# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ a simple multilayer perceptron """ from __future__ import absolute_import from tvm import relay from .init import create_workload def get_net(batch_size, num_classes=10, image_shape=(1, 28, 28), dtype="float32"): """Get network a simple multilayer perceptron. batch_size : int The batch size used in the model num_classes : int, optional Number of claseses image_shape : tuple, optional The input image shape dtype : str, optional The data type Returns ------- net : relay.Function The dataflow. """ data_shape = (batch_size,) + image_shape data = relay.var("data", shape=data_shape, dtype=dtype) data = relay.nn.batch_flatten(data) fc1 = relay.nn.dense(data, relay.var("fc1_weight"), units=128) fc1 = relay.nn.bias_add(fc1, relay.var("fc1_bias"), axis=-1) act1 = relay.nn.relu(fc1) fc2 = relay.nn.dense(act1, relay.var("fc2_weight"), units=64) fc2 = relay.nn.bias_add(fc2, relay.var("fc2_bias"), axis=-1) act2 = relay.nn.relu(fc2) fc3 = relay.nn.dense(act2, relay.var("fc3_weight"), units=num_classes) fc3 = relay.nn.bias_add(fc3, relay.var("fc3_bias"), axis=-1) mlp = relay.nn.softmax(data=fc3) args = relay.analysis.free_vars(mlp) return relay.Function(args, mlp) def get_workload(batch_size, num_classes=10, image_shape=(1, 28, 28), dtype="float32"): """Get benchmark workload for a simple multilayer perceptron. Parameters ---------- batch_size : int The batch size used in the model num_classes : int, optional Number of claseses image_shape : tuple, optional The input image shape dtype : str, optional The data type Returns ------- mod : tvm.relay.Module The relay module that contains a mlp network. params : dict of str to NDArray The parameters. """ net = get_net(batch_size, num_classes, image_shape, dtype) return create_workload(net)