# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """The computation schedule api of TVM.""" from __future__ import absolute_import as _abs from ._ffi.base import string_types from ._ffi.node import NodeBase, register_node from ._ffi.node import convert_to_node as _convert_to_node from ._ffi.function import _init_api, Function from ._ffi.function import convert_to_tvm_func as _convert_tvm_func from . import _api_internal from . import tensor as _tensor from . import expr as _expr from . import container as _container def convert(value): """Convert value to TVM node or function. Parameters ---------- value : python value Returns ------- tvm_val : Node or Function Converted value in TVM """ if isinstance(value, (Function, NodeBase)): return value if callable(value): return _convert_tvm_func(value) return _convert_to_node(value) @register_node class Buffer(NodeBase): """Symbolic data buffer in TVM. Buffer provide a way to represent data layout specialization of data structure in TVM. Do not construct directly, use :any:`decl_buffer` instead. See the documentation of :any:`decl_buffer` for more details. See Also -------- decl_buffer : Declare a buffer """ READ = 1 WRITE = 2 def access_ptr(self, access_mask, ptr_type="handle", content_lanes=1, offset=0): """Get an access pointer to the head of buffer. This is the recommended method to get buffer data ptress when interacting with external functions. Parameters ---------- access_mask : int The access pattern MASK. Indicate whether the access will read or write to the data content. ptr_type : str, optional The data type of the result pointer. Do not specify unless we want to cast pointer to specific type. content_lanes: int, optional The number of lanes for the data type. This value is greater than one for vector types. offset: Expr, optional The offset of pointer. We can use it to offset by the number of elements from the address of ptr. Examples -------- .. code-block:: python import tvm.schedule.Buffer # Get access ptr for read buffer.access_ptr("r") # Get access ptr for read/write with bitmask buffer.access_ptr(Buffer.READ | Buffer.WRITE) # Get access ptr for read/write with str flag buffer.access_ptr("rw") # Get access ptr for read with offset buffer.access_ptr("r", offset = 100) """ if isinstance(access_mask, string_types): mask = 0 for value in access_mask: if value == "r": mask = mask | Buffer.READ elif value == "w": mask = mask | Buffer.WRITE else: raise ValueError("Unknown access_mask %s" % access_mask) access_mask = mask offset = convert(offset) return _api_internal._BufferAccessPtr(self, access_mask, ptr_type, content_lanes, offset) def vload(self, begin, dtype=None): """Generate an Expr that loads dtype from begin index. Parameters ---------- begin : Array of Expr The beginning index in unit of Buffer.dtype dtype : str The data type to be loaded, can be vector type which have lanes that is multiple of Buffer.dtype Returns ------- load : Expr The corresponding load expression. """ begin = (begin,) if isinstance(begin, (int, _expr.Expr)) else begin dtype = dtype if dtype else self.dtype return _api_internal._BufferVLoad(self, begin, dtype) def vstore(self, begin, value): """Generate a Stmt that store value into begin index. Parameters ---------- begin : Array of Expr The beginning index in unit of Buffer.dtype value : Expr The value to be stored. Returns ------- store : Stmt The corresponding store stmt. """ begin = (begin,) if isinstance(begin, (int, _expr.Expr)) else begin return _api_internal._BufferVStore(self, begin, value) @register_node class Split(NodeBase): """Split operation on axis.""" @register_node class Fuse(NodeBase): """Fuse operation on axis.""" @register_node class Singleton(NodeBase): """Singleton axis.""" @register_node class IterVar(NodeBase, _expr.ExprOp): """Represent iteration variable. IterVar is normally created by Operation, to represent axis iterations in the computation. It can also created by schedule primitives like :any:`tvm.schedule.Stage.split`. See Also -------- tvm.thread_axis: Create thread axis IterVar. tvm.reduce_axis: Create reduce axis IterVar. """ DataPar = 0 ThreadIndex = 1 CommReduce = 2 Ordered = 3 DimInfo = 4 Unrolled = 5 Vectorized = 6 Parallelized = 7 Tensorized = 8 _tensor.iter_var_cls = IterVar def create_schedule(ops): """Create a schedule for list of ops Parameters ---------- ops : list of Operations The source expression. Returns ------- sch : schedule.Schedule The created schedule. """ if not isinstance(ops, (list, _container.Array)): ops = [ops] return _api_internal._CreateSchedule(ops) @register_node class Schedule(NodeBase): """Schedule for all the stages.""" def __getitem__(self, k): if isinstance(k, _tensor.Tensor): k = k.op if not isinstance(k, _tensor.Operation): raise ValueError("Expect schedule key to be Tensor or Operation") if k not in self.stage_map: raise ValueError("Cannot find the operation %s in schedule" % (str(k))) return self.stage_map[k] def normalize(self): """Build a normalized schedule from the current schedule. Insert necessary rebase to make certain iter var to start from 0. This is needed before bound inference and followup step. Returns ------- sch : Schedule The normalized schedule. """ return _api_internal._ScheduleNormalize(self) def create_group(self, outputs, inputs, include_inputs=False): """Create stage group by giving output and input boundary. The operators between outputs and inputs are placed as member of group. outputs are include in the group, while inputs are not included. Parameters ---------- outputs : list of Tensors The outputs of the group. inputs : list of Tensors The inputs of the group. include_inputs : boolean, optional Whether include input operations in the group if they are used by outputs. Returns ------- group : Stage A virtual stage represents the group, user can use compute_at to move the attachment point of the group. """ if isinstance(outputs, _tensor.Tensor): outputs = [outputs] if isinstance(inputs, _tensor.Tensor): inputs = [inputs] return _api_internal._ScheduleCreateGroup( self, outputs, inputs, include_inputs) def cache_read(self, tensor, scope, readers): """Create a cache read of original tensor for readers. This will mutate the body of the readers. A new cache stage will be created for the tensor. Call this before doing any split/fuse schedule. Parameters ---------- tensor : Tensor The tensor to be cached. scope : str The scope of cached readers : list of Tensor or Operation The readers to read the cache. Returns ------- cache : Tensor The created cache tensor. """ if isinstance(readers, (_tensor.Tensor, _tensor.Operation)): readers = [readers] readers = [t.op if isinstance(t, _tensor.Tensor) else t for t in readers] return _api_internal._ScheduleCacheRead(self, tensor, scope, readers) def cache_write(self, tensor, scope): """Create a cache write of original tensor, before storing into tensor. This will mutate the body of the tensor. A new cache stage will created before feed into the tensor. This function can be used to support data layout transformation. If there is a split/fuse/reorder on the data parallel axis of tensor before cache_write is called. The intermediate cache stores the data in the layout as the iteration order of leave axis. The data will be transformed back to the original layout in the original tensor. User can further call compute_inline to inline the original layout and keep the data stored in the transformed layout. Parameters ---------- tensor : Tensor, list or tuple The tensors to be feed to. All the tensors must be produced by one computeOp scope : str The scope of cached Returns ------- cache : Tensor The created cache tensor. """ return _api_internal._ScheduleCacheWrite(self, tensor, scope) def rfactor(self, tensor, axis, factor_axis=0): """ Factor a reduction axis in tensor's schedule to be an explicit axis. This will create a new stage that generated the new tensor with axis as the first dimension. The tensor's body will be rewritten as a reduction over the factored tensor. Parameters ---------- tensor : Tensor The tensor to be factored. axis : IterVar The reduction axis in the schedule to be factored. factor_axis : int The position where the new axis is placed. Returns ------- tfactor : Tensor or Array of Tensor The created factored tensor. """ factored = _api_internal._ScheduleRFactor(self, tensor, axis, factor_axis) return factored[0] if len(factored) == 1 else factored @register_node class Stage(NodeBase): """A Stage represents schedule for one operation.""" def split(self, parent, factor=None, nparts=None): """Split the stage either by factor providing outer scope, or both Parameters ---------- parent : IterVar The parent iter var. factor : Expr, optional The splitting factor nparts : Expr, optional The number of outer parts. Returns ------- outer : IterVar The outer variable of iteration. inner : IterVar The inner variable of iteration. """ if nparts is not None: if factor is not None: raise ValueError("Do not need to provide both outer and nparts") outer, inner = _api_internal._StageSplitByNParts(self, parent, nparts) else: if factor is None: raise ValueError("Either nparts or factor need to be provided") outer, inner = _api_internal._StageSplitByFactor(self, parent, factor) return outer, inner def fuse(self, *args): """Fuse multiple consecutive iteration variables into a single iteration variable. fused = fuse(...fuse(fuse(args[0], args[1]), args[2]),..., args[-1]) The order is from outer to inner. Parameters ---------- args : list of IterVars Itervars that proceeds each other Returns ------- fused : IterVar The fused variable of iteration. """ fused = _api_internal._StageFuse(self, args) return fused def set_scope(self, scope): """Set the thread scope of this stage Parameters ---------- scope : str The thread scope of this stage """ return _api_internal._StageSetScope(self, scope) def bind(self, ivar, thread_ivar): """Bind ivar to thread index thread_ivar Parameters ---------- ivar : IterVar The iteration to be binded to thread. thread_ivar : IterVar The thread to be binded. """ _api_internal._StageBind(self, ivar, thread_ivar) def env_threads(self, threads): """Mark threads to be launched at the outer scope of composed op. Parameters ---------- threads : list of threads The threads to be launched. """ if isinstance(threads, IterVar): threads = [threads] _api_internal._StageEnvThreads(self, threads) def set_store_predicate(self, predicate): """Set predicate under which store to the array can be performed. Use this when there are