr = self._parse_attr(node.attr) #Variable converted to Const will not have only value attr if 'value' in attr and node.op == 'Const': tensor_value = attr['value'] self._output_shapes[node.name] = \ [tensor_util.TensorShapeProtoToList( \ tensor_value.tensor_shape)] elif '_output_shapes' in attr: self._output_shapes[node.name] = \ [tensor_util.TensorShapeProtoToList(tshape) \ for tshape in attr['_output_shapes']] elif shape: # Keep the list indexable to avoid key error. # Actual value will be filled after node creation. self._output_shapes[node.name] = [None] else: raise NotImplementedError( \ "Please freeze the graph with add_shapes=True") if node.op == "Placeholder": self._output_shapes[node.name] = [shape[node.name]] self._nodes[node.name] = [_expr.var(node.name, shape=self._output_shapes[node.name][0], dtype=attr['dtype'].name)] elif node.op == "Const": # All Const nodes are Param nodes, lets parse self._num_param += 1 for key, value in node.attr.items(): self._parse_param(key, value, node.name, shape) if node.name not in self._nodes: raise NotImplementedError( \ "Const {} couldn't be converted to Param.".format(node.name)) attr = self._parse_attr(node.attr) else: # Pass the parsed shapes instead attr["_output_shapes"] = self._output_shapes[node.name] # Pass the node name too in attr attr["_node_name"] = node.name # Pass the target layout attr["_target_layout"] = layout #ToDo: Some of the tensorflow operators internaly maintain #execution layers and its output name will the layer number along with #graph node name.eg: Node name:- 'Model/RNN/cell_0/RnnCell', but the #output name will be 'Model/RNN/cell_0/RnnCell:0'. In this case, #the digit has to be ignored. if ":" in node.input[0]: in_name, _ = node.input[0].split(':') node.input[0] = in_name # Fill shapes for all inputs in a list inputs = [] for i in node.input: if i in self._nodes: inputs.append(self._nodes[i][0]) input_shapes[self._nodes[i][0]] = self._output_shapes[i] attr['_input_shapes'] = input_shapes op = self._convert_operator(node.op, inputs, attr, graph) # Check is op is converted to param if isinstance(op, np.ndarray): self._params[node.name] = tvm.nd.array(op) op = [_expr.var(node.name, shape=self._params[node.name].shape, dtype=self._params[node.name].dtype)] elif isinstance(op, (_expr.TupleWrapper, tuple, list)): pass elif isinstance(op, _expr.Expr): op = [op] else: raise RuntimeError("unexpected type %s" % type(op)) self._nodes[node.name] = op # Infer shapes if passed explicitely node_output = self._nodes[node.name] out_type = ir_pass.infer_type(node_output[0]) self._output_shapes[node.name] = [get_const_tuple(out_type.checked_type.shape)] out = [] if outputs is None: out = op else: out = [self._nodes[out_name][0] for out_name in outputs] #Add the RNN outputs also with 'head' nodes of the relay graph if self._num_rnn_layer: if len(self._out_rnn) == 1: out.append(self._out_rnn[0]) else: out_rnn = _op.concatenate(self._out_rnn, axis=0) out.append(out_rnn) out = out[0] if len(out) == 1 else _expr.Tuple(out) func = _expr.Function(ir_pass.free_vars(out), out) return func, self._params def _parse_import_prerequisites(self, graph): """ Calculate the named preconditions from TensorFlow `graph`. Return prerequisites for parsing: a. Set of operator names which don't have their mapping in TVM, i.e. which are not supported """ missing_operators = set() for node in graph.node: if node.op == "Placeholder": pass elif node.op == "Const": pass else: if any([node.op in t for t in [_identity_list, _convert_map, _convert_map_rnn]]): pass else: missing_operators.add(node.op) return missing_operators def _parse_param(self, key, value, name, shape): try: from tensorflow.python.framework import tensor_util except ImportError as e: raise ImportError( "Unable to import tensorflow which is required {}".format(e)) if key == 'value': np_array = tensor_util.MakeNdarray(value.tensor) if np_array.dtype == np.dtype(object): # Object types are generally tensorflow DT_STRING (DecodeJpeg op). # Just leave it as placeholder. self._nodes[name] = [_expr.var(name, shape=shape[name], dtype='uint8')] return array_ndim = len(np_array.shape) if array_ndim == 0: new_array = np.empty([1], dtype=np_array.dtype) new_array[0] = np_array self._params[name] = tvm.nd.array(new_array) else: self._params[name] = tvm.nd.array(np_array) self._nodes[name] = [_expr.var(name, shape=self._params[name].shape, dtype=self._params[name].dtype)] else: if key not in ('dtype', '_output_shapes', '_class'): raise NotImplementedError \ ("Other attributes for a Const(param) Node {} ? .".format(key)) def _get_attr(self, buf): """Returns the value of the attr of this buf with the given `name`. Args: buf: attrvalue protobuf. Returns: The value of the attr, as a Python object. Raises: ValueError: If this op does not have an attr with the given `name`. """ fields = ["s", "i", "f", "b", "type", "shape", "tensor", "func"] x = buf ret = [] try: from tensorflow.python.framework import dtypes except ImportError as e: raise ImportError( "Unable to import tensorflow which is required {}".format(e)) # Treat an empty oneof value as an empty list. if not x.WhichOneof("value"): return ret if x.HasField("list"): for f in fields: if getattr(x.list, f): if f == "type": ret += [dtypes.as_dtype(x) for x in list(getattr(x.list, f))] else: ret += list(getattr(x.list, f)) else: for f in fields: if x.HasField(f): if f == "type": ret = dtypes.as_dtype(getattr(x, f)) else: ret = getattr(x, f) return ret def _parse_attr(self, attr_proto): """Convert a list of AttributeProto to a dict, with names as keys.""" attrs = {} for key, value in attr_proto.items(): attrs[key] = self._get_attr(value) return attrs def _convert_rnn_operator(self, op_name, inputs, attrs, params, graph, convert_map): """Convert RNN and its variant operators to Relay operators. This converter read the input states of each layers and also maintain the output states of each layer in a list. Parameters ---------- op_name : str Operator name, such as LSTMBlockCell inputs : list of relay.Expr List of input symbols. attrs : dict Dict of operator attributes params : dict List of pretrained weights and bias graph : Tensorflow graph object Graph is to find the number of upcoming same operator to calculate the number of layers. convert_map : dict Dict of name : callable, where name is the op's name that require conversion to relay, callable are functions which take attrs and return (new_op_name, new_attrs) Returns ------- sym : relay.Expr Converted relay.Expr """ if not self._num_rnn_layer: self._out_rnn = [] self.rnn = RecurrentNetworks(self._nodes, self._out_rnn, graph, convert_map) self._num_rnn_layer = True sym = self.rnn.process_op(op_name, inputs, attrs, params) return sym def _convert_operator(self, op_name, inputs, attrs, graph, identity_list=None, convert_map=None): """Convert from Tensorflow operator to relay operator. The converter must specify conversions explicity for incompatible name, and apply handlers to operator attributes. Parameters ---------- op_name : str Operator name, such as Conv2D, AvgPool inputs : list of relay.op List of input symbols. attrs : dict Dict of operator attributes identity_list : list List of operators that don't require conversion convert_map : dict Dict of name : callable, where name is the op's name that require conversion to relay, callable are functions which take attrs and return (new_op_name, new_attrs) Returns ------- sym : relay.op Converted relay operator """ identity_list = identity_list if identity_list else _identity_list convert_map = convert_map if convert_map else _convert_map convert_map_rnn = _convert_map_rnn if op_name in identity_list: sym = _get_relay_op(op_name)(*inputs, **attrs) elif op_name in convert_map: sym = convert_map[op_name](inputs, attrs, self._params) elif op_name in convert_map_rnn: sym = self._convert_rnn_operator(op_name, inputs, attrs, self._params, graph, convert_map_rnn) else: raise NotImplementedError("Operator {} not implemented.".format(op_name)) return sym def from_tensorflow(graph, layout="NHWC", shape=None, outputs=None): """ Load tensorflow graph which is a python tensorflow graph object into relay. The companion parameters will be handled automatically. Parameters ---------- graph : GraphDef object Tensorflow GraphDef Returns ------- sym : relay.op Compatible relay operator params : dict of str to tvm.ndarray Dict of converted parameters stored in tvm.ndarray format """ g = GraphProto() sym, params = g.from_tensorflow(graph, layout, shape, outputs) return sym, params