"""Tensor intrinsics""" from __future__ import absolute_import as _abs from . import _api_internal from . import api as _api from . import expr as _expr from . import stmt as _stmt from . import make as _make from . import tensor as _tensor from .build_module import BuildConfig from ._ffi.node import NodeBase, register_node @register_node class TensorIntrin(NodeBase): """Tensor intrinsic functions for certain computation. See Also -------- decl_tensor_intrin: Construct a TensorIntrin """ pass def decl_tensor_intrin(op, fcompute, name="tensor_intrin", binds=None): """Declare a tensor intrinsic function. Parameters ---------- op: Operation The symbolic description of the intrinsic operation fcompute: lambda function of inputs, outputs-> stmt Specifies the IR statement to do the computation. See the following note for function signature of fcompute .. note:: **Parameters** - **ins** (list of :any:`Buffer`) - Placeholder for each inputs - **outs** (list of :any:`Buffer`) - Placeholder for each outputs **Returns** - **stmt** (:any:`Stmt`, or tuple of three stmts) - If a single stmt is returned, it represents the body - If tuple of three stmts are returned they corresponds to body, reduce_init, reduce_update name: str, optional The name of the intrinsic. binds: dict of :any:`Tensor` to :any:`Buffer`, optional Dictionary that maps the Tensor to Buffer which specified the data layout requirement of the function. By default, a new compact buffer is created for each tensor in the argument. Returns ------- intrin: TensorIntrin A TensorIntrin that can be used in tensorize schedule. """ if not isinstance(op, _tensor.Operation): raise TypeError("expect Operation") inputs = op.input_tensors binds = binds if binds else {} tensors = [x for x in inputs] for i in range(op.num_outputs): tensors.append(op.output(i)) binds_list = [] for t in inputs: if not isinstance(t.op, _tensor.PlaceholderOp): raise ValueError("Donot yet support composition op") cfg = BuildConfig.current for t in tensors: buf = (binds[t] if t in binds else _api.decl_buffer(t.shape, t.dtype, t.op.name, data_alignment=cfg.data_alignment, offset_factor=cfg.offset_factor)) binds_list.append(buf) body = fcompute(binds_list[:len(inputs)], binds_list[len(inputs):]) if isinstance(body, (_expr.Expr, _stmt.Stmt)): body = [body] body = [_make.Evaluate(x) if isinstance(x, _expr.Expr) else x for x in body] if len(body) < 3: body += [None] * (3 - len(body)) return _api_internal._TensorIntrin( name, op, inputs, binds_list, *body)