# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Compile CoreML Models
=====================
**Author**: `Joshua Z. Zhang <https://zhreshold.github.io/>`_

This article is an introductory tutorial to deploy CoreML models with NNVM.

For us to begin with, coremltools module is required to be installed.

A quick solution is to install via pip

.. code-block:: bash

    pip install -U coremltools --user

or please refer to official site
https://github.com/apple/coremltools
"""
import nnvm
import tvm
import coremltools as cm
import numpy as np
from PIL import Image
from tvm.contrib.download import download_testdata

######################################################################
# Load pretrained CoreML model
# ----------------------------
# We will download and load a pretrained mobilenet classification network
# provided by apple in this example
model_url = 'https://docs-assets.developer.apple.com/coreml/models/MobileNet.mlmodel'
model_file = 'mobilenet.mlmodel'
model_path = download_testdata(model_url, model_file, module='coreml')
# now you mobilenet.mlmodel on disk
mlmodel = cm.models.MLModel(model_path)
# we can load the graph as NNVM compatible model
sym, params = nnvm.frontend.from_coreml(mlmodel)

######################################################################
# Load a test image
# ------------------
# A single cat dominates the examples!
from PIL import Image
img_url = 'https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true'
img_path = download_testdata(img_url, 'cat.png', module='data')
img = Image.open(img_path).resize((224, 224))
#x = np.transpose(img, (2, 0, 1))[np.newaxis, :]
image = np.asarray(img)
image = image.transpose((2, 0, 1))
x = image[np.newaxis, :]
######################################################################
# Compile the model on NNVM
# ---------------------------
# We should be familiar with the process right now.
import nnvm.compiler
target = 'cuda'
shape_dict = {'image': x.shape}
with nnvm.compiler.build_config(opt_level=2, add_pass=['AlterOpLayout']):
    graph, lib, params = nnvm.compiler.build(sym, target, shape_dict, params=params)

######################################################################
# Execute on TVM
# -------------------
# The process is no different from other example
from tvm.contrib import graph_runtime
ctx = tvm.gpu(0)
dtype = 'float32'
m = graph_runtime.create(graph, lib, ctx)
# set inputs
m.set_input('image', tvm.nd.array(x.astype(dtype)))
m.set_input(**params)
# execute
m.run()
# get outputs
tvm_output = m.get_output(0)
top1 = np.argmax(tvm_output.asnumpy()[0])

#####################################################################
# Look up synset name
# -------------------
# Look up prediction top 1 index in 1000 class synset.
synset_url = ''.join(['https://gist.githubusercontent.com/zhreshold/',
                      '4d0b62f3d01426887599d4f7ede23ee5/raw/',
                      '596b27d23537e5a1b5751d2b0481ef172f58b539/',
                      'imagenet1000_clsid_to_human.txt'])
synset_name = 'imagenet1000_clsid_to_human.txt'
synset_path = download_testdata(synset_url, synset_name, module='data')
with open(synset_path) as f:
    synset = eval(f.read())
print('Top-1 id', top1, 'class name', synset[top1])