# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Compile Tensorflow Models
=========================
This article is an introductory tutorial to deploy tensorflow models with TVM.

For us to begin with, tensorflow python module is required to be installed.

Please refer to https://www.tensorflow.org/install
"""

# tvm and nnvm
import nnvm
import tvm

# os and numpy
import numpy as np
import os.path

# Tensorflow imports
import tensorflow as tf
from tensorflow.core.framework import graph_pb2
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import tensor_util

# Tensorflow utility functions
import tvm.relay.testing.tf as tf_testing

# Base location for model related files.
repo_base = 'https://github.com/dmlc/web-data/raw/master/tensorflow/models/InceptionV1/'

# Test image
img_name = 'elephant-299.jpg'
image_url = os.path.join(repo_base, img_name)

######################################################################
# Tutorials
# ---------
# .. note::
#
#   protobuf should be exported with :any:`add_shapes=True` option.
#   Could use https://github.com/dmlc/web-data/tree/master/tensorflow/scripts/tf-to-nnvm.py
#   to add shapes for existing models.
#
# Please refer docs/frontend/tensorflow.md for more details for various models
# from tensorflow.

model_name = 'classify_image_graph_def-with_shapes.pb'
model_url = os.path.join(repo_base, model_name)

# Image label map
map_proto = 'imagenet_2012_challenge_label_map_proto.pbtxt'
map_proto_url = os.path.join(repo_base, map_proto)

# Human readable text for labels
label_map = 'imagenet_synset_to_human_label_map.txt'
label_map_url = os.path.join(repo_base, label_map)

# Target settings
# Use these commented settings to build for cuda.
#target = 'cuda'
#target_host = 'llvm'
#layout = "NCHW"
#ctx = tvm.gpu(0)
target = 'llvm'
target_host = 'llvm'
layout = None
ctx = tvm.cpu(0)

######################################################################
# Download required files
# -----------------------
# Download files listed above.
from tvm.contrib.download import download_testdata

img_path = download_testdata(image_url, img_name, module='data')
model_path = download_testdata(model_url, model_name, module=['tf', 'InceptionV1'])
map_proto_path = download_testdata(map_proto_url, map_proto, module='data')
label_path = download_testdata(label_map_url, label_map, module='data')

######################################################################
# Import model
# ------------
# Creates tensorflow graph definition from protobuf file.

with tf.gfile.FastGFile(model_path, 'rb') as f:
    graph_def = tf.GraphDef()
    graph_def.ParseFromString(f.read())
    graph = tf.import_graph_def(graph_def, name='')
    # Call the utility to import the graph definition into default graph.
    graph_def = tf_testing.ProcessGraphDefParam(graph_def)
    # Add shapes to the graph.
    with tf.Session() as sess:
        graph_def = tf_testing.AddShapesToGraphDef(sess, 'softmax')

######################################################################
# Decode image
# ------------
# .. note::
#
#   tensorflow frontend import doesn't support preprocessing ops like JpegDecode.
#   JpegDecode is bypassed (just return source node).
#   Hence we supply decoded frame to TVM instead.
#

from PIL import Image
image = Image.open(img_path).resize((299, 299))

x = np.array(image)

######################################################################
# Import the graph to NNVM
# ------------------------
# Import tensorflow graph definition to nnvm.
#
# Results:
#   sym: nnvm graph for given tensorflow protobuf.
#   params: params converted from tensorflow params (tensor protobuf).
sym, params = nnvm.frontend.from_tensorflow(graph_def, layout=layout)

print("Tensorflow protobuf imported as nnvm graph")
######################################################################
# NNVM Compilation
# ----------------
# Compile the graph to llvm target with given input specification.
#
# Results:
#   graph: Final graph after compilation.
#   params: final params after compilation.
#   lib: target library which can be deployed on target with tvm runtime.

import nnvm.compiler
shape_dict = {'DecodeJpeg/contents': x.shape}
dtype_dict = {'DecodeJpeg/contents': 'uint8'}
graph, lib, params = nnvm.compiler.build(sym, shape=shape_dict, target=target, target_host=target_host, dtype=dtype_dict, params=params)

######################################################################
# Execute the portable graph on TVM
# ---------------------------------
# Now we can try deploying the NNVM compiled model on target.

from tvm.contrib import graph_runtime
dtype = 'uint8'
m = graph_runtime.create(graph, lib, ctx)
# set inputs
m.set_input('DecodeJpeg/contents', tvm.nd.array(x.astype(dtype)))
m.set_input(**params)
# execute
m.run()
# get outputs
tvm_output = m.get_output(0, tvm.nd.empty(((1, 1008)), 'float32'))

######################################################################
# Process the output
# ------------------
# Process the model output to human readable text for InceptionV1.
predictions = tvm_output.asnumpy()
predictions = np.squeeze(predictions)

# Creates node ID --> English string lookup.
node_lookup = tf_testing.NodeLookup(label_lookup_path=map_proto_path,
                                    uid_lookup_path=label_path)

# Print top 5 predictions from TVM output.
top_k = predictions.argsort()[-5:][::-1]
for node_id in top_k:
    human_string = node_lookup.id_to_string(node_id)
    score = predictions[node_id]
    print('%s (score = %.5f)' % (human_string, score))

######################################################################
# Inference on tensorflow
# -----------------------
# Run the corresponding model on tensorflow

def create_graph():
    """Creates a graph from saved GraphDef file and returns a saver."""
    # Creates graph from saved graph_def.pb.
    with tf.gfile.FastGFile(model_path, 'rb') as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())
        graph = tf.import_graph_def(graph_def, name='')
        # Call the utility to import the graph definition into default graph.
        graph_def = tf_testing.ProcessGraphDefParam(graph_def)

def run_inference_on_image(image):
    """Runs inference on an image.

    Parameters
    ----------
    image: String
        Image file name.

    Returns
    -------
        Nothing
    """
    if not tf.gfile.Exists(image):
        tf.logging.fatal('File does not exist %s', image)
    image_data = tf.gfile.FastGFile(image, 'rb').read()

    # Creates graph from saved GraphDef.
    create_graph()

    with tf.Session() as sess:
        softmax_tensor = sess.graph.get_tensor_by_name('softmax:0')
        predictions = sess.run(softmax_tensor,
                               {'DecodeJpeg/contents:0': image_data})

        predictions = np.squeeze(predictions)

        # Creates node ID --> English string lookup.
        node_lookup = tf_testing.NodeLookup(label_lookup_path=map_proto_path,
                                            uid_lookup_path=label_path)

        # Print top 5 predictions from tensorflow.
        top_k = predictions.argsort()[-5:][::-1]
        print ("===== TENSORFLOW RESULTS =======")
        for node_id in top_k:
            human_string = node_lookup.id_to_string(node_id)
            score = predictions[node_id]
            print('%s (score = %.5f)' % (human_string, score))

run_inference_on_image(img_path)