Commit e6806115 by Ina Dobreva Committed by Zhi

Add test for the qnn_add operator (#4282)

* Add test for the qnn_add operator

The tests use fake quant approach so until the tf session tensors remain in float32.
The test data has to be passed in uint8 because of how the tflite/tvm comparison works.
Abs tolerance up to 1 is allowed for the qnn results. For now input_stats are hardcoded
assuming the tests for the other qnn ops will pass the input data in the same range.

* Separate qnn uint8 test function from the fp32 elemwise tests

Isolate qnn uint8 elemwise tests
Remove blank lines
parent dddb0ed0
...@@ -122,7 +122,7 @@ def run_tflite_graph(tflite_model_buf, input_data): ...@@ -122,7 +122,7 @@ def run_tflite_graph(tflite_model_buf, input_data):
def compare_tflite_with_tvm(in_data, in_name, input_tensors, def compare_tflite_with_tvm(in_data, in_name, input_tensors,
output_tensors, init_global_variables=False, out_names=None): output_tensors, init_global_variables=False, out_names=None, quantized=False):
"""Generic function to generate and compare TFLite and TVM output""" """Generic function to generate and compare TFLite and TVM output"""
in_data = convert_to_list(in_data) in_data = convert_to_list(in_data)
in_name = convert_to_list(in_name) in_name = convert_to_list(in_name)
...@@ -137,6 +137,17 @@ def compare_tflite_with_tvm(in_data, in_name, input_tensors, ...@@ -137,6 +137,17 @@ def compare_tflite_with_tvm(in_data, in_name, input_tensors,
# convert to tflite model # convert to tflite model
converter = interpreter_wrapper.TFLiteConverter.from_session( converter = interpreter_wrapper.TFLiteConverter.from_session(
sess, input_tensors, output_tensors) sess, input_tensors, output_tensors)
if quantized:
converter.inference_type = tf.lite.constants.QUANTIZED_UINT8
input_arrays = converter.get_input_arrays()
input_stats = {}
# hardcode the mean_values and std_dev_values (m,s) to be the same for all inputs
# s = 255/(fmax-fmin); m = -fmin*s (the zero point)
for i in input_arrays:
input_stats[i] = (128., 1.275)
converter.quantized_input_stats = input_stats
tflite_model_buffer = converter.convert() tflite_model_buffer = converter.convert()
tflite_output = run_tflite_graph(tflite_model_buffer, in_data) tflite_output = run_tflite_graph(tflite_model_buffer, in_data)
...@@ -148,6 +159,11 @@ def compare_tflite_with_tvm(in_data, in_name, input_tensors, ...@@ -148,6 +159,11 @@ def compare_tflite_with_tvm(in_data, in_name, input_tensors,
tvm_output = run_tvm_graph(tflite_model_buffer, in_data, in_node, target=device, tvm_output = run_tvm_graph(tflite_model_buffer, in_data, in_node, target=device,
num_output=len(out_names), out_names=out_names) num_output=len(out_names), out_names=out_names)
if quantized:
for i in range(len(tflite_output)):
# allow absolute tolerance of 1 in the quantized results
tvm.testing.assert_allclose(tflite_output[i], tvm_output[i], atol=1, rtol=1e-5)
else:
for i in range(len(tflite_output)): for i in range(len(tflite_output)):
tvm.testing.assert_allclose(tflite_output[i], tvm_output[i], atol=1e-5, rtol=1e-5) tvm.testing.assert_allclose(tflite_output[i], tvm_output[i], atol=1e-5, rtol=1e-5)
...@@ -545,34 +561,53 @@ def test_forward_concatenation(): ...@@ -545,34 +561,53 @@ def test_forward_concatenation():
# Element-wise # Element-wise
# --- # ---
def _test_elemwise(math_op, data, fused_activation_function=None): def _test_elemwise(math_op, data, fused_activation_function=None, quantized=False):
""" One iteration of elemwise """ """ One iteration of elemwise """
assert len(data) == 2 assert len(data) == 2
# Test with two tensors # Test with two tensors
with tf.Graph().as_default(): with tf.Graph().as_default():
in_data = [array_ops.placeholder(shape=data[0].shape, dtype=data[0].dtype, name='in_0'), in_data = [array_ops.placeholder(shape=data[0].shape, dtype='float32', name='in_0'),
array_ops.placeholder(shape=data[1].shape, dtype=data[1].dtype, name='in_1')] array_ops.placeholder(shape=data[1].shape, dtype='float32', name='in_1')]
if quantized:
