Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
e722301a
Unverified
Commit
e722301a
authored
Apr 01, 2020
by
Samuel
Committed by
GitHub
Apr 02, 2020
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[PYTORCH]Activations for pytorch (#5194)
* [PYTORCH]Activations for pytorch * Review comments updated
parent
2b6d69c6
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
64 additions
and
38 deletions
+64
-38
python/tvm/relay/frontend/pytorch.py
+31
-0
tests/python/frontend/pytorch/test_forward.py
+33
-38
No files found.
python/tvm/relay/frontend/pytorch.py
View file @
e722301a
...
...
@@ -193,6 +193,33 @@ def _relu():
return
_op
.
nn
.
relu
(
data
)
return
_impl
def
_prelu
():
def
_impl
(
inputs
,
input_types
):
data
=
inputs
[
0
]
alpha
=
inputs
[
1
]
return
_op
.
nn
.
prelu
(
data
,
alpha
)
return
_impl
def
_leaky_relu
():
def
_impl
(
inputs
,
input_types
):
data
=
inputs
[
0
]
alpha
=
int
(
inputs
[
1
])
return
_op
.
nn
.
leaky_relu
(
data
,
alpha
)
return
_impl
def
_elu
():
def
_impl
(
inputs
,
input_types
):
data
=
inputs
[
0
]
alpha
=
_expr
.
const
(
int
(
inputs
[
1
]),
dtype
=
'float32'
)
return
alpha
*
_op
.
nn
.
relu
(
alpha
-
_op
.
exp
(
data
))
+
_op
.
nn
.
relu
(
data
)
return
_impl
def
_log_sigmoid
():
def
_impl
(
inputs
,
input_types
):
data
=
inputs
[
0
]
return
_op
.
log
(
_op
.
tensor
.
sigmoid
(
data
))
return
_impl
def
_adaptive_avg_pool_2d
():
def
_impl
(
inputs
,
input_types
):
data
=
inputs
[
0
]
...
...
@@ -921,6 +948,10 @@ _convert_map = {
"aten::select"
:
_select
(),
"aten::relu"
:
_relu
(),
"aten::relu_"
:
_relu
(),
"aten::prelu"
:
_prelu
(),
"aten::leaky_relu"
:
_leaky_relu
(),
"aten::elu"
:
_elu
(),
"aten::log_sigmoid"
:
_log_sigmoid
(),
"aten::adaptive_avg_pool2d"
:
_adaptive_avg_pool_2d
(),
"aten::adaptive_max_pool2d"
:
_adaptive_max_pool_2d
(),
"aten::max_pool2d"
:
_maxpool_2d
(),
...
...
tests/python/frontend/pytorch/test_forward.py
View file @
e722301a
...
...
@@ -327,29 +327,39 @@ def test_forward_concatenate():
def
test_forward_relu
():
torch
.
set_grad_enabled
(
False
)
input_shape
=
[
10
,
10
]
class
ReLU1
(
Module
):
def
forward
(
self
,
*
args
):
return
torch
.
nn
.
ReLU
()(
args
[
0
])
input_data
=
torch
.
rand
(
input_shape
)
.
float
()
verify_model
(
ReLU1
()
.
float
()
.
eval
(),
input_data
=
input_data
)
verify_model
(
torch
.
nn
.
ReLU
()
.
eval
(),
input_data
=
input_data
)
def
test_forward_
adaptiveavgpool
():
def
test_forward_
prelu
():
torch
.
set_grad_enabled
(
False
)
input_shape
=
[
1
,
3
,
10
,
10
]
input_data
=
torch
.
rand
(
input_shape
)
.
float
()
verify_model
(
torch
.
nn
.
PReLU
(
num_parameters
=
3
)
.
eval
(),
input_data
=
input_data
)
class
AdaptiveAvgPool2D1
(
Module
):
def
forward
(
self
,
*
args
):
return
torch
.
nn
.
AdaptiveAvgPool2d
([
1
,
1
])(
args
[
0
])
def
test_forward_leakyrelu
():
torch
.
set_grad_enabled
(
False
)
input_shape
=
[
10
,
10
]
input_data
=
torch
.
rand
(
input_shape
)
.
float
()
verify_model
(
torch
.
nn
.
LeakyReLU
(
negative_slope
=
0.05
)
.
eval
(),
input_data
=
input_data
)
class
AdaptiveAvgPool2D2
(
Module
):
def
forward
(
self
,
*
args
):
return
torch
.
nn
.
AdaptiveAvgPool2d
([
10
,
10
])(
args
[
0
])
def
test_forward_elu
():
torch
.
set_grad_enabled
(
False
)
input_shape
=
[
10
,
10
]
input_data
=
torch
.
rand
(
input_shape
)
.
float
()
verify_model
(
torch
.
nn
.
ELU
(
alpha
=
1.3
)
.
eval
(),
input_data
=
input_data
)
def
test_forward_log_sigmoid
():
torch
.
set_grad_enabled
(
False
)
input_shape
=
[
10
,
10
]
input_data
=
torch
.
rand
(
input_shape
)
.
float
()
verify_model
(
AdaptiveAvgPool2D1
()
.
float
()
.
eval
(),
input_data
=
input_data
)
verify_model
(
AdaptiveAvgPool2D2
()
.
float
()
.
eval
(),
input_data
=
input_data
)
verify_model
(
torch
.
nn
.
LogSigmoid
()
.
eval
(),
input_data
=
input_data
)
def
test_forward_adaptiveavgpool
():
torch
.
set_grad_enabled
(
False
)
input_shape
=
[
1
,
3
,
10
,
10
]
input_data
=
torch
.
rand
(
input_shape
)
.
float
()
verify_model
(
torch
.
nn
.
AdaptiveAvgPool2d
([
1
,
1
])
.
eval
(),
input_data
=
input_data
)
verify_model
(
torch
.
nn
.
AdaptiveAvgPool2d
([
10
,
10
])
.
eval
(),
input_data
=
input_data
)
def
test_forward_maxpool2d
():
torch
.
set_grad_enabled
(
False
)
...
...
@@ -406,28 +416,19 @@ def test_forward_avgpool():
torch
.
set_grad_enabled
(
False
)
input_shape
=
[
1
,
3
,
10
,
10
]
class
AvgPool2D1
(
Module
):
def
forward
(
self
,
*
args
):
return
torch
.
nn
.
AvgPool2d
(
kernel_size
=
[
10
,
10
])(
args
[
0
])
class
AvgPool2D2
(
Module
):
def
forward
(
self
,
*
args
):
return
torch
.
nn
.
functional
.
avg_pool2d
(
args
[
0
],
kernel_size
=
[
10
,
10
])
input_data
=
torch
.
rand
(
input_shape
)
.
float
()
verify_model
(
AvgPool2D1
()
.
float
(
)
.
eval
(),
input_data
=
input_data
)
verify_model
(
torch
.
nn
.
AvgPool2d
(
kernel_size
=
[
10
,
10
]
)
.
eval
(),
input_data
=
input_data
)
verify_model
(
AvgPool2D2
()
.
float
()
.
eval
(),
input_data
=
input_data
)
def
test_forward_hardtanh
():
torch
.
set_grad_enabled
(
False
)
input_shape
=
[
10
]
class
HardTanh1
(
Module
):
def
forward
(
self
,
*
args
):
return
torch
.
nn
.
Hardtanh
()(
args
[
0
])
input_data
=
torch
.
rand
(
input_shape
)
.
float
()
verify_model
(
HardTanh1
()
.
float
()
.
eval
(),
input_data
=
input_data
)
verify_model
(
torch
.
nn
.
Hardtanh
()
.
eval
(),
input_data
=
input_data
)
def
test_forward_conv
():
torch
.
set_grad_enabled
(
False
)
...
...
@@ -482,13 +483,8 @@ def test_forward_conv_transpose():
def
test_forward_threshold
():
torch
.
set_grad_enabled
(
False
)
input_shape
=
[
1
,
3
]
class
Threshold1
(
Module
):
def
forward
(
self
,
*
args
):
return
torch
.
nn
.
Threshold
(
0
,
0
)(
args
[
0
])
input_data
=
torch
.
rand
(
input_shape
)
.
float
()
verify_model
(
Threshold1
(
)
.
float
()
.
eval
(),
input_data
=
input_data
)
verify_model
(
torch
.
nn
.
Threshold
(
0
,
0
)
.
float
()
.
eval
(),
input_data
=
input_data
)
def
test_forward_contiguous
():
torch
.
set_grad_enabled
(
False
)
...
...
@@ -595,13 +591,8 @@ def test_forward_logsoftmax():
def
test_forward_sigmoid
():
torch
.
set_grad_enabled
(
False
)
input_shape
=
[
1
,
3
,
10
,
10
]
class
Sigmoid1
(
Module
):
def
forward
(
self
,
*
args
):
return
torch
.
nn
.
Sigmoid
()(
args
[
0
])
input_data
=
torch
.
rand
(
input_shape
)
.
float
()
verify_model
(
Sigmoid1
()
.
float
()
.
eval
(),
input_data
=
input_data
)
verify_model
(
torch
.
nn
.
Sigmoid
()
.
eval
(),
input_data
=
input_data
)
def
test_forward_dense
():
torch
.
set_grad_enabled
(
False
)
...
...
@@ -1076,6 +1067,10 @@ if __name__ == "__main__":
test_forward_unsqueeze
()
test_forward_concatenate
()
test_forward_relu
()
test_forward_prelu
()
test_forward_leakyrelu
()
test_forward_elu
()
test_forward_log_sigmoid
()
test_forward_adaptiveavgpool
()
test_forward_maxpool2d
()
test_forward_maxpool1d
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment