# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=redefined-builtin, invalid-name """Operators used in TIR expression.""" import tvm._ffi from tvm.runtime import convert, const from tvm.ir import Array from .buffer import Buffer from .expr import Call, Var, CommReducer from . import _ffi_api def _pack_buffer(buf): """Build intrinsics that packs the buffer. """ assert buf.shape shape = Call("handle", "tvm_stack_make_shape", buf.shape, Call.Intrinsic, None, 0) strides = Call("handle", "tvm_stack_make_shape", buf.strides, Call.Intrinsic, None, 0) if buf.strides else 0 pack_args = [buf.data, shape, strides, len(buf.shape), const(0, dtype=buf.dtype), buf.elem_offset] return Call("handle", "tvm_stack_make_array", pack_args, Call.Intrinsic, None, 0) def call_packed(*args): """Build expression by call an external packed function. The argument to packed function can be Expr or Buffer. The argument is the corresponding POD type when Expr is presented. When the argument is Buffer, the corresponding PackedFunc will recieve an TVMArrayHandle whose content is valid during the callback period. If the PackedFunc is a python callback, then the corresponding argument is NDArray. Parameters ---------- args : list of Expr or Buffer. Positional arguments. Returns ------- call : PrimExpr The call expression. See Also -------- te.extern : Create tensor with extern function call. """ call_args = [_pack_buffer(x) if isinstance(x, Buffer) else x for x in args] return Call( "int32", "tvm_call_packed", call_args, Call.Intrinsic, None, 0) def call_pure_intrin(dtype, func_name, *args): """Build expression by calling a pure intrinsic function. Intrinsics can be overloaded with multiple data types via the intrinsic translation rule. Parameters ---------- dtype : str The data type of the result. func_name: str The intrinsic function name. args : list Positional arguments. Returns ------- call : PrimExpr The call expression. """ args = convert(args) return Call( dtype, func_name, convert(args), Call.PureIntrinsic, None, 0) def call_intrin(dtype, func_name, *args): """Build expression by calling an intrinsic function. Intrinsics can be overloaded with multiple data types via the intrinsic translation rule. Parameters ---------- dtype : str The data type of the result. func_name: str The intrinsic function name. args : list Positional arguments. Returns ------- call : PrimExpr The call expression. """ args = convert(args) return Call( dtype, func_name, convert(args), Call.Intrinsic, None, 0) def call_pure_extern(dtype, func_name, *args): """Build expression by calling a pure extern function. Parameters ---------- dtype : str The data type of the result. func_name: str The extern function name. args : list Positional arguments. Returns ------- call : PrimExpr The call expression. """ return Call( dtype, func_name, convert(args), Call.PureExtern, None, 0) def call_extern(dtype, func_name, *args): """Build expression by calling a extern function. Parameters ---------- dtype : str The data type of the result. func_name: str The extern function name. args : list Positional arguments. Returns ------- call : PrimExpr The call expression. """ return Call( dtype, func_name, convert(args), Call.Extern, None, 0) def call_llvm_intrin(dtype, name, *args): """Build expression by calling an llvm intrinsic function Parameters ---------- dtype : str The data type of the result. name : str The name of the llvm intrinsic function. args : list Poistional arguments. Returns ------- call : PrimExpr The call expression. """ # pylint: disable=import-outside-toplevel from tvm.target import codegen llvm_id = codegen.llvm_lookup_intrinsic_id(name) assert llvm_id != 0, "%s is not an LLVM intrinsic" % name return call_pure_intrin(dtype, 'llvm_intrin', tvm.tir.const(llvm_id, 'uint32'), *args) def any(*args): """Create a new experssion of the union of all conditions in the arguments Parameters ---------- args : list List of symbolic boolean expressions Returns ------- expr: Expr Expression """ if not args: raise ValueError("Any must take at least 1 argument") if len(args) == 1: return args[0] ret = _ffi_api._OpOr(args[0], args[1]) for i in range(2, len(args)): ret = _ffi_api._OpOr(ret, args[i]) return ret def all(*args): """Create a new experssion of the intersection of all conditions in the arguments Parameters ---------- args : list List of symbolic boolean expressions Returns ------- expr: Expr Expression """ if not args: raise ValueError("Any must take at least 1 argument") if len(args) == 1: return args[0] ret = _ffi_api._OpAnd(args[0], args[1]) for i in range(2, len(args)): ret = _ffi_api._OpAnd(ret, args[i]) return ret @tvm._ffi.register_func("tvm.default_trace_action") def _tvm_default_trace_action(*args): print(list(args)) def trace(args, trace_action="tvm.default_trace_action"): """Trace tensor data at the runtime. The trace function allows to trace specific tensor at the runtime. The tracing value should come as last argument. The trace action should be specified, by default tvm.default_trace_action is used. Parameters ---------- args : list of Expr or Buffers. Positional arguments. trace_action : str. The name of the trace action. Returns ------- call : PrimExpr The call expression. See Also -------- tvm.tir.call_packed : Creates packed function. """ if not isinstance(args, list): raise Exception("tvm.tir.trace consumes the args as list type") call_args = [_pack_buffer(x) if isinstance(x, Buffer) else x for x in args] call_args.insert(0, trace_action) return tvm.tir.Call( args[-1].dtype, "tvm_call_trace_packed", call_args, tvm.tir.Call.Intrinsic, None, 0) def min_value(dtype): """minimum value of dtype Parameters ---------- dtype : str The data type. Returns ------- value : tvm.Expr The minimum value of dtype. """ return _ffi_api.min_value(dtype) def max_value(dtype): """maximum value of dtype Parameters ---------- dtype : str The data type. Returns ------- value : tvm.Expr The maximum value of dtype. """ return _ffi_api.max_value(dtype) def exp(x): """Take exponetial of input x. Parameters ---------- x : PrimExpr Input argument. Returns ------- y : PrimExpr The result. """ return call_pure_intrin(x.dtype, "exp", x) def erf(x): """Take gauss error function of the input x. Parameters ---------- x : PrimExpr Input argument. Returns ------- y : PrimExpr The result. """ return call_pure_intrin(x.dtype, "erf", x) def tanh(x): """Take hyperbolic tanh of input x. Parameters ---------- x : PrimExpr Input argument. Returns ------- y : PrimExpr The result. """ return call_pure_intrin(x.dtype, "tanh", x) def sigmoid(x): """Quick function to get sigmoid Parameters ---------- x : PrimExpr Input argument. Returns ------- y : PrimExpr The result. """ return call_pure_intrin(x.dtype, "sigmoid", x) def log(x): """Take log of input x. Parameters ---------- x : PrimExpr Input argument. Returns ------- y : PrimExpr The result. """ return call_pure_intrin(x.dtype, "log", x) def cos(x): """Take cos of input x. Parameters ---------- x : PrimExpr Input argument. Returns ------- y : PrimExpr The result. """ return call_pure_intrin(x.dtype, "cos", x) def sin(x): """Take sin of input x. Parameters ---------- x : PrimExpr Input argument. Returns ------- y : PrimExpr The result. """ return call_pure_intrin(x.dtype, "sin", x) def atan(x): """Take atan of input x. Parameters ---------- x : PrimExpr Input argument. Returns ------- y : PrimExpr The result. """ return call_pure_intrin(x.dtype, "atan", x) def sqrt(x): """Take square root of input x. Parameters ---------- x : PrimExpr Input argument. Returns ------- y : PrimExpr The result. """ return call_pure_intrin(x.dtype, "sqrt", x) def rsqrt(x): """Take reciprocal of square root of input x. Parameters ---------- x : PrimExpr Input argument. Returns ------- y : PrimExpr The result. """ return call_pure_intrin(x.dtype, "rsqrt", x) def floor(x): """Take floor of float input x. Parameters ---------- x : PrimExpr Input argument. Returns ------- y : PrimExpr The result. """ return _ffi_api.floor(x) def ceil(x): """Take ceil of float input x. Parameters ---------- x : PrimExpr Input argument. Returns ------- y : PrimExpr The result. """ return _ffi_api.ceil(x) def trunc(x): """Get truncated value of the input. The truncated value of the scalar x is the nearest integer i which is closer to zero than x is. Parameters ---------- x : PrimExpr Input argument. Returns ------- y : PrimExpr The result. """ return _ffi_api.trunc(x) def abs(x): """Get absolute value of the input element-wise. Parameters ---------- x : PrimExpr Input argument. Returns ------- y : PrimExpr The result. """ return _ffi_api.abs(x) def round(x): """Round elements of the array to the nearest integer. Parameters ---------- x : PrimExpr Input argument. Returns ------- y : PrimExpr The result. """ return _ffi_api.round(x) def nearbyint(x): """Round elements of the array to the nearest integer. This intrinsic uses llvm.nearbyint instead of llvm.round which is faster but will results different from te.round. Notably nearbyint rounds according to the rounding mode, whereas te.round (llvm.round) ignores that. For differences between the two see: https://en.cppreference.com/w/cpp/numeric/math/round https://en.cppreference.com/w/cpp/numeric/math/nearbyint Parameters ---------- x : PrimExpr Input argument. Returns ------- y : PrimExpr The result. """ return _ffi_api.nearbyint(x) def isnan(x): """Check if input value is Nan. Parameters ---------- x : PrimExpr Input argument. Returns ------- y : PrimExpr The result. """ return _ffi_api.isnan(x) def power(x, y): """x power y Parameters ---------- x : PrimExpr Input argument. y : PrimExpr The exponent Returns ------- z : PrimExpr The result. """ return _ffi_api._OpPow(convert(x), convert(y)) def popcount(x): """Count the number of set bits in input x. Parameters ---------- x : PrimExpr Input argument. Returns ------- y : PrimExpr The result. """ return call_pure_intrin(x.dtype, "popcount", x) def fmod(x, y): """Return the remainder of x divided by y with the same sign as x. Parameters ---------- x : PrimExpr Input argument. y : PrimExpr Input argument. Returns ------- z : PrimExpr The result. """ return call_pure_intrin(x.dtype, "fmod", x, y) def if_then_else(cond, t, f): """Conditional selection expression. Parameters ---------- cond : PrimExpr The condition t : PrimExpr The result expression if cond is true. f : PrimExpr The result expression if cond is false. Returns ------- result : Node The result of conditional expression. Note ---- Unlike Select, if_then_else will not execute the branch that does not satisfy the condition. You can use it to guard against out of bound access. Unlike Select, if_then_else cannot be vectorized if some lanes in the vector have different conditions. """ return _ffi_api._OpIfThenElse(convert(cond), convert(t), convert(f)) def div(a, b): """Compute a / b as in C/C++ semantics. Parameters ---------- a : PrimExpr The left hand operand, known to be non-negative. b : PrimExpr The right hand operand, known to be non-negative. Returns ------- res : PrimExpr The result expression. Note ---- When operands are integers, returns truncdiv(a, b). """ return _ffi_api._OpDiv(a, b) def indexdiv(a, b): """Compute floor(a / b) where a and b are non-negative. Parameters ---------- a : PrimExpr The left hand operand, known to be non-negative. b : PrimExpr The right hand operand, known to be non-negative. Returns ------- res : PrimExpr The result expression. Note ---- Use this function to split non-negative indices. This function may take advantage of operands' non-negativeness. """ return _ffi_api._OpIndexDiv(a, b) def indexmod(a, b): """Compute the remainder of indexdiv. a and b are non-negative. Parameters ---------- a : PrimExpr The left hand operand, known to be non-negative. b : PrimExpr The right hand operand, known to be non-negative. Returns ------- res : PrimExpr The result expression. Note ---- Use this function to split non-negative indices. This function may take advantage of operands' non-negativeness. """ return _ffi_api._OpIndexMod(a, b) def truncdiv(a, b): """Compute the truncdiv of two expressions. Parameters ---------- a : PrimExpr The left hand operand b : PrimExpr The right hand operand Returns ------- res : PrimExpr The result expression. Note ---- This is the default integer division behavior in C. """ return _ffi_api._OpTruncDiv(a, b) def truncmod(a, b): """Compute the truncmod of two expressions. Parameters ---------- a : PrimExpr The left hand operand b : PrimExpr The