duplicated threads doing the same store and we only need one of them to do the store. Parameters ---------- predicate : Expr The guard condition fo store. """ _api_internal._StageSetStorePredicate(self, predicate) def compute_at(self, parent, scope): """Attach the stage at parent's scope Parameters ---------- parent : Stage The parent stage scope : IterVar The loop scope t be attached to. """ _api_internal._StageComputeAt(self, parent, scope) def compute_inline(self): """Mark stage as inline Parameters ---------- parent : Stage The parent stage """ _api_internal._StageComputeInline(self) def compute_root(self): """Attach the stage at parent, and mark it as root Parameters ---------- parent : Stage The parent stage """ _api_internal._StageComputeRoot(self) def reorder(self, *args): """reorder the arguments in the specified order. Parameters ---------- args : list of IterVar The order to be ordered """ _api_internal._StageReorder(self, args) def tile(self, x_parent, y_parent, x_factor, y_factor): """ Perform tiling on two dimensions The final loop order from outmost to inner most are [x_outer, y_outer, x_inner, y_inner] Parameters ---------- x_parent : IterVar The original x dimension y_parent : IterVar The original y dimension x_factor : Expr The stride factor on x axis y_factor : Expr The stride factor on y axis Returns ------- x_outer : IterVar Outer axis of x dimension y_outer : IterVar Outer axis of y dimension x_inner : IterVar Inner axis of x dimension p_y_inner : IterVar Inner axis of y dimension """ x_outer, y_outer, x_inner, y_inner = _api_internal._StageTile( self, x_parent, y_parent, x_factor, y_factor) return x_outer, y_outer, x_inner, y_inner def vectorize(self, var): """Vectorize the iteration. Parameters ---------- var : IterVar The iteration to be vectorize """ _api_internal._StageVectorize(self, var) def tensorize(self, var, tensor_intrin): """Tensorize the computation enclosed by var with tensor_intrin Parameters ---------- var : IterVar The iteration boundary of tensorization. tensor_intrin : TensorIntrin The tensor intrinsic used for computation. """ _api_internal._StageTensorize(self, var, tensor_intrin) def unroll(self, var): """Unroll the iteration. Parameters ---------- var : IterVar The iteration to be unrolled. """ _api_internal._StageUnroll(self, var) def parallel(self, var): """Parallelize the iteration. Parameters ---------- var : IterVar The iteration to be parallelized. """ _api_internal._StageParallel(self, var) def pragma(self, var, pragma_type, pragma_value=None): """Annotate the iteration with pragma This will translate to a pragma_scope surrounding the corresponding loop generated. Useful to support experimental features and extensions. Parameters ---------- var : IterVar The iteration to be anotated pragma_type : str The pragma string to be annotated pragma_value : Expr, optional The pragma value to pass along the pragma Note ---- Most pragmas are advanced/experimental features and may subject to change. List of supported pragmas: - **debug_skip_region** Force skip the region marked by the axis and turn it into no-op. This is useful for debug purposes. - **parallel_launch_point** Specify to launch parallel threads outside the specified iteration loop. By default the threads launch at the point of parallel construct. This pragma moves the launching point to even outer scope. The threads are launched once and reused across multiple parallel constructs as BSP style program. - **parallel_barrier_when_finish** Insert a synchronization barrier between working threads after the specified loop iteration finishes. - **parallel_stride_pattern** Hint parallel loop to execute in strided pattern. :code:`for (int i = task_id; i < end; i += num_task)` """ if isinstance(pragma_value, string_types): pragma_value = convert(pragma_value) _api_internal._StagePragma(self, var, pragma_type, pragma_value) def prefetch(self, tensor, var, offset): """Prefetch the specified variable Parameters ---------- tensor : Tensor The tensor to be prefetched var : IterVar The loop point at which the prefetching is applied offset : Expr The number of iterations to be prefetched before actual execution """ _api_internal._StagePrefetch(self, tensor, var, offset) def storage_align(self, axis, factor, offset): """Set alignment requirement for specific axis This ensures that stride[axis] == k * factor + offset for some k. This is useful to set memory layout to for more friendly memory access pattern. For example, we can set alignment to be factor=2, offset=1 to avoid bank conflict for thread access on higher dimension in GPU shared memory. Parameters ---------- axis : IterVar The axis dimension to be aligned. factor : int The factor in alignment specification. offset : int The offset in the alignment specification. """ _api_internal._StageStorageAlign(self, axis, factor, offset) def double_buffer(self): """Compute the current stage via double buffering. This can only be applied to intermediate stage. This will double the storage cost of the current stage. Can be useful to hide load latency. """ _api_internal._StageDoubleBuffer(self) def opengl(self): """The special OpenGL schedule Maps each output element to a pixel. """ _api_internal._StageOpenGL(self) _init_api("tvm.schedule")