Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
f713aa9c
Commit
f713aa9c
authored
Sep 18, 2018
by
Siju
Committed by
Tianqi Chen
Sep 18, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[NNVM][KERAS]LSTMCell support (#1686)
parent
fb570e5a
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
98 additions
and
15 deletions
+98
-15
nnvm/python/nnvm/frontend/keras.py
+60
-10
nnvm/tests/python/frontend/keras/test_forward.py
+38
-5
No files found.
nnvm/python/nnvm/frontend/keras.py
View file @
f713aa9c
...
@@ -395,6 +395,40 @@ def _convert_reshape(insym, keras_layer, _):
...
@@ -395,6 +395,40 @@ def _convert_reshape(insym, keras_layer, _):
shape
=
(
-
1
,
ch
)
+
keras_layer
.
target_shape
[:
-
1
]
shape
=
(
-
1
,
ch
)
+
keras_layer
.
target_shape
[:
-
1
]
return
_sym
.
reshape
(
insym
,
shape
=
shape
)
return
_sym
.
reshape
(
insym
,
shape
=
shape
)
def
_convert_lstm
(
insym
,
keras_layer
,
symtab
):
_check_data_format
(
keras_layer
)
if
not
isinstance
(
insym
,
list
):
buffer
=
np
.
zeros
((
1
,
keras_layer
.
units
),
'float32'
)
c_sym
=
symtab
.
new_const
(
buffer
)
h_sym
=
symtab
.
new_const
(
buffer
)
insym
=
[
insym
,
h_sym
,
c_sym
]
in_data
=
insym
[
0
]
in_state_h
=
insym
[
1
]
in_state_c
=
insym
[
2
]
weightList
=
keras_layer
.
get_weights
()
kernel_wt
=
symtab
.
new_const
(
weightList
[
0
]
.
transpose
([
1
,
0
]))
recurrent_wt
=
symtab
.
new_const
(
weightList
[
1
]
.
transpose
([
1
,
0
]))
in_bias
=
symtab
.
new_const
(
weightList
[
2
])
units
=
list
(
weightList
[
0
]
.
shape
)[
1
]
in_data
=
_sym
.
flatten
(
in_data
)
ixh1
=
_sym
.
dense
(
in_data
,
kernel_wt
,
use_bias
=
False
,
units
=
units
)
ixh2
=
_sym
.
dense
(
in_state_h
,
recurrent_wt
,
in_bias
,
use_bias
=
True
,
units
=
units
)
gate
=
ixh1
+
ixh2
gates
=
_sym
.
split
(
gate
,
indices_or_sections
=
4
,
axis
=
1
)
in_gate
=
_sym
.
sigmoid
(
gates
[
0
])
in_transform
=
_sym
.
sigmoid
(
gates
[
1
])
next_c
=
in_transform
*
in_state_c
+
in_gate
*
_sym
.
tanh
(
gates
[
2
])
out_gate
=
_sym
.
sigmoid
(
gates
[
3
])
next_h
=
out_gate
*
_sym
.
tanh
(
next_c
)
out_shape
=
tuple
(
dim
if
dim
else
1
for
dim
in
_as_list
(
keras_layer
.
output_shape
)[
0
])
out
=
_sym
.
reshape
(
next_h
,
shape
=
out_shape
)
return
[
out
,
next_h
,
next_c
]
def
_default_skip
(
insym
,
keras_layer
,
_
):
# pylint: disable=unused-argument
def
_default_skip
(
insym
,
keras_layer
,
_
):
# pylint: disable=unused-argument
"""Layers that can be skipped because they are train time only."""
"""Layers that can be skipped because they are train time only."""
...
@@ -442,7 +476,7 @@ _convert_map = {
...
@@ -442,7 +476,7 @@ _convert_map = {
# 'Conv1D' : _convert_convolution1d,
# 'Conv1D' : _convert_convolution1d,
# 'GRU' : _convert_gru,
# 'GRU' : _convert_gru,
# 'LSTM'
: _convert_lstm,
'LSTM'
:
_convert_lstm
,
# 'SimpleRNN' : _convert_simple_rnn,
# 'SimpleRNN' : _convert_simple_rnn,
# 'Bidirectional' : _convert_bidirectional,
# 'Bidirectional' : _convert_bidirectional,
# 'TimeDistributed' : _default_skip,
# 'TimeDistributed' : _default_skip,
...
@@ -466,6 +500,11 @@ def _check_unsupported_layers(model):
...
@@ -466,6 +500,11 @@ def _check_unsupported_layers(model):
if
type
(
layer
)
.
__name__
not
in
_convert_map
:
if
type
(
layer
)
.
__name__
not
in
_convert_map
:
raise
ValueError
(
"Keras layer {} not supported."
.
format
(
type
(
layer
)
.
__name__
))
raise
ValueError
(
"Keras layer {} not supported."
.
format
(
type
(
layer
)
.
__name__
))
def
_as_list
(
arr
):
"""Force being a list, ignore if already is."""
if
isinstance
(
arr
,
list
):
return
arr
return
[
arr
]
def
keras_op_to_nnvm
(
insym
,
keras_layer
,
outname
,
symtab
):
def
keras_op_to_nnvm
(
insym
,
keras_layer
,
outname
,
symtab
):
"""Convert keras layer to nnvm symbol, and update symtab.
"""Convert keras layer to nnvm symbol, and update symtab.
...
@@ -486,9 +525,12 @@ def keras_op_to_nnvm(insym, keras_layer, outname, symtab):
...
@@ -486,9 +525,12 @@ def keras_op_to_nnvm(insym, keras_layer, outname, symtab):
"""
"""
if
type
(
keras_layer
)
.
__name__
not
in
_convert_map
:
if
type
(
keras_layer
)
.
__name__
not
in
_convert_map
:
raise
NotImplementedError
(
"{} is not supported"
.
format
((
type
(
keras_layer
)
.
__name__
)))
raise
NotImplementedError
(
"{} is not supported"
.
format
((
type
(
keras_layer
)
.
__name__
)))
ret
=
_convert_map
[
type
(
keras_layer
)
.
__name__
](
insym
,
keras_layer
,
symtab
)
outs
=
_convert_map
[
type
(
keras_layer
)
.
__name__
](
insym
,
keras_layer
,
symtab
)
symtab
.
set_var
(
outname
,
ret
)
outs
=
_as_list
(
outs
)
for
t_idx
,
out
in
enumerate
(
outs
):
name
=
outname
+
":"
+
str
(
t_idx
)
symtab
.
set_var
(
name
,
out
)
def
from_keras
(
model
):
def
from_keras
(
model
):
"""Convert keras model to NNVM format.
"""Convert keras model to NNVM format.
...
@@ -529,7 +571,7 @@ def from_keras(model):
...
@@ -529,7 +571,7 @@ def from_keras(model):
if
inbound_nodes
is
None
:
if
inbound_nodes
is
None
:
raise
TypeError
(
"Unknown layer type or unsupported Keras version : {}"
raise
TypeError
(
"Unknown layer type or unsupported Keras version : {}"
.
format
(
keras_layer
))
.
format
(
keras_layer
))
for
my
_idx
,
node
in
enumerate
(
inbound_nodes
):
for
node
_idx
,
node
in
enumerate
(
inbound_nodes
):
insym
=
[]
insym
=
[]
# Since Keras allows creating multiple layers from the same name instance,
# Since Keras allows creating multiple layers from the same name instance,
...
@@ -537,17 +579,25 @@ def from_keras(model):
...
@@ -537,17 +579,25 @@ def from_keras(model):
# The one exception is InputLayer. Changing input variable names after conversion
# The one exception is InputLayer. Changing input variable names after conversion
# would confuse users, so we should keep them as far as possible. Fortunately,
# would confuse users, so we should keep them as far as possible. Fortunately,
# they are named uniquely to input_1, input_2, input_3 ... by default.
# they are named uniquely to input_1, input_2, input_3 ... by default.
for
pred_idx
,
pred
in
zip
(
node
.
node_indices
,
node
.
inbound_layers
):
zip_node
=
zip
(
node
.
node_indices
,
node
.
tensor_indices
,
node
.
inbound_layers
)
if
isinstance
(
pred
,
keras
.
engine
.
InputLayer
):
for
n_idx
,
t_idx
,
layer
in
zip_node
:
sym
=
symtab
.
get_var
(
pred
.
name
,
must_contain
=
True
)
if
isinstance
(
layer
,
keras
.
engine
.
