"""Faster R-CNN and Mask R-CNN operations.""" from . import _make def roi_align(data, rois, pooled_size, spatial_scale, sample_ratio=-1, layout='NCHW'): """ROI align operator. Parameters ---------- data : relay.Expr 4-D tensor with shape [batch, channel, height, width] rois : relay.Expr 2-D tensor with shape [num_roi, 5]. The last dimension should be in format of [batch_index, w_start, h_start, w_end, h_end] pooled_size : list/tuple of two ints output size spatial_scale : float Ratio of input feature map height (or w) to raw image height (or w). Equals the reciprocal of total stride in convolutional layers, which should be in range (0.0, 1.0] sample_ratio : int Optional sampling ratio of ROI align, using adaptive size by default. Returns ------- output : relay.Expr 4-D tensor with shape [num_roi, channel, pooled_size, pooled_size] """ return _make.roi_align(data, rois, pooled_size, spatial_scale, sample_ratio, layout) def proposal(cls_prob, bbox_pred, im_info, scales, ratios, feature_stride, threshold, rpn_pre_nms_top_n, rpn_post_nms_top_n, rpn_min_size, iou_loss): """Proposal operator. Parameters ---------- cls_prob : relay.Expr 4-D tensor with shape [batch, 2 * num_anchors, height, width]. bbox_pred : relay.Expr 4-D tensor with shape [batch, 4 * num_anchors, height, width]. im_info : relay.Expr 2-D tensor with shape [batch, 3]. The last dimension should be in format of [im_height, im_width, im_scale] scales : list/tuple of float Scales of anchor windoes. ratios : list/tuple of float Ratios of anchor windoes. feature_stride : int The size of the receptive field each unit in the convolution layer of the rpn, for example the product of all stride's prior to this layer. threshold : float Non-maximum suppression threshold. rpn_pre_nms_top_n : int Number of top scoring boxes to apply NMS. -1 to use all boxes. rpn_post_nms_top_n : int Number of top scoring boxes to keep after applying NMS to RPN proposals. rpn_min_size : int Minimum height or width in proposal. iou_loss : bool Usage of IoU loss. Returns ------- output : relay.Expr 2-D tensor with shape [batch * rpn_post_nms_top_n, 5]. The last dimension is in format of [batch_index, w_start, h_start, w_end, h_end]. """ return _make.proposal(cls_prob, bbox_pred, im_info, scales, ratios, feature_stride, threshold, rpn_pre_nms_top_n, rpn_post_nms_top_n, rpn_min_size, iou_loss)