right hand operand Returns ------- res : PrimExpr The result expression. Note ---- This is the default integer division behavior in C. """ return _ffi_api._OpTruncMod(a, b) def floordiv(a, b): """Compute the floordiv of two expressions. Parameters ---------- a : PrimExpr The left hand operand b : PrimExpr The right hand operand Returns ------- res : PrimExpr The result expression. """ return _ffi_api._OpFloorDiv(a, b) def floormod(a, b): """Compute the floormod of two expressions. Parameters ---------- a : PrimExpr The left hand operand b : PrimExpr The right hand operand Returns ------- res : PrimExpr The result expression. """ return _ffi_api._OpFloorMod(a, b) def comm_reducer(fcombine, fidentity, name="reduce"): """Create a commutative reducer for reduction. Parameters ---------- fcombine : function(Expr -> Expr -> Expr) A binary function which takes two Expr as input to return a Expr. fidentity : function(str -> Expr) A function which takes a type string as input to return a const Expr. Returns ------- reducer : function A function which creates a reduce expression over axis. There are two ways to use it: 1. accept (expr, axis, where) to produce an Reduce Expr on specified axis; 2. simply use it with multiple Exprs. Example ------- .. code-block:: python n = te.var("n") m = te.var("m") mysum = te.comm_reducer(lambda x, y: x+y, lambda t: tvm.tir.const(0, dtype=t), name="mysum") A = te.placeholder((n, m), name="A") k = te.reduce_axis((0, m), name="k") B = te.compute((n,), lambda i: mysum(A[i, k], axis=k), name="B") """ def _reduce_directly(*args): num = len(args) # process `where` is None if num == 3 and args[2] is None: num = 2 res = args[0] for i in range(num-1): res = fcombine(res, args[i+1]) return res def _make_reduce(expr, axis, where=None): code = fcombine.__code__ assert fcombine.__code__.co_argcount == 2 expr = convert(expr) if isinstance(expr, Array): size = len(expr) larr = [] rarr = [] dtypes = [] for i in range(size): dtype = expr[i].dtype dtypes.append(dtype) lname = code.co_varnames[0] + "_" + str(i) larr.append(Var(lname, dtype)) rname = code.co_varnames[1] + "_" + str(i) rarr.append(Var(rname, dtype)) lhs = convert(larr) rhs = convert(rarr) result = fcombine(lhs, rhs) id_elem = fidentity(*dtypes) else: assert isinstance(expr, tvm.ir.PrimExpr) size = 1 dtype = expr.dtype lvar = Var(code.co_varnames[0], dtype) rvar = Var(code.co_varnames[1], dtype) result = [fcombine(lvar, rvar)] id_elem = [fidentity(dtype)] lhs = convert([lvar]) rhs = convert([rvar]) expr = convert([expr]) result = convert(result) id_elem = convert(id_elem) combiner = CommReducer(lhs, rhs, result, id_elem) axis = convert(axis if isinstance(axis, (list, tuple)) else [axis]) if where is None: where = convert(True) outputs = tuple(tvm.tir.Reduce(combiner, expr, axis, where, i) for i in range(size)) return outputs[0] if size == 1 else outputs # pylint: disable=keyword-arg-before-vararg def reducer(expr, axis, where=None, *args): if isinstance(axis, (tvm.tir.IterVar, list, tuple)): assert not args return _make_reduce(expr, axis, where) if where is None: assert not args return _reduce_directly(expr, axis) return _reduce_directly(expr, axis, where, *args) doc_str = """Create a {0} expression over axis. Parameters ---------- expr : PrimExpr The source expression. axis : IterVar The reduction IterVar axis where : optional, Expr Filtering predicate of the reduction. Returns ------- value : PrimExpr The result value. Example ------- .. code-block:: python m = te.var("m") n = te.var("n") A = te.placeholder((m, n), name="A") k = te.reduce_axis((0, n), name="k") # there are two way to use this {0} reducer: # mode 1, accept (expr, axis, where) to produce an Reduce Expr B = te.compute((m,), lambda i: tvm.{0}(A[i, k], axis=k), name="B") # mode 2, simply use it with multiple Exprs: {0}_res = tvm.{0}(m, n) """ reducer.__doc__ = doc_str.format(name) return reducer # pylint: disable=unnecessary-lambda sum = comm_reducer(lambda x, y: x+y, lambda t: const(0, dtype=t), name="sum") min = comm_reducer(lambda x, y: _ffi_api._OpMin(x, y), max_value, name="min") max = comm_reducer(lambda x, y: _ffi_api._OpMax(x, y), min_value, name="max")