# fake_quant will keep the tensors in float32 until the conversion in the session
inq_data = [tf.quantization.fake_quant_with_min_max_args(in_data[0], min=-100, max=100, name="inq_0"),
tf.quantization.fake_quant_with_min_max_args(in_data[1], min=-100, max=100, name="inq_1")]
out = math_op(inq_data[0], inq_data[1])
out = with_fused_activation_function(out, fused_activation_function)
out = tf.quantization.fake_quant_with_min_max_args(out, min=-200, max=200, name="out")
compare_tflite_with_tvm(data, ['inq_0:0', 'inq_1:0'], inq_data, [out], quantized=True)
else:
out = math_op(in_data[0], in_data[1]) out = math_op(in_data[0], in_data[1])
out = with_fused_activation_function(out, fused_activation_function) out = with_fused_activation_function(out, fused_activation_function)
compare_tflite_with_tvm(data, ['in_0:0', 'in_1:0'], in_data, [out]) compare_tflite_with_tvm(data, ['in_0:0', 'in_1:0'], in_data, [out])
# Test with tensor and constant # Test with tensor and constant
with tf.Graph().as_default(): with tf.Graph().as_default():
in_data = [array_ops.placeholder(shape=data[0].shape, dtype=data[0].dtype, name='in')] in_data = [array_ops.placeholder(shape=data[0].shape, dtype='float32', name='in_0')]
if quantized:
inq_data = [tf.quantization.fake_quant_with_min_max_args(in_data[0], min=-100, max=100, name="inq_0")]
inq_const = tf.quantization.fake_quant_with_min_max_args(data[1], min=-100, max=100, name="const_tensor")
# the 2nd tensor is treated as constant and directly added as part of the operation
out = math_op(inq_data, ops.convert_to_tensor(inq_const, dtype='float32', name='inq_const'))
out = with_fused_activation_function(out, fused_activation_function)
out = tf.quantization.fake_quant_with_min_max_args(out, min=-200, max=200, name="out")
compare_tflite_with_tvm(data[0], ['inq_0:0'], inq_data, [out], quantized=True)
else:
out = math_op(in_data[0], ops.convert_to_tensor(data[1], dtype=data[1].dtype)) out = math_op(in_data[0], ops.convert_to_tensor(data[1], dtype=data[1].dtype))
out = with_fused_activation_function(out, fused_activation_function) out = with_fused_activation_function(out, fused_activation_function)
compare_tflite_with_tvm([data[0]], ['in:0'], in_data, [out]) compare_tflite_with_tvm(data[0], ['in_0:0'], in_data, [out])
####################################################################### #######################################################################
# Add # Add
# --- # ---
def _test_add(data, fused_activation_function=None): def _test_add(data, fused_activation_function=None, quantized=False):
""" One iteration of add """ """ One iteration of add """
return _test_elemwise(math_ops.add, data, fused_activation_function) return _test_elemwise(math_ops.add, data, fused_activation_function, quantized)
####################################################################### #######################################################################
# Subtract # Subtract
...@@ -633,8 +668,13 @@ def _test_forward_elemwise(testop): ...@@ -633,8 +668,13 @@ def _test_forward_elemwise(testop):
testop([np.arange(3.0, dtype=np.float32).reshape((1, 3)), testop([np.arange(3.0, dtype=np.float32).reshape((1, 3)),
np.arange(1.0, 4.0, dtype=np.float32).reshape((1, 3))]) np.arange(1.0, 4.0, dtype=np.float32).reshape((1, 3))])
def _test_forward_elemwise_quantized(testop):
testop([np.array(np.random.uniform(0, 255, (3, 6)), dtype=np.uint8),
np.array(np.random.uniform(0, 255, (3, 6)), dtype=np.uint8)], quantized=True)
def test_all_elemwise(): def test_all_elemwise():
_test_forward_elemwise(_test_add) _test_forward_elemwise(_test_add)
_test_forward_elemwise_quantized(_test_add)
_test_forward_elemwise(partial(_test_add, fused_activation_function="RELU")) _test_forward_elemwise(partial(_test_add, fused_activation_function="RELU"))
_test_forward_elemwise(partial(_test_add, fused_activation_function="RELU6")) _test_forward_elemwise(partial(_test_add, fused_activation_function="RELU6"))
_test_forward_elemwise(_test_sub) _test_forward_elemwise(_test_sub)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment