"""MXNet model zoo for testing purposes.""" from __future__ import absolute_import from . import mlp, vgg, resnet, dqn, inception_v3, squeezenet, dcgan import tvm.relay.testing # mlp def mx_mlp(): num_class = 10 return mlp.get_symbol(num_class) def relay_mlp(): num_class = 10 return tvm.relay.testing.mlp.get_workload(1, num_class)[0] # vgg def mx_vgg(num_layers): num_class = 1000 return vgg.get_symbol(num_class, num_layers) def relay_vgg(num_layers): num_class = 1000 return tvm.relay.testing.vgg.get_workload( 1, num_class, num_layers=num_layers)[0] # resnet def mx_resnet(num_layers): num_class = 1000 return resnet.get_symbol(num_class, num_layers, '3,224,224') def relay_resnet(num_layers): num_class = 1000 return tvm.relay.testing.resnet.get_workload( 1, num_class, num_layers=num_layers)[0] # dqn mx_dqn = dqn.get_symbol def relay_dqn(): return tvm.relay.testing.dqn.get_workload(1)[0] # squeezenet def mx_squeezenet(version): return squeezenet.get_symbol(version=version) def relay_squeezenet(version): return tvm.relay.testing.squeezenet.get_workload(1, version=version)[0] # inception mx_inception_v3 = inception_v3.get_symbol def relay_inception_v3(): return tvm.relay.testing.inception_v3.get_workload(1)[0] # dcgan generator mx_dcgan = dcgan.get_symbol def relay_dcgan(batch_size): return tvm.relay.testing.dcgan.get_workload(batch_size=batch_size)[0]