InputLayer
):
sym
=
symtab
.
get_var
(
layer
.
name
,
must_contain
=
True
)
else
:
else
:
sym
=
symtab
.
get_var
(
pred
.
name
+
':'
+
str
(
pred_idx
),
must_contain
=
True
)
sym_name
=
layer
.
name
+
':'
+
str
(
n_idx
)
+
':'
+
str
(
t_idx
)
sym
=
symtab
.
get_var
(
sym_name
,
must_contain
=
True
)
insym
.
append
(
sym
)
insym
.
append
(
sym
)
if
len
(
insym
)
==
1
:
if
len
(
insym
)
==
1
:
insym
=
insym
[
0
]
insym
=
insym
[
0
]
keras_op_to_nnvm
(
insym
,
keras_layer
,
keras_layer
.
name
+
':'
+
str
(
my_idx
),
symtab
)
keras_op_to_nnvm
(
insym
,
keras_layer
,
keras_layer
.
name
+
':'
+
str
(
node_idx
),
symtab
)
#model._output_coordinates contains out_node(oc[0]), node_index(oc[1]) and tensor index(oc[2])
#Get all output nodes in symtab using the name made from above values. The out symbols
#were added to symtab in keras_op_to_nnvm using this name. For multiple outputs, make a list
#with these output symbols and Group them.
outsym
=
[
symtab
.
get_var
(
oc
[
0
]
.
name
+
":"
+
str
(
oc
[
1
])
+
":"
+
str
(
oc
[
2
]))
for
oc
in
model
.
_output_coordinates
]
outsym
=
[
symtab
.
get_var
(
layer
.
name
+
':0'
)
for
layer
in
model
.
_output_layers
]
tvmparams
=
{
k
:
tvm
.
nd
.
array
(
np
.
array
(
v
,
dtype
=
np
.
float32
))
for
k
,
v
in
symtab
.
params
.
items
()}
tvmparams
=
{
k
:
tvm
.
nd
.
array
(
np
.
array
(
v
,
dtype
=
np
.
float32
))
for
k
,
v
in
symtab
.
params
.
items
()}
return
_sym
.
Group
(
outsym
),
tvmparams
return
_sym
.
Group
(
outsym
),
tvmparams
nnvm/tests/python/frontend/keras/test_forward.py
View file @
f713aa9c
...
@@ -13,16 +13,22 @@ config.gpu_options.per_process_gpu_memory_fraction = 0.5
...
@@ -13,16 +13,22 @@ config.gpu_options.per_process_gpu_memory_fraction = 0.5
set_session
(
tf
.
Session
(
config
=
config
))
set_session
(
tf
.
Session
(
config
=
config
))
def
verify_keras_frontend
(
keras_model
):
def
verify_keras_frontend
(
keras_model
,
need_transpose
=
True
):
# Keras frontend currently supports tensorflow backend only.
# Keras frontend currently supports tensorflow backend only.
assert
(
keras
.
backend
.
backend
()
==
'tensorflow'
)
assert
(
keras
.
backend
.
backend
()
==
'tensorflow'
)
in_shapes
=
[]
in_shapes
=
[]
for
layer
in
keras_model
.
_input_layers
:
for
layer
in
keras_model
.
_input_layers
:
in_shapes
.
append
(
tuple
(
dim
.
value
if
dim
.
value
is
not
None
else
1
for
dim
in
layer
.
input
.
shape
))
in_shapes
.
append
(
tuple
(
dim
.
value
if
dim
.
value
is
not
None
else
1
for
dim
in
layer
.
input
.
shape
))
#keras_model._output_coordinates contains the output_node, node_index and tensor_index
#get the outshapes from combining output node and tensor index
out_shapes
=
[]
out_shapes
=
[]
for
layer
in
keras_model
.
_output_layers
:
for
layer
,
node_index
,
tensor_index
in
keras_model
.
_output_coordinates
:
out_shapes
.
append
(
tuple
(
dim
.
value
if
dim
.
value
is
not
None
else
1
for
dim
in
layer
.
output
.
shape
))
layer_out
=
layer
.
output
if
isinstance
(
layer
.
output
,
list
):
#if multiple outputs are there
layer_out
=
layer
.
output
[
tensor_index
]
out_shapes
.
append
(
tuple
(
dim
.
value
if
dim
.
value
is
not
None
else
1
for
dim
in
layer_out
.
shape
))
def
get_keras_output
(
xs
,
dtype
=
'float32'
):
def
get_keras_output
(
xs
,
dtype
=
'float32'
):
return
keras_model
.
predict
(
xs
)
return
keras_model
.
predict
(
xs
)
...
@@ -46,14 +52,13 @@ def verify_keras_frontend(keras_model):
...
@@ -46,14 +52,13 @@ def verify_keras_frontend(keras_model):
keras_out
=
get_keras_output
(
xs
)
keras_out
=
get_keras_output
(
xs
)
for
target
,
ctx
in
ctx_list
():
for
target
,
ctx
in
ctx_list
():
tvm_out
=
get_tvm_output
([
x
.
transpose
([
0
,
3
,
1
,
2
])
for
x
in
xs
]
,
target
,
ctx
)
tvm_out
=
get_tvm_output
([
x
.
transpose
([
0
,
3
,
1
,
2
])
for
x
in
xs
]
if
need_transpose
else
xs
,
target
,
ctx
)
if
isinstance
(
keras_out
,
list
):
if
isinstance
(
keras_out
,
list
):
for
kout
,
tout
in
zip
(
keras_out
,
tvm_out
):
for
kout
,
tout
in
zip
(
keras_out
,
tvm_out
):
np
.
testing
.
assert_allclose
(
kout
,
tout
.
reshape
(
kout
.
shape
),
rtol
=
1e-5
,
atol
=
1e-5
)
np
.
testing
.
assert_allclose
(
kout
,
tout
.
reshape
(
kout
.
shape
),
rtol
=
1e-5
,
atol
=
1e-5
)
else
:
else
:
np
.
testing
.
assert_allclose
(
keras_out
,
tvm_out
.
reshape
(
keras_out
.
shape
),
rtol
=
1e-5
,
atol
=
1e-5
)
np
.
testing
.
assert_allclose
(
keras_out
,
tvm_out
.
reshape
(
keras_out
.
shape
),
rtol
=
1e-5
,
atol
=
1e-5
)
def
test_forward_elemwise_add
():
def
test_forward_elemwise_add
():
r
=
[]
r
=
[]
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
...
@@ -231,6 +236,33 @@ def test_forward_reuse_layers():
...
@@ -231,6 +236,33 @@ def test_forward_reuse_layers():
keras_model
=
keras
.
models
.
Model
(
data
,
z
)
keras_model
=
keras
.
models
.
Model
(
data
,
z
)
verify_keras_frontend
(
keras_model
)
verify_keras_frontend
(
keras_model
)
def
_test_LSTM
(
inputs
,
hidden
,
return_state
=
True
):
data
=
keras
.
layers
.
Input
(
shape
=
(
1
,
inputs
))
lstm_out
=
keras
.
layers
.
LSTM
(
hidden
,
return_state
=
return_state
,
recurrent_activation
=
'sigmoid'
,
activation
=
'tanh'
)
x
=
lstm_out
(
data
)
keras_model
=
keras
.
models
.
Model
(
data
,
x
)
verify_keras_frontend
(
keras_model
,
need_transpose
=
False
)
def
_test_LSTM_MultiLayer
(
inputs
,
hidden
):
inputs
=
keras
.
layers
.
Input
(
shape
=
(
1
,
inputs
))
layer
=
keras
.
layers
.
LSTM
(
hidden
,
return_state
=
True
,
return_sequences
=
True
,
recurrent_activation
=
'sigmoid'
,
activation
=
'tanh'
)
outputs
=
layer
(
inputs
)
output
,
state
=
outputs
[
0
],
outputs
[
1
:]
output
=
keras
.
layers
.
LSTM
(
hidden
,
recurrent_activation
=
'sigmoid'
,
activation
=
'tanh'
)(
output
,
initial_state
=
state
)
keras_model
=
keras
.
models
.
Model
(
inputs
,
output
)
verify_keras_frontend
(
keras_model
,
need_transpose
=
False
)
def
test_forward_LSTM
():
_test_LSTM
(
8
,
8
,
return_state
=
True
)
_test_LSTM
(
4
,
4
,
return_state
=
False
)
_test_LSTM_MultiLayer
(
4
,
4
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
test_forward_elemwise_add
()
test_forward_elemwise_add
()
...
@@ -249,3 +281,4 @@ if __name__ == '__main__':
...
@@ -249,3 +281,4 @@ if __name__ == '__main__':
test_forward_multi_inputs
()
test_forward_multi_inputs
()
test_forward_multi_outputs
()
test_forward_multi_outputs
()
test_forward_reuse_layers
()
test_forward_reuse_layers
()
test_forward_LSTM
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment