"""Benchmark script for ImageNet models on ARM CPU.
see README.md for the usage and results of this script.
"""
import argparse

import numpy as np

import tvm
from tvm.contrib.util import tempdir
import tvm.contrib.graph_runtime as runtime
import nnvm.compiler
import nnvm.testing

from util import get_network, print_progress


def evaluate_network(network, target, target_host, number):
    # connect to remote device
    tracker = tvm.rpc.connect_tracker(args.host, args.port)
    remote = tracker.request(args.rpc_key)

    print_progress(network)
    net, params, input_shape, output_shape = get_network(network, batch_size=1)

    print_progress("%-20s building..." % network)
    with nnvm.compiler.build_config(opt_level=3):
        graph, lib, params = nnvm.compiler.build(
            net, target=target, target_host=target_host,
            shape={'data': input_shape}, params=params, dtype=dtype)

    tmp = tempdir()
    if 'android' in str(target):
        from tvm.contrib import ndk
        filename = "%s.so" % network
        lib.export_library(tmp.relpath(filename), ndk.create_shared)
    else:
        filename = "%s.tar" % network
        lib.export_library(tmp.relpath(filename))

    # upload library and params
    print_progress("%-20s uploading..." % network)
    ctx = remote.context(str(target), 0)
    remote.upload(tmp.relpath(filename))

    rlib = remote.load_module(filename)
    module = runtime.create(graph, rlib, ctx)
    data_tvm = tvm.nd.array((np.random.uniform(size=input_shape)).astype(dtype))
    module.set_input('data', data_tvm)
    module.set_input(**params)

    # evaluate
    print_progress("%-20s evaluating..." % network)
    ftimer = module.module.time_evaluator("run", ctx, number=args.number, repeat=3)
    prof_res = np.array(ftimer().results) * 1000  # multiply 1000 for converting to millisecond
    print("%-20s %-19s (%s)" % (network, "%.2f ms" % np.mean(prof_res), "%.2f ms" % np.std(prof_res)))


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--network", type=str, choices=
                        ['resnet-18', 'resnet-34', 'vgg-16',
                         'mobilenet', 'mobilenet_v2', 'squeezenet v1.0', 'squeezenet v1.1'])
    parser.add_argument("--model", type=str, choices=
                        ['rk3399', 'mate10', 'mate10pro', 'p20', 'p20pro',
                         'pixel2', 'rasp3b', 'pynq'], default='rk3399',
                        help="The model of the test device. If your device is not listed in "
                             "the choices list, pick the most similar one as argument.")
    parser.add_argument("--host", type=str, default='localhost')
    parser.add_argument("--port", type=int, default=9190)
    parser.add_argument("--rpc-key", type=str, required=True)
    parser.add_argument("--number", type=int, default=6)
    args = parser.parse_args()

    dtype = 'float32'

    if args.network is None:
        networks = ['squeezenet_v1.1', 'mobilenet', 'resnet-18', 'vgg-16']
    else:
        networks = [args.network]

    target = tvm.target.arm_cpu(model=args.model)
    target_host = None

    print("--------------------------------------------------")
    print("%-20s %-20s" % ("Network Name", "Mean Inference Time (std dev)"))
    print("--------------------------------------------------")
    for network in networks:
        evaluate_network(network, target, target_host, args.number)