Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
f6c3f997
Commit
f6c3f997
authored
Dec 29, 2018
by
Alexey Romanov
Committed by
Siva
Dec 29, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[FRONTEND][TENSORFLOW] Use input shapes directly instead of 1-element lists (#2242)
parent
6d1f4c0b
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
20 additions
and
21 deletions
+20
-21
nnvm/python/nnvm/frontend/tensorflow.py
+20
-21
No files found.
nnvm/python/nnvm/frontend/tensorflow.py
View file @
f6c3f997
...
...
@@ -120,7 +120,7 @@ def _pooling(name):
attr
[
'data_format'
]
=
attr
[
'data_format'
]
.
decode
(
"utf-8"
)
flip_layout
=
False
input_shape
=
attr
[
'_input_shapes'
][
inputs
[
0
]]
[
0
]
input_shape
=
attr
[
'_input_shapes'
][
inputs
[
0
]]
if
attr
[
'data_format'
]
==
'NHWC'
:
attr
[
'kernel_shape'
]
=
(
attr
[
'ksize'
][
1
],
attr
[
'ksize'
][
2
])
...
...
@@ -132,7 +132,7 @@ def _pooling(name):
raise
TypeError
(
"Unsupported data_format type : {}"
.
format
(
attr
[
'data_format'
]))
if
attr
[
'_target_layout'
]
==
"NCHW"
and
attr
[
'data_format'
]
==
"NHWC"
:
tmp_shape
=
attr
[
'_input_shapes'
][
inputs
[
0
]]
[
0
]
tmp_shape
=
attr
[
'_input_shapes'
][
inputs
[
0
]]
input_shape
=
[
tmp_shape
[
ii
]
for
ii
in
(
0
,
3
,
1
,
2
)]
inputs
[
0
]
=
_sym
.
transpose
(
inputs
[
0
],
axes
=
(
0
,
3
,
1
,
2
))
attr
[
'data_format'
]
=
"NCHW"
...
...
@@ -185,13 +185,13 @@ def _conv(opname):
# NCHW Layout require weights transpose
if
attr
[
'data_format'
]
==
'NCHW'
:
tmp_shape
=
attr
[
'_input_shapes'
][
inputs
[
1
]]
[
0
]
tmp_shape
=
attr
[
'_input_shapes'
][
inputs
[
1
]]
tmp_shape
=
[
tmp_shape
[
ii
]
for
ii
in
(
3
,
2
,
0
,
1
)]
inputs
[
1
]
=
_sym
.
transpose
(
inputs
[
1
],
axes
=
(
3
,
2
,
0
,
1
))
attr
[
'_input_shapes'
][
inputs
[
1
]]
=
[
tmp_shape
]
attr
[
'_input_shapes'
][
inputs
[
1
]]
=
tmp_shape
input_shape
=
attr
[
'_input_shapes'
][
inputs
[
0
]]
[
0
]
weights_shape
=
attr
[
'_input_shapes'
][
inputs
[
1
]]
[
0
]
input_shape
=
attr
[
'_input_shapes'
][
inputs
[
0
]]
weights_shape
=
attr
[
'_input_shapes'
][
inputs
[
1
]]
if
attr
[
'_target_layout'
]
==
"NCHW"
and
attr
[
'data_format'
]
==
"NHWC"
:
input_shape
=
[
input_shape
[
ii
]
for
ii
in
(
0
,
3
,
1
,
2
)]
...
...
@@ -484,7 +484,7 @@ def _relu6():
def
_shape
():
def
_impl
(
inputs
,
attr
,
params
):
return
np
.
array
(
attr
[
'_input_shapes'
][
inputs
[
0
]]
[
0
]
,
dtype
=
'int32'
)
return
np
.
array
(
attr
[
'_input_shapes'
][
inputs
[
0
]],
dtype
=
'int32'
)
return
_impl
def
_fill
():
...
...
@@ -565,7 +565,7 @@ def _stridedSlice():
new_axis_mask
=
int
(
attr
.
get
(
'new_axis_mask'
,
0
))
shrink_axis_mask
=
int
(
attr
.
get
(
'shrink_axis_mask'
,
0
))
data_shape
=
attr
[
'_input_shapes'
][
inputs
[
0
]]
data_dim
=
len
(
data_shape
[
0
]
)
data_dim
=
len
(
data_shape
)
stride_dim
=
len
(
stride
)
def
_transform_mask
(
stride_dim
,
ellipsis_mask
):
...
...
@@ -596,7 +596,7 @@ def _stridedSlice():
+
new_axes_after_ellipsis
),
data_dim
)
for
i
in
range
(
final_index
,
to_index
):
m_begin
[
final_index
]
=
0
m_end
[
final_index
]
=
data_shape
[
0
][
final_index
]
m_end
[
final_index
]
=
data_shape
[
final_index
]
m_stride
[
final_index
]
=
1
fshape_indices
.
append
(
final_index
)
final_index
+=
1
...
...
@@ -606,19 +606,19 @@ def _stridedSlice():
if
final_index
==
len
(
m_begin
):
break
if
mask
&
begin_mask
:
m_begin
[
final_index
]
=
data_shape
[
0
][
final_index
]
\
m_begin
[
final_index
]
=
data_shape
[
final_index
]
\
if
stride
[
index
]
<
0
else
0
elif
begin
[
index
]:
m_begin
[
final_index
]
=
begin
[
index
]
if
mask
&
end_mask
:
m_end
[
final_index
]
=
0
if
stride
[
index
]
<
0
\
else
data_shape
[
0
][
final_index
]
else
data_shape
[
final_index
]
elif
end
[
index
]:
m_end
[
final_index
]
=
end
[
index
]
m_stride
[
final_index
]
=
stride
[
index
]
if
mask
&
shrink_axis_mask
:
#Tensorflow make axis with shrink_axis_mask as dimension 1
m_begin
[
final_index
]
=
data_shape
[
0
][
final_index
]
+
begin
[
index
]
\
m_begin
[
final_index
]
=
data_shape
[
final_index
]
+
begin
[
index
]
\
if
begin
[
index
]
<
0
else
begin
[
index
]
m_end
[
final_index
]
=
begin
[
index
]
+
1
m_stride
[
final_index
]
=
1
...
...
@@ -684,8 +684,8 @@ def _LSTMBlockCell():
forget_bias
=
attr
.
pop
(
'forget_bias'
)
input_shape
=
attr
[
'_input_shapes'
][
inputs
[
0
]]
weight_shape
=
attr
[
'_input_shapes'
][
inputs
[
3
]]
batch_size
,
input_size
=
input_shape
[
0
]
[
0
],
input_shape
[
0
]
[
1
]
num_hidden_layers
=
weight_shape
[
0
][
1
]
batch_size
,
input_size
=
input_shape
[
0
]
,
input_shape
[
1
]
num_hidden_layers
=
weight_shape
[
1
]
num_hidden
=
num_hidden_layers
//
4
in_data
=
_sym
.
reshape
(
in_data
,
...
...
@@ -741,11 +741,10 @@ def _transpose():
def
_rank
():
def
_impl
(
inputs
,
attr
,
params
):
input_shapes
=
attr
[
'_input_shapes'
][
inputs
[
0
]]
assert
len
(
inputs
)
==
1
input_shape
=
attr
[
'_input_shapes'
][
inputs
[
0
]]
name
=
attr
[
"_node_name"
]
params
[
name
]
=
tvm
.
nd
.
array
([
len
(
input_shape
s
[
0
]
)])
params
[
name
]
=
tvm
.
nd
.
array
([
len
(
input_shape
)])
return
_sym
.
Variable
(
name
=
name
,
shape
=
params
[
name
]
.
shape
)
return
_impl
...
...
@@ -829,7 +828,7 @@ def _unpack():
def
_impl
(
inputs
,
attr
,
params
):
input_node
=
inputs
[
0
]
axis
=
attr
[
'axis'
]
input_shape
=
attr
[
'_input_shapes'
][
input_node
]
[
0
]
input_shape
=
attr
[
'_input_shapes'
][
input_node
]
axis_length
=
input_shape
[
axis
]
if
axis_length
<
0
:
raise
TypeError
(
"Unstack with unknown axis length"
)
...
...
@@ -1018,8 +1017,8 @@ class RecurrentNetworks(object):
"""LSTM cell warapper to prepare the inputs"""
input_shape
=
attr
[
'_input_shapes'
][
inputs
[
0
]]
weight_shape
=
attr
[
'_input_shapes'
][
inputs
[
3
]]
batch_size
=
input_shape
[
0
]
[
0
]
num_hidden
=
weight_shape
[
0
][
1
]
//
4
batch_size
=
input_shape
[
0
]
num_hidden
=
weight_shape
[
1
]
//
4
if
layer
==
0
:
#Create initial states placeholder in case of first layer
...
...
@@ -1240,7 +1239,7 @@ class GraphProto(object):
tensor_slot
=
0
input_shape
=
self
.
_output_shapes
[
node_name
][
0
]
inputs
.
append
(
in_sym
)
input_shapes
[
in_sym
]
=
[
input_shape
]
input_shapes
[
in_sym
]
=
input_shape
# This means the node is 1d in NNVM and 0d in TF.
# See `_expand_dims_0d_aware`.
if
self
.
_outputs_are_0d
[
node_name
][
tensor_slot
]
and
input_shape
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment