# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Test code for pooling Copied from topi/tests/python/test_topi_pooling.py. Should be removed once we fix OpenGL testing on Jenkins. """ import numpy as np import tvm import topi import math from topi.util import get_const_tuple def verify_pool(n, ic, ih, kh, sh, padding, pool_type, ceil_mode): iw = ih kw = kh sw = sh ph, pw = padding A = tvm.placeholder((n, ic, ih, iw), name='A') B = topi.nn.pool(A, kernel=[kh, kw], stride=[sh, sw], padding=padding, pool_type=pool_type, ceil_mode=ceil_mode) B = topi.nn.relu(B) dtype = A.dtype bshape = get_const_tuple(B.shape) ashape = get_const_tuple(A.shape) if ceil_mode: assert bshape[2] == int(math.ceil(float(ashape[2] - kh + ph * 2) / sh) + 1) assert bshape[3] == int(math.ceil(float(ashape[3] - kw + pw * 2) / sw) + 1) else: assert bshape[2] == int(math.floor(float(ashape[2] - kh + ph * 2) / sh) + 1) assert bshape[3] == int(math.floor(float(ashape[3] - kw + pw * 2) / sw) + 1) a_np = np.random.uniform(size=(n, ic, ih, iw)).astype(dtype) pad_np = np.zeros(shape=(n, ic, ih+2*ph, iw+2*pw)).astype(dtype) no_zero = (range(n), range(ic), (range(ph, ih+ph)), (range(pw, iw+pw))) pad_np[np.ix_(*no_zero)] = a_np _, oc, oh, ow = get_const_tuple(B.shape) b_np = np.zeros(shape=(n, oc, oh, ow)).astype(dtype) if pool_type == 'avg': for i in range(oh): for j in range(ow): b_np[:,:,i,j] = np.mean(pad_np[:, :, i*sh:i*sh+kh, j*sw:j*sw+kw], axis=(2,3)) elif pool_type =='max': for i in range(oh): for j in range(ow): b_np[:,:,i,j] = np.max(pad_np[:, :, i*sh:i*sh+kh, j*sw:j*sw+kw], axis=(2,3)) b_np = np.maximum(b_np, 0.0) def check_device(device): if not tvm.module.enabled(device): print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) with tvm.target.create(device): s = topi.generic.schedule_pool(B) ctx = tvm.context(device, 0) a = tvm.nd.array(a_np, ctx) b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=dtype), ctx) print(tvm.lower(s, [A, B], simple_mode=True)) f = tvm.build(s, [A, B], device) f(a, b) tvm.testing.assert_allclose(b.asnumpy(), b_np, rtol=1e-5) for device in ['opengl']: check_device(device) def test_pool(): verify_pool(1, 256, 32, 2, 2, [0, 0], 'avg', False) verify_pool(1, 256, 31, 3, 3, [1, 2], 'avg', False) verify_pool(1, 256, 32, 2, 2, [0, 0], 'max', False) verify_pool(1, 256, 31, 3, 3, [2, 1], 'max', False) verify_pool(1, 256, 31, 3, 3, [2, 1], 'max', True) def verify_global_pool(n, c, h, w, pool_type): A = tvm.placeholder((n, c, h, w), name='A') B = topi.nn.global_pool(A, pool_type=pool_type) B = topi.nn.relu(B) a_np = np.random.uniform(size=get_const_tuple(A.shape)).astype(A.dtype) if pool_type == 'avg': b_np = np.mean(a_np, axis=(2,3), keepdims=True) elif pool_type =='max': b_np = np.max(a_np, axis=(2,3), keepdims=True) b_np = np.maximum(b_np, 0.0) def check_device(device): if not tvm.module.enabled(device): print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) with tvm.target.create(device): s = topi.generic.schedule_global_pool(B) ctx = tvm.context(device, 0) a = tvm.nd.array(a_np, ctx) b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=B.dtype), ctx) f = tvm.build(s, [A, B], device) f(a, b) tvm.testing.assert_allclose(b.asnumpy(), b_np, rtol=1e-5) for device in ['opengl']: check_device(device) def test_global_pool(): verify_global_pool(1, 1024, 7, 7, 'avg') verify_global_pool(4, 1024, 7, 7, 'avg') verify_global_pool(1, 1024, 7, 7, 'max') verify_global_pool(4, 1024, 7, 7, 'max') if __name__ == "__main__": test_pool() test_global_pool()