Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
f06ef4f2
Commit
f06ef4f2
authored
Aug 14, 2019
by
Animesh Jain
Committed by
Wuwei Lin
Aug 14, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[QNN] Concatenate operator (#3730)
parent
5498e54d
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
218 additions
and
0 deletions
+218
-0
python/tvm/relay/qnn/op/qnn.py
+73
-0
tests/python/relay/test_qnn_concatenate.py
+145
-0
No files found.
python/tvm/relay/qnn/op/qnn.py
View file @
f06ef4f2
...
...
@@ -18,6 +18,7 @@
"""QNN dialect operators."""
from
__future__
import
absolute_import
as
_abs
from
tvm
import
relay
from
.
import
_make
def
requantize
(
data
,
...
...
@@ -72,3 +73,75 @@ def requantize(data,
output_zero_point
,
rounding
,
out_dtype
)
def
concatenate
(
data
,
input_scales
,
input_zero_points
,
output_scale
,
output_zero_point
,
axis
):
"""Concatenate the quantized input tensors along the given axis.
Parameters
----------
data : Union(List[relay.Expr], Tuple[relay.Expr])
The list of quantized tensors.
input_scales : List[float32]
The list of scales of input quantized tensors.
input_zero_points : List[int32]
The list of zero points of input quantized tensors.
output_scale : float32
The scale of the output quantized tensor.
output_zero_point : int32
The zero point of the output quantized tensor.
axis : int
The axis along which the tensors are concatenated.
Returns
-------
result: relay.Expr
The concatenated quantized tensor.
"""
data
=
list
(
data
)
requantized_exprs
=
list
(
data
)
# Find the dtype of the input expr. This is required for the requantize op. Since, this is
# concatenate op, the dtype of the input is same as dtype of the output.
data0
=
relay
.
transform
.
infer_type
(
data
[
0
])
in_dtype
=
data0
.
checked_type
.
dtype
# First check if all the input qnn params match. If yes, we can call concatenate first, followed
# by a requantize.
if
all
(
scale
==
input_scales
[
0
]
for
scale
in
input_scales
)
\
and
all
(
zero_point
==
input_zero_points
[
0
]
for
zero_point
in
input_zero_points
):
out
=
relay
.
concatenate
(
tuple
(
data
),
axis
)
input_scale
=
input_scales
[
0
]
input_zero_point
=
input_zero_points
[
0
]
if
input_scale
!=
output_scale
or
input_zero_point
!=
output_zero_point
:
out
=
requantize
(
data
=
out
,
input_scale
=
input_scales
[
0
],
input_zero_point
=
input_zero_points
[
0
],
output_scale
=
output_scale
,
output_zero_point
=
output_zero_point
,
out_dtype
=
in_dtype
)
return
out
# If the output qnn params do not match the input qnn params, we can call requantize on the
# input expr first, followed by a concatenate on the requantized input exprs.
for
idx
,
quantized_expr
in
enumerate
(
data
):
input_scale
=
input_scales
[
idx
]
input_zero_point
=
input_zero_points
[
idx
]
if
input_scale
!=
output_scale
or
input_zero_point
!=
output_zero_point
:
requantized_exprs
[
idx
]
=
requantize
(
data
=
quantized_expr
,
input_scale
=
input_scale
,
input_zero_point
=
input_zero_point
,
output_scale
=
output_scale
,
output_zero_point
=
output_zero_point
,
out_dtype
=
in_dtype
)
return
relay
.
concatenate
(
tuple
(
requantized_exprs
),
axis
)
tests/python/relay/test_qnn_concatenate.py
0 → 100644
View file @
f06ef4f2
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import
tvm
import
numpy
as
np
from
tvm
import
relay
from
tvm.contrib
import
graph_runtime
import
topi.testing
def
test_same_io_qnn_params
():
data_dtype
=
'int32'
axis
=
0
x_data
=
np
.
arange
(
-
32
,
32
,
1
)
.
reshape
(
1
,
64
)
.
astype
(
data_dtype
)
y_data
=
np
.
arange
(
-
64
,
64
,
2
)
.
reshape
(
1
,
64
)
.
astype
(
data_dtype
)
x_scale
=
(
62
+
64
)
/
(
np
.
power
(
2
,
32
)
-
1.0
)
y_scale
=
(
62
+
64
)
/
(
np
.
power
(
2
,
32
)
-
1.0
)
x
=
relay
.
var
(
"x"
,
shape
=
(
1
,
64
),
dtype
=
data_dtype
)
y
=
relay
.
var
(
"y"
,
shape
=
(
1
,
64
),
dtype
=
data_dtype
)
z
=
relay
.
qnn
.
op
.
concatenate
((
x
,
y
),
input_scales
=
[
x_scale
,
y_scale
],
input_zero_points
=
[
0
,
0
],
output_scale
=
y_scale
,
output_zero_point
=
0
,
axis
=
axis
)
func
=
relay
.
Function
([
x
,
y
],
z
)
assert
func
.
astext
()
.
count
(
'requantize'
)
==
0
mod
=
relay
.
Module
.
from_expr
(
func
)
mod
=
relay
.
transform
.
