# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
import numpy as np
import scipy
from scipy import special
import tvm
import tvm.relay as relay
import topi
from tvm import te
from tvm.contrib import graph_runtime


def test_fastmath():
    def test_apply(relay_op, name, f_numpy, low, high, step, dtype="float32"):
        a_np = np.arange(low, high, step).astype(dtype)
        b_np = f_numpy(a_np)

        x = relay.var("x", shape=a_np.shape, dtype="float32")
        y = relay_op(x)
        func = relay.Function([x], y)
        mod = tvm.IRModule.from_expr(func)

        with relay.build_config(opt_level=3, required_pass=['FastMath']):
            graph, lib, params = relay.build(mod, target="llvm", params=None)

        # Check that the op related to fast math have been convered to function in lib
        func_name = "fused_" + name
        assert lib.get_function(func_name)

        ctx = tvm.cpu(0)
        m = graph_runtime.create(graph, lib, ctx)
        # Set inputs
        m.set_input('x', tvm.nd.array(a_np, ctx))
        m.set_input(**params)
        # Execute
        m.run()
        # Get outputs
        tvm_output = m.get_output(0)
        tvm.testing.assert_allclose(tvm_output.asnumpy(), b_np,
                                    rtol=1e-5, atol=1e-5)

    test_apply(relay.exp, "fast_exp", np.exp, low=-88, high=88, step=0.01)
    test_apply(relay.erf, "fast_erf", scipy.special.erf, low=-10, high=10, step=0.01)
    test_apply(relay.tanh, "fast_tanh", np.tanh, low=-10, high=10, step=0.01)


if __name__ == "__main__":
    test_fastmath()