# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

"""Test for NCHW[x]c convolution"""

import numpy as np
import tvm
from tvm import autotvm
import topi
import topi.testing
from tvm.contrib.pickle_memoize import memoize
from topi.util import get_const_tuple
import pytest

from common import get_all_backend

def _transform_data(data, bn):
    # NCHW -> NCHW[x]c
    batch_size, channel, height, width = data.shape
    data = np.reshape(data, (batch_size, channel//bn, bn, height, width))
    data = np.transpose(data, (0, 1, 3, 4, 2))
    return data

def _transform_kernel(kernel, ic_bn, oc_bn):
    # OIHW -> OIHW[x]i[x]o
    out_channel, in_channel, kh, kw = kernel.shape
    kernel = np.reshape(kernel, (out_channel//oc_bn, oc_bn, in_channel//ic_bn, ic_bn//4, kh, kw, 4))
    kernel = np.transpose(kernel, (0, 2, 4, 5, 3, 1, 6))
    return kernel

def verify_group_conv2d_NCHWc_int8(batch, in_channel, groups, in_size, num_filter, kernel, stride,
                        padding, dilation=1, add_bias=False, add_relu=False, dtype="int32"):
    assert dilation == 1, "conv2d_NCHWc does not support dilation for now."
    print("Workload: (%d, %d, %d, %d, %d, %d, %d, %d)" %
          (batch, in_channel, groups, in_size, num_filter, kernel, stride, padding))

    in_height = in_width = in_size

    # for testing functionality,
    # we choose arbitrary block size that can divide the channel,
    # regardless of the performance.
    oc_block = 1
    for bn in range(16, 0, -1):
        if num_filter % bn == 0:
            oc_block = bn
            break

    ic_block = 8
    autotvm.DispatchContext.current.silent = True
    A = tvm.placeholder((batch, in_channel//ic_block, in_height, in_width, ic_block), name='A', dtype='uint8')
    W = tvm.placeholder((num_filter//oc_block, in_channel//ic_block//groups, kernel, kernel, ic_block//4, oc_block, 4), name='W', dtype='int8')

    @memoize("topi.tests.test_topi_conv2d_NCHWc_int8.verify_conv2d_NCHWc_int8")
    def get_ref_data():
        a_np = np.random.uniform(size=(batch, in_channel, in_height, in_width)).astype("uint8")
        w_np = np.random.uniform(size=(num_filter, in_channel//groups, kernel, kernel)).astype("int8")
        c_np = topi.testing.conv2d_nchw_python(a_np, w_np, stride, padding, groups)
        return _transform_data(a_np, ic_block), _transform_kernel(w_np, ic_block, oc_block), \
               _transform_data(c_np, oc_block)

    a_np, w_np, c_np = get_ref_data()

    def check_device(device):
        ctx = tvm.context(device, 0)
        if not ctx.exist:
            print("Skip because %s is not enabled" % device)
            return
        print("Running on target: %s" % device)
        with tvm.target.create(device):
            C = topi.nn.conv2d_NCHWc(A, W, (stride, stride), (padding, padding),
                                     (dilation, dilation),
                                     layout='NCHW%dc'%ic_block,
                                     out_layout="NCHW%dc"%oc_block,
                                     out_dtype=dtype)
            s = topi.generic.schedule_conv2d_NCHWc([C])

        a = tvm.nd.array(a_np, ctx)
        w = tvm.nd.array(w_np, ctx)
        c = tvm.nd.array(np.zeros(get_const_tuple(C.shape), dtype=C.dtype), ctx)
        func = tvm.build(s, [A, W, C], device,
                         name="relu_%d_%d_%d_%d_%d_%d_%d_%d" %
                              (batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation))
        # print(tvm.lower(s, [A, W, C], simple_mode=True))
        func(a, w, c)
        tvm.testing.assert_allclose(c.asnumpy(), c_np, rtol=1e-3)

    # for device in ["llvm"]:
    for device in ["llvm -mcpu=skylake-avx512"]:
        with autotvm.tophub.context(device):  # load tophub pre-tuned parameters
            check_device(device)

@pytest.mark.skip
def test_conv2d_NCHWc():
    # ResNet50 workloads
    verify_group_conv2d_NCHWc_int8(1, 256, 32, 224, 64, 7, 2, 3)

if __name__ == "__main__":
    # The test requires Skylake and newer Intel machines to generate the correct
    # instruction. This test directly calls the topi operator, requiring correct
    # kernel shape. For older generation of Intel machines, the kernel needs to
    # be 6D. This test tests 7D kernel, that can only work on Skylake+ machines.
    # So, disabling the test.

    # test_conv2d_NCHWc()
    pass