Legalize
()(
mod
)
func
=
mod
[
"main"
]
golden_output
=
np
.
concatenate
((
x_data
,
y_data
),
axis
=
axis
)
intrp
=
relay
.
create_executor
(
"graph"
,
ctx
=
tvm
.
cpu
(
0
),
target
=
"llvm"
)
op_res
=
intrp
.
evaluate
(
func
)(
x_data
,
y_data
)
np
.
testing
.
assert_equal
(
op_res
.
asnumpy
(),
golden_output
)
def
test_different_io_qnn_params
():
data_dtype
=
'int32'
axis
=
0
x_data
=
np
.
arange
(
-
32
,
32
,
1
)
.
reshape
(
1
,
64
)
.
astype
(
data_dtype
)
y_data
=
np
.
arange
(
-
64
,
64
,
2
)
.
reshape
(
1
,
64
)
.
astype
(
data_dtype
)
x_scale
=
(
62
+
64
)
/
(
np
.
power
(
2
,
32
)
-
1.0
)
y_scale
=
(
62
+
64
)
/
(
np
.
power
(
2
,
32
)
-
1.0
)
x
=
relay
.
var
(
"x"
,
shape
=
(
1
,
64
),
dtype
=
data_dtype
)
y
=
relay
.
var
(
"y"
,
shape
=
(
1
,
64
),
dtype
=
data_dtype
)
z
=
relay
.
qnn
.
op
.
concatenate
((
x
,
y
),
input_scales
=
[
x_scale
,
y_scale
],
input_zero_points
=
[
3
,
4
],
output_scale
=
y_scale
,
output_zero_point
=
1
,
axis
=
axis
)
func
=
relay
.
Function
([
x
,
y
],
z
)
assert
func
.
astext
()
.
count
(
'requantize'
)
==
2
mod
=
relay
.
Module
.
from_expr
(
func
)
mod
=
relay
.
transform
.
Legalize
()(
mod
)
func
=
mod
[
"main"
]
golden_output
=
np
.
concatenate
((
x_data
-
2
,
y_data
-
3
),
axis
=
axis
)
intrp
=
relay
.
create_executor
(
"graph"
,
ctx
=
tvm
.
cpu
(
0
),
target
=
"llvm"
)
op_res
=
intrp
.
evaluate
(
func
)(
x_data
,
y_data
)
np
.
testing
.
assert_equal
(
op_res
.
asnumpy
(),
golden_output
)
def
test_few_same_io_qnn_params
():
data_dtype
=
'int32'
axis
=
0
x_data
=
np
.
arange
(
-
32
,
32
,
1
)
.
reshape
(
1
,
64
)
.
astype
(
data_dtype
)
y_data
=
np
.
arange
(
-
64
,
64
,
2
)
.
reshape
(
1
,
64
)
.
astype
(
data_dtype
)
x_scale
=
(
62
+
64
)
/
(
np
.
power
(
2
,
32
)
-
1.0
)
y_scale
=
(
62
+
64
)
/
(
np
.
power
(
2
,
32
)
-
1.0
)
x
=
relay
.
var
(
"x"
,
shape
=
(
1
,
64
),
dtype
=
data_dtype
)
y
=
relay
.
var
(
"y"
,
shape
=
(
1
,
64
),
dtype
=
data_dtype
)
z
=
relay
.
qnn
.
op
.
concatenate
((
x
,
y
),
input_scales
=
[
x_scale
,
y_scale
],
input_zero_points
=
[
0
,
1
],
output_scale
=
y_scale
,
output_zero_point
=
1
,
axis
=
axis
)
func
=
relay
.
Function
([
x
,
y
],
z
)
assert
func
.
astext
()
.
count
(
'requantize'
)
==
1
mod
=
relay
.
Module
.
from_expr
(
func
)
mod
=
relay
.
transform
.
Legalize
()(
mod
)
func
=
mod
[
"main"
]
golden_output
=
np
.
concatenate
((
x_data
+
1
,
y_data
),
axis
=
axis
)
intrp
=
relay
.
create_executor
(
"graph"
,
ctx
=
tvm
.
cpu
(
0
),
target
=
"llvm"
)
op_res
=
intrp
.
evaluate
(
func
)(
x_data
,
y_data
)
np
.
testing
.
assert_equal
(
op_res
.
asnumpy
(),
golden_output
)
def
test_same_i_qnn_params
():
data_dtype
=
'int32'
axis
=
0
x_data
=
np
.
arange
(
-
32
,
32
,
1
)
.
reshape
(
1
,
64
)
.
astype
(
data_dtype
)
y_data
=
np
.
arange
(
-
64
,
64
,
2
)
.
reshape
(
1
,
64
)
.
astype
(
data_dtype
)
x_scale
=
(
62
+
64
)
/
(
np
.
power
(
2
,
32
)
-
1.0
)
y_scale
=
(
62
+
64
)
/
(
np
.
power
(
2
,
32
)
-
1.0
)
x
=
relay
.
var
(
"x"
,
shape
=
(
1
,
64
),
dtype
=
data_dtype
)
y
=
relay
.
var
(
"y"
,
shape
=
(
1
,
64
),
dtype
=
data_dtype
)
z
=
relay
.
qnn
.
op
.
concatenate
((
x
,
y
),
input_scales
=
[
x_scale
,
y_scale
],
input_zero_points
=
[
0
,
0
],
output_scale
=
y_scale
,
output_zero_point
=
1
,
axis
=
axis
)
func
=
relay
.
Function
([
x
,
y
],
z
)
assert
func
.
astext
()
.
count
(
'requantize'
)
==
1
mod
=
relay
.
Module
.
from_expr
(
func
)
mod
=
relay
.
transform
.
Legalize
()(
mod
)
func
=
mod
[
"main"
]
golden_output
=
np
.
concatenate
((
x_data
+
1
,
y_data
+
1
),
axis
=
axis
)
intrp
=
relay
.
create_executor
(
"graph"
,
ctx
=
tvm
.
cpu
(
0
),
target
=
"llvm"
)
op_res
=
intrp
.
evaluate
(
func
)(
x_data
,
y_data
)
np
.
testing
.
assert_equal
(
op_res
.
asnumpy
(),
golden_output
)
if
__name__
==
'__main__'
:
test_same_io_qnn_params
()
test_different_io_qnn_params
()
test_few_same_io_qnn_params
()
test_same_i_qnn_params
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment