Commit e2970b22 by Ehsan M. Kermani Committed by Nick Hynes

[RUST][FRONTEND] Add rust frontend v0.1 (#2292)

parent 18b2ebac
max_width = 100
hard_tabs = false
tab_spaces = 2
tab_spaces = 4
newline_style = "Auto"
use_small_heuristics = "Default"
indent_style = "Block"
......@@ -38,7 +38,7 @@ trailing_comma = "Vertical"
match_block_trailing_comma = false
blank_lines_upper_bound = 1
blank_lines_lower_bound = 0
edition = "2015"
edition = "2018"
merge_derives = true
use_try_shorthand = true
use_field_init_shorthand = false
......@@ -50,8 +50,8 @@ unstable_features = false
disable_all_formatting = false
skip_children = false
hide_parse_errors = false
error_on_line_overflow = false
error_on_unformatted = false
error_on_line_overflow = true
error_on_unformatted = true
report_todo = "Never"
report_fixme = "Never"
ignore = []
......
[package]
name = "tvm"
version = "0.1.0"
license = "Apache-2.0"
description = "TVM Rust runtime"
repository = "https://github.com/dmlc/tvm"
readme = "README.md"
keywords = ["tvm", "nnvm"]
categories = ["api-bindings", "science"]
authors = ["TVM Contributors"]
[features]
default = ["nom/std"]
sgx = ["nom/alloc"]
[dependencies]
bounded-spsc-queue = "0.4.0"
error-chain = { version = "0.12.0", default-features = false }
itertools = "0.7.8"
lazy_static = "1.1.0"
ndarray = "0.11.2"
nom = {version = "4.0.0", default-features = false }
serde = "1.0.59"
serde_derive = "1.0.79"
serde_json = "1.0.17"
[target.'cfg(not(target_env = "sgx"))'.dependencies]
num_cpus = "1.8.0"
[workspace]
members = [
"common",
"runtime",
"runtime/tests/test_tvm_basic",
"runtime/tests/test_nnvm",
"frontend",
"frontend/tests/basics",
"frontend/tests/callback",
"frontend/examples/resnet"
]
target
**/*.rs.bk
Cargo.lock
/tvm-sys/src/bindgen.rs
[package]
name = "tvm-common"
version = "0.1.0"
authors = ["TVM Contributors"]
license = "Apache-2.0"
[features]
runtime = []
frontend = ["tvm-sys"]
[dependencies]
error-chain = { version = "0.12.0", default-features = false }
tvm-sys = { version = "0.1.0", path = "tvm-sys", optional = true }
//! Error types for `TVMArgValue` and `TVMRetValue` conversions.
error_chain! {
errors {
TryFromTVMArgValueError(expected: String, actual: String) {
description("mismatched types while converting from TVMArgValue")
display("expected `{}` but given `{}`", expected, actual)
}
TryFromTVMRetValueError(expected: String, actual: String) {
description("mismatched types while downcasting TVMRetValue")
display("invalid downcast: expected `{}` but given `{}`", expected, actual)
}
}
}
//! This crate contains the refactored basic components required
//! for `runtime` and `frontend` TVM crates.
#![crate_name = "tvm_common"]
#![recursion_limit = "1024"]
#![allow(non_camel_case_types, unused_imports)]
#![feature(box_syntax, try_from)]
#[macro_use]
extern crate error_chain;
/// Unified ffi module for both runtime and frontend crates.
pub mod ffi {
#![allow(non_camel_case_types, non_snake_case, non_upper_case_globals, unused)]
#[cfg(feature = "frontend")]
pub extern crate tvm_sys as ts;
#[cfg(feature = "runtime")]
pub mod runtime {
use std::os::raw::{c_char, c_int, c_void};
include!(concat!(env!("CARGO_MANIFEST_DIR"), "/src/c_runtime_api.rs"));
pub type BackendPackedCFunc = extern "C" fn(
args: *const TVMValue,
type_codes: *const c_int,
num_args: c_int,
) -> c_int;
}
}
pub mod errors;
pub mod ty;
pub mod value;
pub use errors::*;
pub use ty::TVMTypeCode;
pub use value::{TVMArgValue, TVMRetValue, TVMValue};
//! This module containes `TVMTypeCode` and `TVMType` with some conversion methods.
//!
//! # Example
//!
//! ```
//! let dtype = TVMType::from("float");
//! println!("dtype is: {}", dtype);
//! ```
use std::{
ffi::{CStr, CString},
fmt::{self, Display, Formatter},
};
/// TVM type codes.
#[repr(u32)]
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum TVMTypeCode {
kDLInt = 0,
kDLUInt = 1,
kDLFloat = 2,
kHandle = 3,
kNull = 4,
kTVMType = 5,
kTVMContext = 6,
kArrayHandle = 7,
kNodeHandle = 8,
kModuleHandle = 9,
kFuncHandle = 10,
kStr = 11,
kBytes = 12,
kNDArrayContainer = 13,
}
impl Default for TVMTypeCode {
fn default() -> Self {
TVMTypeCode::kDLInt
}
}
impl From<TVMTypeCode> for i64 {
fn from(arg: TVMTypeCode) -> i64 {
match arg {
TVMTypeCode::kDLInt => 0,
TVMTypeCode::kDLUInt => 1,
TVMTypeCode::kDLFloat => 2,
TVMTypeCode::kHandle => 3,
TVMTypeCode::kNull => 4,
TVMTypeCode::kTVMType => 5,
TVMTypeCode::kTVMContext => 6,
TVMTypeCode::kArrayHandle => 7,
TVMTypeCode::kNodeHandle => 8,
TVMTypeCode::kModuleHandle => 9,
TVMTypeCode::kFuncHandle => 10,
TVMTypeCode::kStr => 11,
TVMTypeCode::kBytes => 12,
TVMTypeCode::kNDArrayContainer => 13,
}
}
}
impl Into<TVMTypeCode> for i64 {
fn into(self) -> TVMTypeCode {
match self {
0 => TVMTypeCode::kDLInt,
1 => TVMTypeCode::kDLUInt,
2 => TVMTypeCode::kDLFloat,
3 => TVMTypeCode::kHandle,
4 => TVMTypeCode::kNull,
5 => TVMTypeCode::kTVMType,
6 => TVMTypeCode::kTVMContext,
7 => TVMTypeCode::kArrayHandle,
8 => TVMTypeCode::kNodeHandle,
9 => TVMTypeCode::kModuleHandle,
10 => TVMTypeCode::kFuncHandle,
11 => TVMTypeCode::kStr,
12 => TVMTypeCode::kBytes,
13 => TVMTypeCode::kNDArrayContainer,
_ => unreachable!(),
}
}
}
impl Display for TVMTypeCode {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(
f,
"{}",
match self {
TVMTypeCode::kDLInt => "int",
TVMTypeCode::kDLUInt => "uint",
TVMTypeCode::kDLFloat => "float",
TVMTypeCode::kHandle => "handle",
TVMTypeCode::kNull => "null",
TVMTypeCode::kTVMType => "TVM type",
TVMTypeCode::kTVMContext => "TVM context",
TVMTypeCode::kArrayHandle => "Array handle",
TVMTypeCode::kNodeHandle => "Node handle",
TVMTypeCode::kModuleHandle => "Module handle",
TVMTypeCode::kFuncHandle => "Function handle",
TVMTypeCode::kStr => "string",
TVMTypeCode::kBytes => "bytes",
TVMTypeCode::kNDArrayContainer => "ndarray container",
}
)
}
}
macro_rules! impl_prim_type {
($type:ty, $variant:ident) => {
impl<'a> From<&'a $type> for TVMTypeCode {
fn from(_arg: &$type) -> Self {
TVMTypeCode::$variant
}
}
impl<'a> From<&'a mut $type> for TVMTypeCode {
fn from(_arg: &mut $type) -> Self {
TVMTypeCode::$variant
}
}
};
}
impl_prim_type!(usize, kDLInt);
impl_prim_type!(i64, kDLInt);
impl_prim_type!(i32, kDLInt);
impl_prim_type!(i16, kDLInt);
impl_prim_type!(i8, kDLInt);
impl_prim_type!(u64, kDLUInt);
impl_prim_type!(u32, kDLUInt);
impl_prim_type!(u16, kDLUInt);
impl_prim_type!(u8, kDLUInt);
impl_prim_type!(f64, kDLFloat);
impl_prim_type!(f32, kDLFloat);
impl_prim_type!(str, kStr);
impl_prim_type!(CStr, kStr);
impl_prim_type!(String, kStr);
impl_prim_type!(CString, kStr);
impl_prim_type!([u8], kBytes);
[package]
name = "tvm-sys"
version = "0.1.0"
authors = ["TVM Contributors"]
license = "Apache-2.0"
description = "Raw C API"
[build-dependencies]
bindgen = "0.37.4"
extern crate bindgen;
use std::path::PathBuf;
fn main() {
println!("cargo:rerun-if-env-changed=TVM_HOME");
println!("cargo:rustc-link-lib=dylib=tvm_runtime");
println!("cargo:rustc-link-search={}/build", env!("TVM_HOME"));
let bindings = bindgen::Builder::default()
.header(format!(
"{}/include/tvm/runtime/c_runtime_api.h",
env!("TVM_HOME")
))
.clang_arg(format!("-I{}/3rdparty/dlpack/include/", env!("TVM_HOME")))
.blacklist_type("max_align_t") // @see rust-bindgen#550
.layout_tests(false)
.derive_partialeq(true)
.derive_eq(true)
.generate()
.expect("unable to generate bindings");
bindings
.write_to_file(PathBuf::from("src/bindgen.rs"))
.expect("can not write the bindings!");
}
#![allow(
non_camel_case_types,
non_snake_case,
non_upper_case_globals,
dead_code,
improper_ctypes
)]
include!("bindgen.rs");
target
**/*.rs.bk
Cargo.lock
/tests/basics/add_*
/examples/resnet/deploy_*
/examples/resnet/*.png
/examples/resnet/synset.*
[package]
name = "tvm-frontend"
version = "0.1.0"
license = "Apache-2.0"
description = "Rust frontend support for TVM"
repository = "https://github.com/dmlc/tvm"
homepage = "https://github.com/dmlc/tvm"
readme = "README.md"
keywords = ["rust", "tvm", "nnvm"]
categories = ["api-bindings", "science"]
authors = ["TVM Contributors"]
[lib]
name = "tvm_frontend"
crate-type = ["dylib"]
[dependencies]
error-chain = "0.12.0"
lazy_static = "1.1.0"
ndarray = "0.12.1"
num-traits = "0.2"
tvm-common = { version = "0.1.0", path = "../common/", features = ["frontend"] }
[features]
blas = ["ndarray/blas"]
# TVM Runtime Frontend Support
This crate provides an idiomatic Rust API for [TVM](https://github.com/dmlc/tvm) runtime frontend. Currently this requires **Nightly Rust** and tested on `rustc 1.32.0-nightly`
## What Does This Crate Offer?
Here is a major workflow
1. Train your **Deep Learning** model using any major framework such as [PyTorch](https://pytorch.org/), [Apache MXNet](https://mxnet.incubator.apache.org/) or [TensorFlow](https://www.tensorflow.org/)
2. Use **TVM** to build optimized model artifacts on a supported context such as CPU, GPU, OpenCL and specialized accelerators.
3. Deploy your models using **Rust** :heart:
### Example: Deploy Image Classification from Pretrained Resnet18 on ImageNet1k
Please checkout [examples/resnet](examples/resnet) for the complete end-to-end example.
Here's a Python snippet for downloading and building a pretrained Resnet18 via Apache MXNet and TVM
```python
block = get_model('resnet18_v1', pretrained=True)
sym, params = nnvm.frontend.from_mxnet(block)
# add the softmax layer for prediction
net = nnvm.sym.softmax(sym)
# compile the model
with nnvm.compiler.build_config(opt_level=opt_level):
graph, lib, params = nnvm.compiler.build(
net, target, shape={"data": data_shape}, params=params)
# same the model artifacts
lib.save(os.path.join(target_dir, "deploy_lib.o"))
cc.create_shared(os.path.join(target_dir, "deploy_lib.so"),
[os.path.join(target_dir, "deploy_lib.o")])
with open(os.path.join(target_dir, "deploy_graph.json"), "w") as fo:
fo.write(graph.json())
with open(os.path.join(target_dir,"deploy_param.params"), "wb") as fo:
fo.write(nnvm.compiler.save_param_dict(params))
```
Now, we need to input the artifacts to create and run the *Graph Runtime* to detect our input cat image
![cat](https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true)
as demostrated in the following Rust snippet
```rust
let graph = fs::read_to_string("deploy_graph.json")?;
// load the built module
let lib = Module::load(&Path::new("deploy_lib.so"))?;
// get the global TVM graph runtime function
let runtime_create_fn = Function::get("tvm.graph_runtime.create", true).unwrap();
let runtime_create_fn_ret = call_packed!(
runtime_create_fn,
&graph,
&lib,
&ctx.device_type,
&ctx.device_id
)?;
// get graph runtime module
let graph_runtime_module: Module = runtime_create_fn_ret.try_into()?;
// get the registered `load_params` from runtime module
let ref load_param_fn = graph_runtime_module
.get_function("load_params", false)
.unwrap();
// parse parameters and convert to TVMByteArray
let params: Vec<u8> = fs::read("deploy_param.params")?;
let barr = TVMByteArray::from(&params);
// load the parameters
call_packed!(load_param_fn, &barr)?;
// get the set_input function
let ref set_input_fn = graph_runtime_module
.get_function("set_input", false)
.unwrap();
call_packed!(set_input_fn, "data", &input)?;
// get `run` function from runtime module
let ref run_fn = graph_runtime_module.get_function("run", false).unwrap();
// execute the run function. Note that it has no argument
call_packed!(run_fn,)?;
// prepare to get the output
let output_shape = &mut [1, 1000];
let output = empty(output_shape, TVMContext::cpu(0), TVMType::from("float32"));
// get the `get_output` function from runtime module
let ref get_output_fn = graph_runtime_module
.get_function("get_output", false)
.unwrap();
// execute the get output function
call_packed!(get_output_fn, &0, &output)?;
// flatten the output as Vec<f32>
let output = output.to_vec::<f32>()?;
```
and the model correctly predicts the input image as **tiger cat**.
## Installations
Please follow TVM [installations](https://docs.tvm.ai/install/index.html), `export TVM_HOME=/path/to/tvm` and add `libtvm_runtime` to your `LD_LIBRARY_PATH`.
*Note:* To run the end-to-end examples and tests, `tvm`, `nnvm` and `topi` need to be added to your `PYTHONPATH` or it's automatic via an Anaconda environment when it is installed individually.
## Supported TVM Functionalities
### Use TVM to Generate Shared Library
One can use the following Python snippet to generate `add_gpu.so` which add two vectors on GPU.
```python
import os
import tvm
from tvm.contrib import cc
def test_add(target_dir):
if not tvm.module.enabled("cuda"):
print(f"skip {__file__} because cuda is not enabled...")
return
n = tvm.var("n")
A = tvm.placeholder((n,), name='A')
B = tvm.placeholder((n,), name='B')
C = tvm.compute(A.shape, lambda i: A[i] + B[i], name="C")
s = tvm.create_schedule(C.op)
bx, tx = s[C].split(C.op.axis[0], factor=64)
s[C].bind(bx, tvm.thread_axis("blockIdx.x"))
s[C].bind(tx, tvm.thread_axis("threadIdx.x"))
fadd_cuda = tvm.build(s, [A, B, C], "cuda", target_host="llvm", name="myadd")
fadd_cuda.save(os.path.join(target_dir, "add_gpu.o"))
fadd_cuda.imported_modules[0].save(os.path.join(target_dir, "add_gpu.ptx"))
cc.create_shared(os.path.join(target_dir, "add_gpu.so"),
[os.path.join(target_dir, "add_gpu.o")])
if __name__ == "__main__":
import sys
if len(sys.argv) != 2:
sys.exit(-1)
test_add(sys.argv[1])
```
### Run the Generated Shared Library
The following code snippet demonstrates how to load and test the generated shared library (`add_gpu.so`) in Rust.
```rust
extern crate tvm_frontend as tvm;
use tvm::*;
fn main() {
let shape = &mut [2];
let mut data = vec![3f32, 4.0];
let mut arr = empty(shape, TVMContext::gpu(0), TVMType::from("float32"));
arr.copy_from_buffer(data.as_mut_slice());
let mut ret = empty(shape, TVMContext::gpu(0), TVMType::from("float32"));
let mut fadd = Module::load(&Path::new("add_gpu.so")).unwrap();
let fadd_dep = Module::load(&Path::new("add_gpu.ptx")).unwrap();
assert!(fadd.enabled("gpu"));
fadd.import_module(fadd_dep);
fadd.entry();
function::Builder::from(&mut fadd)
.arg(&arr)
.arg(&arr)
.set_output(&mut ret)?
.invoke()
.unwrap();
assert_eq!(ret.to_vec::<f32>().unwrap(), vec![6f32, 8.0]);
}
```
**Note:** it is required to instruct the `rustc` to link to the generated `add_gpu.so` in runtime, for example by
`cargo:rustc-link-search=native=add_gpu`.
See the tests and examples custom `build.rs` for more details.
### Convert and Register a Rust Function as a TVM Packed Function
One can use `register_global_func!` macro to convert and register a Rust
function of type `fn(&[TVMArgValue]) -> Result<TVMRetValue>` to a global TVM **packed function** as follows
```rust
#[macro_use]
extern crate tvm_frontend as tvm;
use std::convert::TryInto;
use tvm::*;
fn main() {
register_global_func! {
fn sum(args: &[TVMArgValue]) -> Result<TVMRetValue> {
let mut ret = 0f32;
let shape = &mut [2];
for arg in args.iter() {
let e = empty(shape, TVMContext::cpu(0), TVMType::from("float32"));
let arg: NDArray = arg.try_into()?;
let arr = arg.copy_to_ndarray(e).unwrap();
let rnd: ArrayD<f32> = ArrayD::try_from(&arr).unwrap();
ret += rnd.scalar_sum();
}
let ret_val = TVMRetValue::from(&ret);
Ok(ret_val)
}
}
let shape = &mut [2];
let mut data = vec![3f32, 4.0];
let mut arr = empty(shape, TVMContext::cpu(0), TVMType::from("float32"));
arr.copy_from_buffer(data.as_mut_slice());
let mut registered = function::Builder::default();
let ret: f64 = registered
.get_function("sum", true)
.arg(&arr)
.arg(&arr)
.invoke()
.unwrap()
.try_into()
.unwrap();
assert_eq!(ret, 14f64);
}
```
[package]
name = "resnet"
version = "0.0.0"
authors = ["TVM Contributors"]
license = "Apache-2.0"
build = "build.rs"
[dependencies]
ndarray = "0.12.1"
tvm-frontend = { path = "../../" }
image = "0.20.1"
csv = "1"
## Resnet example
This end-to-end example shows how to:
* build `Resnet 18` with `tvm` and `nnvm` from Python
* use the provided Rust frontend API to test for an input image
To run the example, first `tvm`, `nnvm` and `mxnet` must be installed for the python build. To install mxnet for cpu, run `pip install mxnet`
and to install `tvm` and `nnvm` with `llvm` follow the [TVM installation guide](https://docs.tvm.ai/install/index.html).
* **Build the example**: `cargo build`
To have a successful build, note that it is required to instruct Rust compiler to link to the compiled shared library, for example with
`println!("cargo:rustc-link-search=native={}", build_path)`. See the `build.rs` for more details.
* **Run the example**: `cargo run`
use std::process::Command;
fn main() {
let output = Command::new(concat!(env!("CARGO_MANIFEST_DIR"), "/src/build_resnet.py"))
.output()
.expect("Failed to execute command");
assert!(
std::path::Path::new(concat!(env!("CARGO_MANIFEST_DIR"), "/deploy_lib.o")).exists(),
"Could not prepare demo: {}",
String::from_utf8(output.stderr).unwrap().trim()
);
println!(
"cargo:rustc-link-search=native={}",
env!("CARGO_MANIFEST_DIR")
);
}
#!/usr/bin/env python3
import argparse
import csv
import logging
from os import path as osp
import sys
import numpy as np
import mxnet as mx
from mxnet.gluon.model_zoo.vision import get_model
from mxnet.gluon.utils import download
import tvm
from tvm.contrib import graph_runtime, cc
import nnvm
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
parser = argparse.ArgumentParser(description='Resnet build example')
aa = parser.add_argument
aa('--batch-size', type=int, default=1, help='input image batch size')
aa('--opt-level', type=int, default=3,
help='level of optimization. 0 is unoptimized and 3 is the highest level')
aa('--target', type=str, default='llvm', help='target context for compilation')
aa('--image-shape', type=str, default='3,224,224', help='input image dimensions')
aa('--image-name', type=str, default='cat.png', help='name of input image to download')
args = parser.parse_args()
target_dir = osp.dirname(osp.dirname(osp.realpath(__file__)))
batch_size = args.batch_size
opt_level = args.opt_level
target = tvm.target.create(args.target)
image_shape = tuple(map(int, args.image_shape.split(",")))
data_shape = (batch_size,) + image_shape
def build(target_dir):
""" Compiles resnet18 with TVM"""
deploy_lib = osp.join(target_dir, 'deploy_lib.o')
if osp.exists(deploy_lib):
return
# download the pretrained resnet18 trained on imagenet1k dataset for
# image classification task
block = get_model('resnet18_v1', pretrained=True)
sym, params = nnvm.frontend.from_mxnet(block)
# add the softmax layer for prediction
net = nnvm.sym.softmax(sym)
# compile the model
with nnvm.compiler.build_config(opt_level=opt_level):
graph, lib, params = nnvm.compiler.build(
net, target, shape={"data": data_shape}, params=params)
# save the model artifacts
lib.save(deploy_lib)
cc.create_shared(osp.join(target_dir, "deploy_lib.so"),
[osp.join(target_dir, "deploy_lib.o")])
with open(osp.join(target_dir, "deploy_graph.json"), "w") as fo:
fo.write(graph.json())
with open(osp.join(target_dir,"deploy_param.params"), "wb") as fo:
fo.write(nnvm.compiler.save_param_dict(params))
def download_img_labels():
""" Download an image and imagenet1k class labels for test"""
img_name = 'cat.png'
synset_url = ''.join(['https://gist.githubusercontent.com/zhreshold/',
'4d0b62f3d01426887599d4f7ede23ee5/raw/',
'596b27d23537e5a1b5751d2b0481ef172f58b539/',
'imagenet1000_clsid_to_human.txt'])
synset_name = 'synset.txt'
download('https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true', img_name)
download(synset_url, synset_name)
with open(synset_name) as fin:
synset = eval(fin.read())
with open("synset.csv", "w") as fout:
w = csv.writer(fout)
w.writerows(synset.items())
def test_build(target_dir):
""" Sanity check with random input"""
graph = open(osp.join(target_dir, "deploy_graph.json")).read()
lib = tvm.module.load(osp.join(target_dir, "deploy_lib.so"))
params = bytearray(open(osp.join(target_dir,"deploy_param.params"), "rb").read())
input_data = tvm.nd.array(np.random.uniform(size=data_shape).astype("float32"))
ctx = tvm.cpu()
module = graph_runtime.create(graph, lib, ctx)
module.load_params(params)
module.run(data=input_data)
out = module.get_output(0).asnumpy()
if __name__ == '__main__':
logger.info("building the model")
build(target_dir)
logger.info("build was successful")
logger.info("test the build artifacts")
test_build(target_dir)
logger.info("test was successful")
download_img_labels()
logger.info("image and synset downloads are successful")
#![feature(try_from)]
extern crate csv;
extern crate image;
extern crate ndarray;
extern crate tvm_frontend as tvm;
use std::{
collections::HashMap,
convert::TryInto,
fs::{self, File},
path::Path,
};
use image::{FilterType, GenericImageView};
use ndarray::{Array, ArrayD, Axis};
use tvm::*;
fn main() {
let ctx = TVMContext::cpu(0);
let img = image::open(concat!(env!("CARGO_MANIFEST_DIR"), "/cat.png")).unwrap();
println!("original image dimensions: {:?}", img.dimensions());
// for bigger size images, one needs to first resize to 256x256
// with `img.resize_exact` method and then `image.crop` to 224x224
let img = img.resize(224, 224, FilterType::Nearest).to_rgb();
println!("resized image dimensions: {:?}", img.dimensions());
let mut pixels: Vec<f32> = vec![];
for pixel in img.pixels() {
let tmp = pixel.data;
// normalize the RGB channels using mean, std of imagenet1k
let tmp = [
(tmp[0] as f32 - 123.0) / 58.395, // R
(tmp[1] as f32 - 117.0) / 57.12, // G
(tmp[2] as f32 - 104.0) / 57.375, // B
];
for e in &tmp {
pixels.push(*e);
}
}
let arr = Array::from_shape_vec((224, 224, 3), pixels).unwrap();
let arr: ArrayD<f32> = arr.permuted_axes([2, 0, 1]).into_dyn();
// make arr shape as [1, 3, 224, 224] acceptable to resnet
let arr = arr.insert_axis(Axis(0));
// create input tensor from rust's ndarray
let input =
NDArray::from_rust_ndarray(&arr, TVMContext::cpu(0), TVMType::from("float32")).unwrap();
println!(
"input size is {:?}",
input.shape().expect("cannot get the input shape")
);
let graph =
fs::read_to_string(concat!(env!("CARGO_MANIFEST_DIR"), "/deploy_graph.json")).unwrap();
// load the built module
let lib = Module::load(&Path::new(concat!(
env!("CARGO_MANIFEST_DIR"),
"/deploy_lib.so"
)))
.unwrap();
// get the global TVM graph runtime function
let runtime_create_fn = Function::get("tvm.graph_runtime.create", true).unwrap();
let runtime_create_fn_ret = call_packed!(
runtime_create_fn,
&graph,
&lib,
&ctx.device_type,
&ctx.device_id
)
.unwrap();
// get graph runtime module
let graph_runtime_module: Module = runtime_create_fn_ret.try_into().unwrap();
// get the registered `load_params` from runtime module
let ref load_param_fn = graph_runtime_module
.get_function("load_params", false)
.unwrap();
// parse parameters and convert to TVMByteArray
let params: Vec<u8> =
fs::read(concat!(env!("CARGO_MANIFEST_DIR"), "/deploy_param.params")).unwrap();
let barr = TVMByteArray::from(&params);
// load the parameters
call_packed!(load_param_fn, &barr).unwrap();
// get the set_input function
let ref set_input_fn = graph_runtime_module
.get_function("set_input", false)
.unwrap();
call_packed!(set_input_fn, "data", &input).unwrap();
// get `run` function from runtime module
let ref run_fn = graph_runtime_module.get_function("run", false).unwrap();
// execute the run function. Note that it has no argument
call_packed!(run_fn,).unwrap();
// prepare to get the output
let output_shape = &mut [1, 1000];
let output = NDArray::empty(output_shape, TVMContext::cpu(0), TVMType::from("float32"));
// get the `get_output` function from runtime module
let ref get_output_fn = graph_runtime_module
.get_function("get_output", false)
.unwrap();
// execute the get output function
call_packed!(get_output_fn, &0, &output).unwrap();
// flatten the output as Vec<f32>
let output = output.to_vec::<f32>().unwrap();
// find the maximum entry in the output and its index
let mut argmax = -1;
let mut max_prob = 0.;
for i in 0..output.len() {
if output[i] > max_prob {
max_prob = output[i];
argmax = i as i32;
}
}
// create a hash map of (class id, class name)
let mut synset: HashMap<i32, String> = HashMap::new();
let file = File::open("synset.csv").unwrap();
let mut rdr = csv::ReaderBuilder::new()
.has_headers(true)
.from_reader(file);
for result in rdr.records() {
let record = result.unwrap();
let id: i32 = record[0].parse().unwrap();
let cls = record[1].to_string();
synset.insert(id, cls);
}
println!(
"input image belongs to the class `{}` with probability {}",
synset
.get(&argmax)
.expect("cannot find the class id for argmax"),
max_prob
);
}
//! Provides [`TVMByteArray`] used for passing the model parameters
//! (stored as byte-array) to a runtime module.
//!
//! For more detail, please see the example `resnet` in `examples` repository.
use std::os::raw::c_char;
use crate::ts;
/// A struct holding TVM byte-array.
///
/// ## Example
///
/// ```
/// let v = b"hello".to_vec();
/// let barr = TVMByteArray::from(&v);
/// assert_eq!(barr.len(), v.len());
/// assert_eq!(barr.data(), vec![104i8, 101, 108, 108, 111]);
/// ```
#[derive(Debug, Clone)]
pub struct TVMByteArray {
pub(crate) inner: ts::TVMByteArray,
}
impl TVMByteArray {
pub(crate) fn new(barr: ts::TVMByteArray) -> TVMByteArray {
TVMByteArray { inner: barr }
}
/// Gets the length of the underlying byte-array
pub fn len(&self) -> usize {
self.inner.size
}
/// Gets the underlying byte-array as `Vec<i8>`
pub fn data(&self) -> Vec<i8> {
unsafe {
let sz = self.len();
let mut ret_buf = Vec::with_capacity(sz);
ret_buf.set_len(sz);
self.inner.data.copy_to(ret_buf.as_mut_ptr(), sz);
ret_buf
}
}
}
impl<'a> From<&'a Vec<u8>> for TVMByteArray {
fn from(arg: &Vec<u8>) -> Self {
let barr = ts::TVMByteArray {
data: arg.as_ptr() as *const c_char,
size: arg.len(),
};
TVMByteArray::new(barr)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn convert() {
let v = vec![1u8, 2, 3];
let barr = TVMByteArray::from(&v);
assert_eq!(barr.len(), v.len());
assert_eq!(barr.data(), vec![1i8, 2, 3]);
let v = b"hello".to_vec();
let barr = TVMByteArray::from(&v);
assert_eq!(barr.len(), v.len());
assert_eq!(barr.data(), vec![104i8, 101, 108, 108, 111]);
}
}
//! Provides [`TVMContext`] and related device specific queries.
//!
//! Create a new context by device type (cpu is 1) and device id.
//!
//! # Example
//!
//! ```
//! let ctx = TVMContext::new(1, 0);
//! let cpu0 = TVMContext::cpu(0);
//! assert_eq!(ctx, cpu0);
//! ```
//!
//! Or from a supported device name.
//!
//! ```
//! let cpu0 = TVMContext::from("cpu");
//! println!("{}", cpu0);
//! ```
use std::{
fmt::{self, Display, Formatter},
os::raw::c_void,
ptr,
};
use crate::{function, ts, Result};
/// Device type can be from a supported device name. See the supported devices
/// in [TVM](https://github.com/dmlc/tvm).
///
/// ## Example
///
/// ```
/// let cpu = TVMDeviceType::from("cpu");
/// println!("device is: {}", cpu);
///```
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct TVMDeviceType(pub usize);
impl Default for TVMDeviceType {
/// default device is cpu.
fn default() -> Self {
TVMDeviceType(1)
}
}
impl From<TVMDeviceType> for ts::DLDeviceType {
fn from(device_type: TVMDeviceType) -> Self {
match device_type.0 {
1 => ts::DLDeviceType_kDLCPU,
2 => ts::DLDeviceType_kDLGPU,
3 => ts::DLDeviceType_kDLCPUPinned,
4 => ts::DLDeviceType_kDLOpenCL,
7 => ts::DLDeviceType_kDLVulkan,
8 => ts::DLDeviceType_kDLMetal,
9 => ts::DLDeviceType_kDLVPI,
10 => ts::DLDeviceType_kDLROCM,
12 => ts::DLDeviceType_kDLExtDev,
_ => panic!("device type not found!"),
}
}
}
impl From<ts::DLDeviceType> for TVMDeviceType {
fn from(device_type: ts::DLDeviceType) -> Self {
match device_type {
ts::DLDeviceType_kDLCPU => TVMDeviceType(1),
ts::DLDeviceType_kDLGPU => TVMDeviceType(2),
ts::DLDeviceType_kDLCPUPinned => TVMDeviceType(3),
ts::DLDeviceType_kDLOpenCL => TVMDeviceType(4),
ts::DLDeviceType_kDLVulkan => TVMDeviceType(7),
ts::DLDeviceType_kDLMetal => TVMDeviceType(8),
ts::DLDeviceType_kDLVPI => TVMDeviceType(9),
ts::DLDeviceType_kDLROCM => TVMDeviceType(10),
ts::DLDeviceType_kDLExtDev => TVMDeviceType(12),
_ => panic!("device type not found!"),
}
}
}
impl Display for TVMDeviceType {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(
f,
"{}",
match self {
TVMDeviceType(1) => "cpu",
TVMDeviceType(2) => "gpu",
TVMDeviceType(3) => "cpu_pinned",
TVMDeviceType(4) => "opencl",
TVMDeviceType(8) => "meta",
TVMDeviceType(9) => "vpi",
TVMDeviceType(10) => "rocm",
TVMDeviceType(_) => "rpc",
}
)
}
}
impl<'a> From<&'a str> for TVMDeviceType {
fn from(type_str: &'a str) -> Self {
match type_str {
"cpu" => TVMDeviceType(1),
"llvm" => TVMDeviceType(1),
"stackvm" => TVMDeviceType(1),
"gpu" => TVMDeviceType(2),
"cuda" => TVMDeviceType(2),
"nvptx" => TVMDeviceType(2),
"cl" => TVMDeviceType(4),
"opencl" => TVMDeviceType(4),
"metal" => TVMDeviceType(8),
"vpi" => TVMDeviceType(9),
"rocm" => TVMDeviceType(10),
_ => panic!("{:?} not supported!", type_str),
}
}
}
/// Represents the underlying device context. Default is cpu.
///
/// ## Examples
///
/// ```
/// let ctx = TVMContext::from("gpu");
/// assert!(ctx.exist());
///
/// ```
///
/// It is possible to query the underlying context as follows
///
/// ```
/// println!("maximun threads per block: {}", ctx.max_threads_per_block());
/// println!("compute version: {}", ctx.compute_version());
/// ```
#[derive(Debug, Default, Clone, Copy, Hash, PartialEq, Eq)]
pub struct TVMContext {
/// Supported device types
pub device_type: TVMDeviceType,
/// Device id
pub device_id: usize,
}
impl TVMContext {
/// Creates context from device type and id.
pub fn new(device_type: TVMDeviceType, device_id: usize) -> Self {
TVMContext {
device_type: device_type,
device_id: device_id,
}
}
}
macro_rules! impl_ctxs {
($(($ctx:ident, $dldevt:expr));+) => {
$(
impl TVMContext {
pub fn $ctx(device_id: usize) -> Self {
Self::new(TVMDeviceType($dldevt), device_id)
}
}
)+
};
}
impl_ctxs!((cpu, 1);
(gpu, 2);
(nvptx, 2);
(cuda, 2);
(cpu_pinned, 3);
(cl, 4);
(opencl, 4);
(metal, 8);
(vpi, 9);
(rocm, 10);
(opengl, 11);
(ext_dev, 12));
impl<'a> From<&'a str> for TVMContext {
fn from(target: &str) -> Self {
TVMContext::new(TVMDeviceType::from(target), 0)
}
}
impl TVMContext {
/// Checks whether the context exists or not.
pub fn exist(&self) -> bool {
let func = function::Function::get("_GetDeviceAttr", true /* is_global */)
.expect("API function always exists");
let dt = self.device_type.0 as usize;
// `unwrap` is ok here because if there is any error,
// if would occure inside `call_packed!`
let ret = call_packed!(func, &dt, &self.device_id, &0)
.unwrap()
.prim_value;
ret != 0
}
/// Synchronize the context stream.
pub fn sync(&self) -> Result<()> {
check_call!(ts::TVMSynchronize(
self.device_type.0 as i32,
self.device_id as i32,
ptr::null_mut() as *mut c_void
));
Ok(())
}
}
macro_rules! impl_device_attrs {
($(($attr_name:ident, $attr_kind:expr));+) => {
$(
impl TVMContext {
pub fn $attr_name(&self) -> usize {
let func = function::Function::get("_GetDeviceAttr", true /* is_global */)
.expect("API function always exists");
let dt = self.device_type.0 as usize;
// `unwrap` is ok here because if there is any error,
// if would occur in function call.
let ret = function::Builder::from(func)
.args(&[dt, self.device_id, $attr_kind])
.invoke()
.unwrap();
ret.prim_value as usize
}
}
)+
};
}
impl_device_attrs!((max_threads_per_block, 1);
(warp_size, 2);
(max_shared_memory_per_block, 3);
(compute_version, 4);
(device_name, 5);
(max_clock_rate, 6);
(multi_processor_count, 7);
(max_thread_dimensions, 8));
impl From<ts::DLContext> for TVMContext {
fn from(ctx: ts::DLContext) -> Self {
TVMContext {
device_type: TVMDeviceType::from(ctx.device_type),
device_id: ctx.device_id as usize,
}
}
}
impl From<TVMContext> for ts::DLContext {
fn from(ctx: TVMContext) -> Self {
ts::DLContext {
device_type: ctx.device_type.into(),
device_id: ctx.device_id as i32,
}
}
}
impl Display for TVMContext {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{}({})", self.device_type, self.device_id)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn context() {
let ctx = TVMContext::cpu(0);
println!("ctx: {}", ctx);
let default_ctx = TVMContext::new(TVMDeviceType(1), 0);
assert_eq!(ctx.clone(), default_ctx);
assert_ne!(ctx, TVMContext::gpu(0));
let str_ctx = TVMContext::new(TVMDeviceType::from("gpu"), 0);
assert_eq!(str_ctx.clone(), str_ctx);
assert_ne!(str_ctx, TVMContext::new(TVMDeviceType::from("cpu"), 0));
}
#[test]
fn sync() {
let ctx = TVMContext::cpu(0);
assert!(ctx.sync().is_ok())
}
}
//! This module implements TVM custom [`Error`], [`ErrorKind`] and [`Result`] types.
use std::{ffi, option};
use crate::{common_errors, rust_ndarray};
error_chain! {
errors {
EmptyArray {
description("cannot convert from an empty array")
}
NullHandle(name: String) {
description("null handle")
display("requested `{}` handle is null", name)
}
FunctionNotFound {
description("function not found")
display("function was not set in `function::Builder`")
}
TypeMismatch(expected: String, found: String) {
description("type mismatch!")
display("expected type `{}`, but found `{}`", expected, found)
}
MissingShapeError {
description("ndarray `shape()` returns `None`")
display("called `Option::unwrap()` on a `None` value")
}
AtMostOneReturn {
description("TVM functions accept at most one return value")
}
}
foreign_links {
ShapeError(rust_ndarray::ShapeError);
NulError(ffi::NulError);
IntoStringError(ffi::IntoStringError);
CommonError(common_errors::Error);
}
}
impl From<option::NoneError> for Error {
fn from(_err: option::NoneError) -> Self {
ErrorKind::MissingShapeError.into()
}
}
//! [TVM](https://github.com/dmlc/tvm) is a compiler stack for deep learning systems.
//!
//! This crate provides an idiomatic Rust API for TVM runtime frontend.
//!
//! One particular use case is that given optimized deep learning model artifacts,
//! (compiled with TVM) which include a shared library
//! `lib.so`, `graph.json` and a byte-array `param.params`, one can load them
//! in Rust idomatically to create a TVM Graph Runtime and
//! run the model for some inputs and get the
//! desired predictions *all in Rust*.
//!
//! Checkout the `examples` repository for more details.
#![crate_name = "tvm_frontend"]
#![recursion_limit = "1024"]
#![allow(non_camel_case_types, unused_unsafe)]
#![feature(
try_from,
try_trait,
fn_traits,
unboxed_closures,
box_syntax,
option_replace
)]
#[macro_use]
extern crate error_chain;
extern crate tvm_common as common;
#[macro_use]
extern crate lazy_static;
extern crate ndarray as rust_ndarray;
extern crate num_traits;
use std::{
ffi::{CStr, CString},
str,
};
use crate::common::ffi::ts;
// Macro to check the return call to TVM runtime shared library.
macro_rules! check_call {
($e:expr) => {{
if unsafe { $e } != 0 {
panic!("{}", $crate::get_last_error());
}
}};
}
/// Gets the last error message.
pub fn get_last_error() -> &'static str {
unsafe {
match CStr::from_ptr(ts::TVMGetLastError()).to_str() {
Ok(s) => s,
Err(_) => "Invalid UTF-8 message",
}
}
}
pub(crate) fn set_last_error(err: &Error) {
let c_string = CString::new(err.to_string()).unwrap();
unsafe {
ts::TVMAPISetLastError(c_string.as_ptr());
}
}
#[macro_use]
pub mod function;
pub mod bytearray;
pub mod context;
pub mod errors;
pub mod module;
pub mod ndarray;
pub mod ty;
pub mod value;
pub use crate::{
bytearray::TVMByteArray,
common::{
errors as common_errors,
ty::TVMTypeCode,
value::{TVMArgValue, TVMRetValue, TVMValue},
},
context::{TVMContext, TVMDeviceType},
errors::*,
function::Function,
module::Module,
ndarray::NDArray,
ty::TVMType,
};
/// Outputs the current TVM version.
pub fn version() -> &'static str {
match str::from_utf8(ts::TVM_VERSION) {
Ok(s) => s,
Err(_) => "Invalid UTF-8 string",
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn print_version() {
println!("TVM version: {}", version());
}
#[test]
fn set_error() {
let err = ErrorKind::EmptyArray;
set_last_error(&err.into());
assert_eq!(get_last_error().trim(), ErrorKind::EmptyArray.to_string());
}
}
//! Provides the [`Module`] type and methods for working with runtime TVM modules.
use std::{
convert::TryInto,
ffi::CString,
os::raw::{c_char, c_int},
path::Path,
ptr,
};
use crate::ts;
use crate::{function::Function, ErrorKind, Result};
const ENTRY_FUNC: &'static str = "__tvm_main__";
/// Wrapper around TVM module handle which contains an entry function.
/// The entry function can be applied to an imported module through [`entry_func`].
/// Also [`is_released`] shows whether the module is dropped or not.
///
/// [`entry_func`]:struct.Module.html#method.entry_func
/// [`is_released`]:struct.Module.html#method.is_released
#[derive(Debug, Clone)]
pub struct Module {
pub(crate) handle: ts::TVMModuleHandle,
is_released: bool,
entry_func: Option<Function>,
}
impl Module {
pub(crate) fn new(handle: ts::TVMModuleHandle, is_released: bool) -> Self {
Self {
handle,
is_released,
entry_func: None,
}
}
pub fn entry(&mut self) -> Option<&Function> {
if self.entry_func.is_none() {
self.entry_func = self.get_function(ENTRY_FUNC, false).ok();
}
self.entry_func.as_ref()
}
/// Gets a function by name from a registered module.
pub fn get_function(&self, name: &str, query_import: bool) -> Result<Function> {
let name = CString::new(name)?;
let mut fhandle = ptr::null_mut() as ts::TVMFunctionHandle;
check_call!(ts::TVMModGetFunction(
self.handle,
name.as_ptr() as *const c_char,
query_import as c_int,
&mut fhandle as *mut _
));
if fhandle.is_null() {
bail!(ErrorKind::NullHandle(format!("{}", name.into_string()?)))
} else {
Ok(Function::new(fhandle, false, false))
}
}
/// Imports a dependent module such as `.ptx` for gpu.
pub fn import_module(&self, dependent_module: Module) {
check_call!(ts::TVMModImport(self.handle, dependent_module.handle))
}
/// Loads a module shared library from path.
pub fn load<P: AsRef<Path>>(path: &P) -> Result<Module> {
let ext = path.as_ref().extension()?.to_str()?;
let func = Function::get("module._LoadFromFile", true /* is_global */)
.expect("API function always exists");
let ret: Module = call_packed!(func, path.as_ref().to_str()?, ext)?.try_into()?;
Ok(ret)
}
/// Checks if a target device is enabled for a module.
pub fn enabled(&self, target: &str) -> bool {
let func = Function::get("module._Enabled", true /* is_global */)
.expect("API function always exists");
// `unwrap` is safe here because if there is any error during the
// function call, it would occur in `call_packed!`.
let ret: i64 = call_packed!(func, target).unwrap().try_into().unwrap();
ret != 0
}
/// Returns the underlying module handle.
pub fn handle(&self) -> ts::TVMModuleHandle {
self.handle
}
/// Returns true if the underlying module has been dropped and false otherwise.
pub fn is_released(&self) -> bool {
self.is_released
}
}
impl Drop for Module {
fn drop(&mut self) {
if !self.is_released {
check_call!(ts::TVMModFree(self.handle));
self.is_released = true;
}
}
}
//! This module implements the required conversions from Rust types to TVM types.
//!
//! In TVM frontend only conversions from Rust's 32-bits (POD) numeric types (i32, u32, f32)
//! and 64-bits pointers are supported.
use std::{
fmt::{self, Display, Formatter},
ops::{Deref, DerefMut},
};
use crate::ts;
use crate::{Function, Module, NDArray, TVMByteArray, TVMContext, TVMDeviceType, TVMTypeCode};
macro_rules! impl_prim_type {
($type:ty, $variant:ident) => {
impl From<$type> for TVMTypeCode {
fn from(_arg: $type) -> Self {
TVMTypeCode::$variant
}
}
impl<'a> From<&'a $type> for TVMTypeCode {
fn from(_arg: &$type) -> Self {
TVMTypeCode::$variant
}
}
impl<'a> From<&'a mut $type> for TVMTypeCode {
fn from(_arg: &mut $type) -> Self {
TVMTypeCode::$variant
}
}
};
}
impl_prim_type!(TVMDeviceType, kDLInt);
impl_prim_type!(TVMContext, kTVMContext);
impl_prim_type!(TVMType, kTVMType);
impl_prim_type!(Function, kFuncHandle);
impl_prim_type!(Module, kModuleHandle);
impl_prim_type!(NDArray, kArrayHandle);
impl_prim_type!(TVMByteArray, kBytes);
/// See the [module-level documentation](../ty/index.html) for more details.
///
/// Wrapper around underlying TVMType
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct TVMType {
// inner fields are (code: u8, bits: u8, lanes: u16)
pub inner: ts::TVMType,
}
impl TVMType {
pub(crate) fn new(type_code: u8, bits: u8, lanes: u16) -> Self {
TVMType {
inner: ts::TVMType {
code: type_code,
bits: bits,
lanes: lanes,
},
}
}
}
/// Implements TVMType conversion from `&str` of general format `{dtype}{bits}x{lanes}`
/// such as "int32", "float32" or with lane "float32x1".
impl<'a> From<&'a str> for TVMType {
fn from(type_str: &'a str) -> Self {
if type_str == "bool" {
return TVMType::new(1, 1, 1);
}
let mut type_lanes = type_str.split("x");
let typ = type_lanes.next().expect("Missing dtype");
let lanes = type_lanes
.next()
.map(|l| u16::from_str_radix(l, 10).expect(&format!("Bad dtype lanes: {}", l)))
.unwrap_or(1);
let (type_name, bits) = match typ.find(char::is_numeric) {
Some(idx) => {
let (name, bits_str) = typ.split_at(idx);
(
name,
u8::from_str_radix(bits_str, 10)
.expect(&format!("Bad dtype bits: {}", bits_str)),
)
}
None => (typ, 32),
};
let type_code = match type_name {
"int" => 0,
"uint" => 1,
"float" => 2,
"handle" => 3,
_ => unimplemented!(),
};
TVMType::new(type_code, bits, lanes)
}
}
impl Display for TVMType {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
let ts::TVMType { code, bits, lanes } = self.inner;
if bits == 1 && lanes == 1 {
return write!(f, "bool");
}
let mut tcode_str = match code {
0 => "int",
1 => "uint",
2 => "float",
4 => "handle",
_ => "Unknown",
}
.to_string();
tcode_str += &bits.to_string();
if lanes > 1 {
tcode_str += &format!("x{}", lanes.to_string());
}
f.write_str(&tcode_str)
}
}
impl From<TVMType> for ts::DLDataType {
fn from(dtype: TVMType) -> Self {
dtype.inner
}
}
impl From<ts::DLDataType> for TVMType {
fn from(dtype: ts::DLDataType) -> Self {
Self::new(dtype.code, dtype.bits, dtype.lanes)
}
}
impl Deref for TVMType {
type Target = ts::TVMType;
fn deref(&self) -> &Self::Target {
&self.inner
}
}
impl DerefMut for TVMType {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.inner
}
}
//! This module implements [`TVMArgValue`] and [`TVMRetValue`] types
//! and their conversions needed for the types used in frontend crate.
//! `TVMRetValue` is the owned version of `TVMPODValue`.
use std::{convert::TryFrom, mem, os::raw::c_void};
use crate::{
common_errors::*, ts, Function, Module, NDArray, TVMArgValue, TVMByteArray, TVMContext,
TVMDeviceType, TVMRetValue, TVMType, TVMTypeCode, TVMValue,
};
macro_rules! impl_tvm_val_from_handle {
($($ty:ty),+) => {
$(
impl<'a> From<&'a $ty> for TVMValue {
fn from(arg: &$ty) -> Self {
let inner = ts::TVMValue {
v_handle: arg.handle as *mut _ as *mut c_void,
};
Self::new(inner)
}
}
)+
}
}
impl_tvm_val_from_handle!(Module, Function, NDArray);
impl<'a> From<&'a TVMType> for TVMValue {
fn from(ty: &TVMType) -> Self {
let inner = ts::TVMValue { v_type: ty.inner };
Self::new(inner)
}
}
impl<'a> From<&'a TVMContext> for TVMValue {
fn from(ctx: &TVMContext) -> Self {
let inner = ts::TVMValue {
v_ctx: ctx.clone().into(),
};
Self::new(inner)
}
}
impl<'a> From<&'a TVMDeviceType> for TVMValue {
fn from(dev: &TVMDeviceType) -> Self {
let inner = ts::TVMValue {
v_int64: dev.0 as i64,
};
Self::new(inner)
}
}
impl<'a> From<&'a TVMByteArray> for TVMValue {
fn from(barr: &TVMByteArray) -> Self {
let inner = ts::TVMValue {
v_handle: &barr.inner as *const ts::TVMByteArray as *mut c_void,
};
Self::new(inner)
}
}
impl<'a, 'b> TryFrom<&'b TVMArgValue<'a>> for NDArray {
type Error = Error;
fn try_from(arg: &TVMArgValue<'a>) -> Result<Self> {
if arg.type_code == TVMTypeCode::kArrayHandle {
let handle = unsafe { arg.value.inner.v_handle };
let arr_handle = unsafe { mem::transmute::<*mut c_void, ts::TVMArrayHandle>(handle) };
Ok(Self::new(arr_handle, true))
} else {
bail!(ErrorKind::TryFromTVMArgValueError(
stringify!(NDArray).to_string(),
arg.type_code.to_string()
))
}
}
}
impl<'a, 'b> TryFrom<&'b TVMArgValue<'a>> for Module {
type Error = Error;
fn try_from(arg: &TVMArgValue<'a>) -> Result<Self> {
if arg.type_code == TVMTypeCode::kModuleHandle {
let handle = unsafe { arg.value.inner.v_handle };
Ok(Self::new(handle, false))
} else {
bail!(ErrorKind::TryFromTVMArgValueError(
stringify!(Module).to_string(),
arg.type_code.to_string()
))
}
}
}
impl<'a, 'b> TryFrom<&'b TVMArgValue<'a>> for TVMByteArray {
type Error = Error;
fn try_from(arg: &TVMArgValue<'a>) -> Result<Self> {
if arg.type_code == TVMTypeCode::kBytes {
unsafe {
let barr_ptr =
mem::transmute::<*mut c_void, *mut ts::TVMByteArray>(arg.value.inner.v_handle);
Ok(Self::new(*barr_ptr))
}
} else {
bail!(ErrorKind::TryFromTVMArgValueError(
stringify!(TVMByteArray).to_string(),
arg.type_code.to_string()
))
}
}
}
impl<'a, 'b> TryFrom<&'b TVMArgValue<'a>> for TVMType {
type Error = Error;
fn try_from(arg: &TVMArgValue<'a>) -> Result<Self> {
if arg.type_code == TVMTypeCode::kTVMType {
let ty = unsafe { arg.value.inner.v_type };
Ok(TVMType::from(ty))
} else {
bail!(ErrorKind::TryFromTVMArgValueError(
stringify!(TVMType).to_string(),
arg.type_code.to_string()
))
}
}
}
impl<'a, 'b> TryFrom<&'b TVMArgValue<'a>> for TVMContext {
type Error = Error;
fn try_from(arg: &TVMArgValue<'a>) -> Result<Self> {
if arg.type_code == TVMTypeCode::kTVMContext {
let ty = unsafe { arg.value.inner.v_ctx };
Ok(TVMContext::from(ty))
} else {
bail!(ErrorKind::TryFromTVMArgValueError(
stringify!(TVMContext).to_string(),
arg.type_code.to_string()
))
}
}
}
macro_rules! impl_boxed_ret_value {
($type:ty, $code:expr) => {
impl From<$type> for TVMRetValue {
fn from(val: $type) -> Self {
TVMRetValue {
prim_value: 0,
box_value: box val,
type_code: $code,
}
}
}
impl TryFrom<TVMRetValue> for $type {
type Error = Error;
fn try_from(ret: TVMRetValue) -> Result<$type> {
if let Ok(val) = ret.box_value.downcast::<$type>() {
Ok(*val)
} else {
bail!(ErrorKind::TryFromTVMRetValueError(
stringify!($type).to_string(),
ret.type_code.to_string()
))
}
}
}
};
}
impl_boxed_ret_value!(TVMType, TVMTypeCode::kTVMType);
impl_boxed_ret_value!(TVMContext, TVMTypeCode::kTVMContext);
impl_boxed_ret_value!(TVMByteArray, TVMTypeCode::kBytes);
impl TryFrom<TVMRetValue> for Module {
type Error = Error;
fn try_from(ret: TVMRetValue) -> Result<Module> {
if let Ok(handle) = ret.box_value.downcast::<ts::TVMModuleHandle>() {
Ok(Module::new(*handle, false))
} else {
bail!(ErrorKind::TryFromTVMRetValueError(
stringify!(TVMTypeCode::kModuleHandle).to_string(),
ret.type_code.to_string()
))
}
}
}
impl TryFrom<TVMRetValue> for Function {
type Error = Error;
fn try_from(ret: TVMRetValue) -> Result<Function> {
if let Ok(handle) = ret.box_value.downcast::<ts::TVMFunctionHandle>() {
Ok(Function::new(*handle, false, false))
} else {
bail!(ErrorKind::TryFromTVMRetValueError(
stringify!(TVMTypeCode::kFuncHandle).to_string(),
ret.type_code.to_string()
))
}
}
}
impl TryFrom<TVMRetValue> for NDArray {
type Error = Error;
fn try_from(ret: TVMRetValue) -> Result<NDArray> {
if let Ok(handle) = ret.box_value.downcast::<ts::TVMArrayHandle>() {
Ok(NDArray::new(*handle, false))
} else {
bail!(ErrorKind::TryFromTVMRetValueError(
stringify!(TVMTypeCode::kArrayHandle).to_string(),
ret.type_code.to_string()
))
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::convert::TryInto;
#[test]
fn bytearray() {
let w = vec![1u8, 2, 3, 4, 5];
let v = TVMByteArray::from(&w);
let tvm: TVMByteArray = TVMRetValue::from(v).try_into().unwrap();
assert_eq!(tvm.data(), w.iter().map(|e| *e as i8).collect::<Vec<i8>>());
}
#[test]
fn ty() {
let t = TVMType::from("int32");
let tvm: TVMType = TVMRetValue::from(t).try_into().unwrap();
assert_eq!(tvm, t);
}
#[test]
fn ctx() {
let c = TVMContext::from("gpu");
let tvm: TVMContext = TVMRetValue::from(c).try_into().unwrap();
assert_eq!(tvm, c);
}
}
/target
**/*.rs.bk
Cargo.lock
*.o
*.so
*.ptx
*.json
[package]
name = "basics"
version = "0.0.0"
authors = ["TVM Contributors"]
license = "Apache-2.0"
build = "build.rs"
[dependencies]
ndarray = "0.12.1"
tvm-frontend = { path = "../../" }
[features]
default = ["cpu"]
cpu = []
gpu = []
fn main() {
let out_dir = std::env::var("OUT_DIR").unwrap();
let output = std::process::Command::new(concat!(env!("CARGO_MANIFEST_DIR"), "/src/tvm_add.py"))
.args(&[
if cfg!(feature = "cpu") {
"llvm"
} else {
"cuda"
},
&std::env::var("OUT_DIR").unwrap(),
])
.output()
.expect("Failed to execute command");
assert!(
std::path::Path::new(&format!("{}/test_add.so", out_dir)).exists(),
"Could not build tvm lib: {}",
String::from_utf8(output.stderr)
.unwrap()
.trim()
.split("\n")
.last()
.unwrap_or("")
);
println!("cargo:rustc-link-search=native={}", out_dir);
}
extern crate ndarray as rust_ndarray;
extern crate tvm_frontend as tvm;
use tvm::*;
fn main() {
let shape = &mut [2];
let mut data = vec![3f32, 4.0];
let (ctx, ctx_name) = if cfg!(feature = "cpu") {
(TVMContext::cpu(0), "cpu")
} else {
(TVMContext::gpu(0), "gpu")
};
let dtype = TVMType::from("float32");
let mut arr = NDArray::empty(shape, ctx, dtype);
arr.copy_from_buffer(data.as_mut_slice());
let mut ret = NDArray::empty(shape, ctx, dtype);
let mut fadd = Module::load(&concat!(env!("OUT_DIR"), "/test_add.so")).unwrap();
if !fadd.enabled(ctx_name) {
return;
}
if cfg!(feature = "gpu") {
fadd.import_module(Module::load(&concat!(env!("OUT_DIR"), "/test_add.ptx")).unwrap());
}
function::Builder::from(&mut fadd)
.arg(&arr)
.arg(&arr)
.set_output(&mut ret)
.unwrap()
.invoke()
.unwrap();
assert_eq!(ret.to_vec::<f32>().unwrap(), vec![6f32, 8.0]);
}
#!/usr/bin/env python3
import os.path as osp
import sys
import tvm
from tvm.contrib import cc
def main(target, out_dir):
n = tvm.var('n')
A = tvm.placeholder((n,), name='A')
B = tvm.placeholder((n,), name='B')
C = tvm.compute(A.shape, lambda i: A[i] + B[i], name='C')
s = tvm.create_schedule(C.op)
if target == 'cuda':
bx, tx = s[C].split(C.op.axis[0], factor=64)
s[C].bind(bx, tvm.thread_axis('blockIdx.x'))
s[C].bind(tx, tvm.thread_axis('threadIdx.x'))
fadd = tvm.build(s, [A, B, C], target, target_host='llvm', name='myadd')
fadd.save(osp.join(out_dir, 'test_add.o'))
if target == 'cuda':
fadd.imported_modules[0].save(os.path.join(out_dir, 'test_add.ptx'))
cc.create_shared(
osp.join(out_dir, 'test_add.so'), [osp.join(out_dir, 'test_add.o')])
if __name__ == '__main__':
main(sys.argv[1], sys.argv[2])
[package]
name = "callback"
version = "0.0.0"
authors = ["TVM Contributors"]
[dependencies]
ndarray = "0.12.1"
tvm-frontend = { path = "../../" }
#![feature(extern_crate_item_prelude, try_from)]
#![allow(unused_imports)]
extern crate ndarray as rust_ndarray;
#[macro_use]
extern crate tvm_frontend as tvm;
use rust_ndarray::ArrayD;
use std::convert::{TryFrom, TryInto};
use tvm::*;
fn main() {
register_global_func! {
fn sum(args: &[TVMArgValue]) -> Result<TVMRetValue> {
let mut ret = 0f32;
let shape = &mut [2];
for arg in args.iter() {
let e = NDArray::empty(shape, TVMContext::cpu(0), TVMType::from("float32"));
let arg: NDArray = arg.try_into()?;
let arr = arg.copy_to_ndarray(e)?;
let rnd: ArrayD<f32> = ArrayD::try_from(&arr)?;
ret += rnd.scalar_sum();
}
Ok(TVMRetValue::from(ret))
}
}
let shape = &mut [2];
let mut data = vec![3f32, 4.0];
let mut arr = NDArray::empty(shape, TVMContext::cpu(0), TVMType::from("float32"));
arr.copy_from_buffer(data.as_mut_slice());
let mut registered = function::Builder::default();
let ret: f32 = registered
.get_function("sum", true)
.arg(&arr)
.arg(&arr)
.invoke()
.unwrap()
.try_into()
.unwrap();
assert_eq!(ret, 14f32);
}
#![feature(extern_crate_item_prelude, panic_info_message)]
#![allow(unused_imports)]
use std::panic;
#[macro_use]
extern crate tvm_frontend as tvm;
use tvm::*;
fn main() {
register_global_func! {
fn error(_args: &[TVMArgValue]) -> Result<TVMRetValue> {
Err(ErrorKind::TypeMismatch(
format!("{}", "i64".to_string()),
format!("{}", "f64".to_string()),
).into())
}
}
let mut registered = function::Builder::default();
registered.get_function("error", true);
assert!(registered.func.is_some());
registered.args(&[10, 20]);
println!("expected error message is:");
panic::set_hook(Box::new(|panic_info| {
if let Some(msg) = panic_info.message() {
println!("{:?}", msg);
}
if let Some(location) = panic_info.location() {
println!(
"panic occurred in file '{}' at line {}",
location.file(),
location.line()
);
} else {
println!("panic occurred but can't get location information");
}
}));
let _result = registered.invoke();
}
#![feature(extern_crate_item_prelude, try_from)]
#![allow(unused_imports)]
#[macro_use]
extern crate tvm_frontend as tvm;
use std::convert::TryInto;
use tvm::*;
fn main() {
register_global_func! {
fn sum(args: &[TVMArgValue]) -> Result<TVMRetValue> {
let mut ret = 0.0;
for arg in args.iter() {
let val: f64 = arg.try_into()?;
ret += val;
}
Ok(TVMRetValue::from(&ret))
}
}
let mut registered = function::Builder::default();
registered.get_function("sum", true);
assert!(registered.func.is_some());
let ret: f64 = registered
.args(&[10.0f64, 20.0, 30.0])
.invoke()
.unwrap()
.try_into()
.unwrap();
assert_eq!(ret, 60f64);
}
#![feature(extern_crate_item_prelude, try_from)]
#![allow(unused_imports)]
extern crate tvm_frontend as tvm;
use std::convert::TryInto;
use tvm::*;
fn main() {
fn sum(args: &[TVMArgValue]) -> Result<TVMRetValue> {
let mut ret = 0i64;
for arg in args.iter() {
let val: i64 = arg.try_into()?;
ret += val;
}
Ok(TVMRetValue::from(&ret))
}
tvm::function::register(sum, "mysum".to_owned(), false).unwrap();
let mut registered = function::Builder::default();
registered.get_function("mysum", true);
assert!(registered.func.is_some());
let ret: i64 = registered
.args(&[10, 20, 30])
.invoke()
.unwrap()
.try_into()
.unwrap();
assert_eq!(ret, 60);
}
#![feature(extern_crate_item_prelude, try_from)]
#![allow(unused_imports)]
#[macro_use]
extern crate tvm_frontend as tvm;
use std::convert::TryInto;
use tvm::*;
// FIXME
fn main() {
register_global_func! {
fn concate_str(args: &[TVMArgValue]) -> Result<TVMRetValue> {
let mut ret = "".to_string();
for arg in args.iter() {
let val: String = arg.try_into()?;
ret += val.as_str();
}
Ok(TVMRetValue::from(ret))
}
}
let mut registered = function::Builder::default();
registered.get_function("concate_str", true);
assert!(registered.func.is_some());
let a = "a".to_string();
let b = "b".to_string();
let c = "c".to_string();
let ret: String = registered
.args(&[a, b, c])
.invoke()
.unwrap()
.try_into()
.unwrap();
assert_eq!(ret, "abc".to_owned());
}
language: rust
rust:
- nightly
matrix:
fast_finish: true
[package]
name = "tvm-runtime"
version = "0.1.0"
license = "Apache-2.0"
description = "A static TVM runtime"
repository = "https://github.com/dmlc/tvm"
readme = "README.md"
keywords = ["tvm", "nnvm"]
categories = ["api-bindings", "science"]
authors = ["TVM Contributors"]
[features]
default = ["nom/std"]
sgx = ["nom/alloc"]
[dependencies]
bounded-spsc-queue = "0.4.0"
error-chain = { version = "0.12.0", default-features = false }
itertools = "0.7.8"
lazy_static = "1.1.0"
ndarray = "0.11.2"
nom = {version = "4.0.0", default-features = false }
serde = "1.0.59"
serde_derive = "1.0.79"
serde_json = "1.0.17"
tvm-common = { version = "0.1.0", path = "../common/", features = ["runtime"] }
[target.'cfg(not(target_env = "sgx"))'.dependencies]
num_cpus = "1.8.0"
......@@ -3,7 +3,7 @@ use alloc::alloc::{self, Layout};
#[cfg(not(target_env = "sgx"))]
use std::alloc::{self, Layout};
use errors::*;
use crate::errors::*;
const DEFAULT_ALIGN_BYTES: usize = 4;
......
......@@ -2,17 +2,20 @@ use std::{
any::TypeId,
convert::TryFrom,
mem,
ops::{Deref, DerefMut},
os::raw::{c_int, c_void},
ptr, slice,
};
use ndarray;
use super::allocator::Allocation;
use errors::*;
use ffi::runtime::{
DLContext, DLDataType, DLDataTypeCode_kDLFloat, DLDataTypeCode_kDLInt, DLDataTypeCode_kDLUInt,
DLDeviceType_kDLCPU, DLTensor,
use crate::{
allocator::Allocation,
errors::*,
ffi::runtime::{
DLContext, DLDataType, DLDataTypeCode_kDLFloat, DLDataTypeCode_kDLInt,
DLDataTypeCode_kDLUInt, DLDeviceType_kDLCPU, DLTensor as _DLTensor,
},
};
/// A `Storage` is a container which holds `Tensor` data.
......@@ -81,14 +84,14 @@ impl<'a> Storage<'a> {
let s = Storage::new(self.size(), Some(self.align())).unwrap();
unsafe {
s.as_mut_ptr()
.copy_from_nonoverlapping(self.as_ptr(), self.size())
.copy_from_nonoverlapping(self.as_ptr(), self.size());
}
s
}
}
impl<'a, T> From<&'a [T]> for Storage<'a> {
fn from(data: &'a [T]) -> Self {
impl<'d, 's, T> From<&'d [T]> for Storage<'s> {
fn from(data: &'d [T]) -> Self {
let data = unsafe {
slice::from_raw_parts_mut(
data.as_ptr() as *const u8 as *mut u8,
......@@ -119,15 +122,16 @@ impl<'a, T> From<&'a [T]> for Storage<'a> {
#[derive(PartialEq)]
pub struct Tensor<'a> {
/// The bytes which contain the data this `Tensor` represents.
pub(super) data: Storage<'a>,
pub(super) ctx: TVMContext,
pub(super) dtype: DataType,
pub(super) shape: Vec<i64>, // not usize because `typedef int64_t tvm_index_t` in c_runtime_api.h
pub(crate) data: Storage<'a>,
pub(crate) ctx: TVMContext,
pub(crate) dtype: DataType,
pub(crate) shape: Vec<i64>,
// ^ not usize because `typedef int64_t tvm_index_t` in c_runtime_api.h
/// The `Tensor` strides. Can be `None` if the `Tensor` is contiguous.
pub(super) strides: Option<Vec<usize>>,
pub(super) byte_offset: isize,
pub(crate) strides: Option<Vec<usize>>,
pub(crate) byte_offset: isize,
/// The number of elements in the `Tensor`.
pub(super) size: usize,
pub(crate) size: usize,
}
unsafe impl<'a> Send for Tensor<'a> {}
......@@ -142,18 +146,10 @@ impl<'a> Tensor<'a> {
/// # Panics
///
/// Panics if the `Tensor` is not contiguous or does not contain elements of type `T`.
pub fn to_vec<T: 'static>(&self) -> Vec<T> {
pub fn to_vec<T: 'static + std::fmt::Debug + Clone>(&self) -> Vec<T> {
assert!(self.is_contiguous());
assert!(self.dtype.is_type::<T>());
let mut vec: Vec<T> = Vec::with_capacity(self.size * self.dtype.itemsize());
unsafe {
vec.as_mut_ptr().copy_from_nonoverlapping(
self.data.as_ptr().offset(self.byte_offset) as *const T,
self.size,
);
vec.set_len(self.size);
}
vec
unsafe { slice::from_raw_parts(self.data.as_ptr() as *const T, self.size).to_vec() }
}
/// Returns `true` iff this `Tensor` is represented by a contiguous region of memory.
......@@ -161,9 +157,9 @@ impl<'a> Tensor<'a> {
match self.strides {
None => true,
Some(ref strides) => {
// check that stride for each dimension is the product of all trailing dimensons' shapes
self
.shape
// check that stride for each dimension is the
// product of all trailing dimensons' shapes
self.shape
.iter()
.zip(strides)
.rfold(
......@@ -197,8 +193,7 @@ impl<'a> Tensor<'a> {
other.strides
);
unsafe {
self
.data
self.data
.as_mut_ptr()
.offset(self.byte_offset as isize)
.copy_from_nonoverlapping(
......@@ -273,10 +268,32 @@ impl_ndarray_try_from_tensor!(u32, DTYPE_UINT32);
impl_ndarray_try_from_tensor!(f32, DTYPE_FLOAT32);
impl_ndarray_try_from_tensor!(f64, DTYPE_FLOAT64);
pub struct DLTensor {
pub(crate) inner: _DLTensor,
}
impl Deref for DLTensor {
type Target = _DLTensor;
fn deref(&self) -> &Self::Target {
&self.inner
}
}
impl DerefMut for DLTensor {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.inner
}
}
impl DLTensor {
pub(super) fn from_tensor<'a>(tensor: &'a Tensor, flatten: bool) -> Self {
pub(crate) fn new(raw: _DLTensor) -> Self {
Self { inner: raw }
}
pub(crate) fn from_tensor<'a>(tensor: &'a Tensor, flatten: bool) -> Self {
assert!(!flatten || tensor.is_contiguous());
Self {
inner: _DLTensor {
data: unsafe { tensor.data.as_mut_ptr().offset(tensor.byte_offset) } as *mut c_void,
ctx: DLContext::from(&tensor.ctx),
ndim: if flatten { 1 } else { tensor.shape.len() } as i32,
......@@ -292,6 +309,7 @@ impl DLTensor {
tensor.strides.as_ref().unwrap().as_ptr()
} as *mut i64,
byte_offset: 0,
},
}
}
}
......@@ -310,9 +328,9 @@ impl<'a, 't> From<&'a mut Tensor<'t>> for DLTensor {
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct DataType {
pub(super) code: usize,
pub(super) bits: usize,
pub(super) lanes: usize,
pub(crate) code: usize,
pub(crate) bits: usize,
pub(crate) lanes: usize,
}
impl DataType {
......@@ -372,19 +390,10 @@ make_dtype_const!(DTYPE_UINT32, DLDataTypeCode_kDLUInt, 32, 1);
make_dtype_const!(DTYPE_FLOAT32, DLDataTypeCode_kDLFloat, 32, 1);
make_dtype_const!(DTYPE_FLOAT64, DLDataTypeCode_kDLFloat, 64, 1);
impl Default for DLContext {
fn default() -> Self {
DLContext {
device_type: DLDeviceType_kDLCPU,
device_id: 0,
}
}
}
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct TVMContext {
pub(super) device_type: usize,
pub(super) device_id: usize,
pub(crate) device_type: usize,
pub(crate) device_id: usize,
}
impl<'a> From<&'a TVMContext> for DLContext {
......@@ -441,21 +450,14 @@ macro_rules! impl_tensor_from_ndarray {
($type:ty, $typecode:expr) => {
impl<D: ndarray::Dimension> From<ndarray::Array<$type, D>> for Tensor<'static> {
fn from(arr: ndarray::Array<$type, D>) -> Self {
assert!(arr.is_standard_layout(), "Array must be contiguous.");
let size = arr.len() * mem::size_of::<$type>() as usize;
let storage =
Storage::from(unsafe { slice::from_raw_parts(arr.as_ptr() as *const u8, size) });
Tensor::from_array_storage(&arr, storage, $typecode as usize)
let storage = Storage::from(arr.as_slice().expect("NDArray must be contiguous"));
Tensor::from_array_storage(&arr, storage.to_owned(), $typecode as usize)
}
}
impl<'a, D: ndarray::Dimension> From<&'a ndarray::Array<$type, D>> for Tensor<'a> {
fn from(arr: &'a ndarray::Array<$type, D>) -> Self {
assert!(arr.is_standard_layout(), "Array must be contiguous.");
Tensor::from_array_storage(
arr,
Storage::from(arr.as_slice().unwrap()),
$typecode as usize,
)
let storage = Storage::from(arr.as_slice().expect("NDArray must be contiguous"));
Tensor::from_array_storage(arr, storage, $typecode as usize)
}
}
};
......@@ -468,8 +470,12 @@ macro_rules! impl_dltensor_from_ndarray {
impl<'a, D: ndarray::Dimension> From<&'a mut ndarray::Array<$type, D>> for DLTensor {
fn from(arr: &'a mut ndarray::Array<$type, D>) -> Self {
DLTensor {
inner: _DLTensor {
data: arr.as_mut_ptr() as *mut c_void,
ctx: DLContext::default(),
ctx: DLContext {
device_type: DLDeviceType_kDLCPU,
device_id: 0,
},
ndim: arr.ndim() as c_int,
dtype: DLDataType {
code: $typecode as u8,
......@@ -479,6 +485,7 @@ macro_rules! impl_dltensor_from_ndarray {
shape: arr.shape().as_ptr() as *const i64 as *mut i64,
strides: arr.strides().as_ptr() as *const isize as *mut i64,
byte_offset: 0,
},
}
}
}
......
......@@ -4,16 +4,12 @@ use alloc::alloc;
use std::alloc;
use std::num;
use crate::common::errors as common_errors;
use ndarray;
use serde_json;
error_chain! {
errors {
TryFromTVMRetValueError(expected: String, actual: i64) {
description("mismatched types while downcasting TVMRetValue")
display("invalid downcast: expected `{}` but was `{}`", expected, actual)
}
GraphFormatError(msg: String) {
description("unable to load graph")
display("could not load graph json: {}", msg)
......@@ -29,6 +25,7 @@ error_chain! {
GraphDeserialize(serde_json::Error);
ParseInt(num::ParseIntError);
ShapeError(ndarray::ShapeError);
CommonError(common_errors::Error);
}
}
......
......@@ -4,15 +4,16 @@ use nom::{alpha1, digit1, le_i32, le_i64, le_u16, le_u32, le_u64, le_u8, types::
use serde;
use serde_json;
use super::{DataType, Module, Storage, TVMArgValue, TVMContext, Tensor};
use errors::{Error, ErrorKind, Result};
use ffi::runtime::{
DLDataTypeCode_kDLFloat, DLDataTypeCode_kDLInt, DLDataTypeCode_kDLUInt, DLTensor,
use super::{DLTensor, DataType, Module, Storage, TVMContext, Tensor};
use crate::{
common::value::TVMArgValue,
errors::{Error, ErrorKind, Result},
ffi::runtime::{DLDataTypeCode_kDLFloat, DLDataTypeCode_kDLInt, DLDataTypeCode_kDLUInt},
};
// Magic number for NDArray file. @see `kTVMNDArrayMagic` in `ndarray.h`
// @see `kTVMNDArrayMagic` in `ndarray.h`
const _NDARRAY_MAGIC: u64 = 0xDD5E40F096B4A13F;
// Magic number for NDArray list file. @see `kTVMNDArrayListMagic` in `graph_runtime.h`
// @see `kTVMNDArrayListMagic` in `graph_runtime.h`
const _NDARRAY_LIST_MAGIC: u64 = 0xF7E58D4F05049CB7;
/// A TVM computation graph.
......@@ -41,8 +42,7 @@ pub struct Entry {
impl Graph {
fn entry_index(&self, entry: &Entry) -> Result<usize> {
self
.node_row_ptr
self.node_row_ptr
.as_ref()
.map(|nrp| nrp[entry.id] + entry.index)
.ok_or("Missing node_row_ptr.".into())
......@@ -51,8 +51,7 @@ impl Graph {
/// Attempt to deserialize a JSON attribute to a type `T`.
fn get_attr<T: serde::de::DeserializeOwned>(&self, attr: &str) -> Result<T> {
Ok(serde_json::from_value::<T>(
self
.attrs
self.attrs
.as_ref()
.ok_or(ErrorKind::GraphFormatError(
"Missing graph attrs".to_string(),
......@@ -190,7 +189,10 @@ impl<'m, 't> GraphExecutor<'m, 't> {
if let Ok((_, dtype)) = tvm_str_to_type(CompleteStr(dltype)) {
Ok(dtype)
} else {
Err(ErrorKind::GraphFormatError(format!("Invalid dltype: {}", dltype).to_string()).into())
Err(ErrorKind::GraphFormatError(
format!("Invalid dltype: {}", dltype).to_string(),
)
.into())
}
})
.collect::<Result<Vec<DataType>>>()?;
......@@ -281,13 +283,13 @@ impl<'m, 't> GraphExecutor<'m, 't> {
Ok(op_execs)
}
pub fn load_params(&mut self, params: HashMap<String, Tensor<'t>>) {
pub fn load_params(&mut self, params: HashMap<String, Tensor>) {
params.into_iter().for_each(|(name, param)| {
self.set_input(name, param);
})
}
pub fn set_input<S: AsRef<str>>(&mut self, name: S, value: Tensor<'t>) {
pub fn set_input<S: AsRef<str>>(&mut self, name: S, value: Tensor) {
if let Some(idx) = self.get_input_index(name.as_ref()) {
// TODO: consider `new_with_params` to avoid ever allocating
let ptr = self.tensors[idx].data.as_ptr();
......@@ -311,8 +313,7 @@ impl<'m, 't> GraphExecutor<'m, 't> {
/// Returns the graph input with name `name`, if it exists.
pub fn get_input<S: AsRef<str>>(&mut self, name: S) -> Option<&Tensor> {
self
.get_input_index(name.as_ref())
self.get_input_index(name.as_ref())
.and_then(move |idx| Some(&self.tensors[idx]))
}
......
......@@ -39,29 +39,36 @@ extern crate serde;
#[macro_use]
extern crate serde_derive;
extern crate serde_json;
extern crate tvm_common as common;
pub mod ffi {
#![allow(
non_camel_case_types,
non_snake_case,
non_upper_case_globals,
unused
)]
mod allocator;
mod array;
pub mod errors;
mod module;
#[macro_use]
mod packed_func;
mod graph;
#[cfg(target_env = "sgx")]
#[macro_use]
pub mod sgx;
mod threading;
mod workspace;
pub mod runtime {
use std::os::raw::{c_char, c_int, c_void};
pub use crate::common::{errors::*, ffi, TVMArgValue, TVMRetValue};
include!(concat!(
env!("CARGO_MANIFEST_DIR"),
"/src/runtime/c_runtime_api.rs"
));
pub use self::{
array::*, errors::*, graph::*, module::*, packed_func::*, threading::*, workspace::*,
};
pub type BackendPackedCFunc =
extern "C" fn(args: *const TVMValue, type_codes: *const c_int, num_args: c_int) -> c_int;
#[cfg(target_env = "sgx")]
use self::sgx::ocall_packed_func;
#[no_mangle]
pub extern "C" fn TVMAPISetLastError(cmsg: *const i8) {
#[cfg(not(target_env = "sgx"))]
unsafe {
panic!(std::ffi::CStr::from_ptr(cmsg).to_str().unwrap());
}
#[cfg(target_env = "sgx")]
ocall_packed!("__sgx_set_last_error__", cmsg);
}
pub mod errors;
pub mod runtime;
pub use errors::*;
......@@ -2,8 +2,10 @@ use std::{
collections::HashMap, convert::AsRef, ffi::CStr, os::raw::c_char, string::String, sync::Mutex,
};
use ffi::runtime::BackendPackedCFunc;
use runtime::packed_func::{wrap_backend_packed_func, PackedFunc};
use crate::{
ffi::runtime::BackendPackedCFunc,
packed_func::{wrap_backend_packed_func, PackedFunc},
};
pub trait Module {
fn get_function<S: AsRef<str>>(&self, name: S) -> Option<PackedFunc>;
......
use std::{convert::TryFrom, marker::PhantomData, os::raw::c_void};
use super::Tensor;
use crate::ffi::runtime::{
BackendPackedCFunc, DLTensor as _DLTensor, TVMTypeCode_kArrayHandle,
TVMTypeCode_kNDArrayContainer, TVMValue as _TVMValue,
};
use super::DLTensor;
use crate::{
common::{TVMArgValue, TVMRetValue, TVMTypeCode, TVMValue},
errors::*,
};
pub type PackedFunc = Box<Fn(&[TVMArgValue]) -> TVMRetValue + Send + Sync>;
/// Calls a packed function and returns a `TVMRetValue`.
///
/// # Example
///
/// `call_packed!(my_tvm_func, &mut arg1, &mut arg2)`
#[macro_export]
macro_rules! call_packed {
($fn:expr, $($args:expr),+) => {
$fn(&[$($args.into(),)+])
};
($fn:expr) => {
$fn(&Vec::new())
};
}
impl<'a> From<&'a DLTensor> for TVMArgValue<'a> {
fn from(arr: &'a DLTensor) -> Self {
let raw = _TVMValue {
v_handle: arr as *const _ as *mut DLTensor as *mut c_void,
};
TVMArgValue {
value: TVMValue::new(raw),
type_code: TVMTypeCode::kArrayHandle,
lifetime: PhantomData,
}
}
}
impl<'a> From<&'a mut DLTensor> for TVMArgValue<'a> {
fn from(arr: &'a mut DLTensor) -> Self {
let raw = _TVMValue {
v_handle: arr as *mut _ as *mut c_void,
};
TVMArgValue {
value: TVMValue::new(raw),
type_code: TVMTypeCode::kArrayHandle,
lifetime: PhantomData,
}
}
}
impl<'a> TryFrom<TVMArgValue<'a>> for Tensor<'a> {
type Error = Error;
fn try_from(val: TVMArgValue<'a>) -> Result<Self> {
ensure!(
val.type_code == TVMTypeCode::kArrayHandle
|| val.type_code == TVMTypeCode::kNDArrayContainer,
"Could not downcast arg. Expected `{}` or `{}`, but got `{}`",
TVMTypeCode::kArrayHandle,
TVMTypeCode::kNDArrayContainer,
val.type_code,
);
let dlt = unsafe { *(val.value.v_handle as *mut _DLTensor as *const _DLTensor) };
Ok(DLTensor::new(dlt).into())
}
}
impl<'a, 't> From<&'t Tensor<'a>> for TVMRetValue {
fn from(val: &'t Tensor<'a>) -> Self {
TVMRetValue {
prim_value: 0,
box_value: box DLTensor::from(val),
type_code: TVMTypeCode::kNDArrayContainer,
}
}
}
impl<'a> TryFrom<TVMRetValue> for Tensor<'a> {
type Error = Error;
fn try_from(ret: TVMRetValue) -> Result<Self> {
ensure!(
ret.type_code == TVMTypeCode::kArrayHandle
|| ret.type_code == TVMTypeCode::kNDArrayContainer,
"Could not downcast arg. Expected `{}` or `{}`, but got `{}`",
TVMTypeCode_kArrayHandle,
TVMTypeCode_kNDArrayContainer,
ret.type_code,
);
let dlt = unsafe { *(ret.prim_value as *mut _DLTensor as *const _DLTensor) };
Ok(DLTensor::new(dlt).into())
}
}
// @see `WrapPackedFunc` in `llvm_module.cc`.
pub(crate) fn wrap_backend_packed_func(func: BackendPackedCFunc) -> PackedFunc {
box move |args: &[TVMArgValue]| {
func(
args.iter()
.map(|ref arg| arg.value.inner)
.collect::<Vec<_TVMValue>>()
.as_ptr(),
args.iter()
.map(|ref arg| arg.type_code as i32)
.collect::<Vec<i32>>()
.as_ptr() as *const i32,
args.len() as i32,
);
TVMRetValue::default()
}
}
......@@ -39,13 +39,11 @@ pub fn ocall_packed_func<S: AsRef<str>>(fn_name: S, args: &[TVMArgValue]) -> Res
unsafe {
tvm_ocall!(tvm_ocall_packed_func(
CString::new(fn_name.as_ref()).unwrap().as_ptr(),
args
.iter()
args.iter()
.map(|ref arg| arg.value)
.collect::<Vec<TVMValue>>()
.as_ptr(),
args
.iter()
args.iter()
.map(|ref arg| arg.type_code as i32)
.collect::<Vec<i32>>()
.as_ptr() as *const i32,
......
......@@ -19,8 +19,7 @@ use std::{collections::VecDeque, ptr, sync::Mutex};
use bounded_spsc_queue::{self, Producer};
use super::super::errors::*;
use ffi::runtime::TVMParallelGroupEnv;
use crate::{errors::*, ffi::runtime::TVMParallelGroupEnv};
#[cfg(target_env = "sgx")]
use super::{sgx::ocall_packed_func, TVMArgValue, TVMRetValue};
......
......@@ -5,7 +5,7 @@ use std::{
};
use super::allocator::Allocation;
use errors::*;
use crate::errors::*;
const WS_ALIGN: usize = 64; // taken from `kTempAllocaAlignment` in `device_api.h`
......@@ -70,11 +70,9 @@ impl WorkspacePool {
break;
}
}
Ok(
self
Ok(self
.free
.push(ws_idx.ok_or("Tried to free nonexistent workspace.")?),
)
.push(ws_idx.ok_or("Tried to free nonexistent workspace.")?))
}
}
......
#!/usr/bin/env python3
"""Builds a simple NNVM graph for testing."""
from os import path as osp
......
......@@ -3,11 +3,11 @@
extern crate serde;
extern crate serde_json;
extern crate tvm;
extern crate tvm_runtime;
use std::{convert::TryFrom, fs, io::Read};
use tvm::runtime::Graph;
use tvm_runtime::Graph;
#[test]
fn test_load_graph() {
......@@ -16,7 +16,7 @@ fn test_load_graph() {
.expect("Could not find TVM graph. Did you run `tests/build_model.py`?")
.read_to_end(&mut params_bytes)
.unwrap();
let _params = tvm::runtime::load_param_dict(&params_bytes);
let _params = tvm_runtime::load_param_dict(&params_bytes);
let graph = Graph::try_from(
&fs::read_to_string(concat!(env!("CARGO_MANIFEST_DIR"), "/tests/graph.json")).unwrap(),
......
......@@ -2,13 +2,13 @@
name = "test-nnvm"
version = "0.0.0"
license = "Apache-2.0"
authors = ["Nick Hynes <nhynes@berkeley.edu>"]
authors = ["TVM Contributors"]
[dependencies]
ndarray = "0.11.2"
tvm = { path = "../../" }
serde = "1.0.59"
serde_json = "1.0.17"
tvm-runtime = { path = "../../" }
[build-dependencies]
ar = "0.6.0"
extern crate ar;
use std::{
env,
fs::File,
path::{Path, PathBuf},
process::Command,
};
use std::{env, fs::File, path::Path, process::Command};
use ar::Builder;
......@@ -30,10 +25,8 @@ fn main() {
.unwrap_or("")
);
let in_path: PathBuf = [&out_dir, "graph.o"].iter().collect();
let out_path: PathBuf = [&out_dir, "libgraph.a"].iter().collect();
let mut builder = Builder::new(File::create(out_path.to_str().unwrap()).unwrap());
builder.append_path(in_path.to_str().unwrap()).unwrap();
let mut builder = Builder::new(File::create(format!("{}/libgraph.a", out_dir)).unwrap());
builder.append_path(format!("{}/graph.o", out_dir)).unwrap();
println!("cargo:rustc-link-lib=static=graph");
println!("cargo:rustc-link-search=native={}", out_dir);
......
......@@ -23,6 +23,7 @@ def _get_model(dshape):
def _init_params(graph, input_shapes, initializer=init.Xavier(), seed=10):
if isinstance(graph, sym.Symbol):
graph = nnvm.graph.create(graph)
ishapes, _ = graph_util.infer_shape(graph, **input_shapes)
param_shapes = dict(zip(graph.index.input_names, ishapes))
np.random.seed(seed)
......@@ -40,6 +41,7 @@ def _init_params(graph, input_shapes, initializer=init.Xavier(), seed=10):
initializer(param, init_value)
# init_value /= init_value.sum() + 1e-10
params[param] = tvm.nd.array(init_value)
return params
def main():
......@@ -56,6 +58,7 @@ def main():
lib.save(osp.join(sys.argv[1], 'graph.o'))
with open(osp.join(out_dir, 'graph.json'), 'w') as f_resnet:
f_resnet.write(graph.json())
with open(osp.join(out_dir, 'graph.params'), 'wb') as f_params:
f_params.write(nnvm.compiler.save_param_dict(params))
......
......@@ -5,11 +5,11 @@ extern crate ndarray;
extern crate serde;
extern crate serde_json;
extern crate tvm;
extern crate tvm_runtime;
use std::{collections::HashMap, convert::TryFrom, fs, io::Read};
use ndarray::Array;
use tvm::runtime::{Graph, GraphExecutor, SystemLibModule, Tensor};
use tvm_runtime::{Graph, GraphExecutor, SystemLibModule, Tensor};
const BATCH_SIZE: usize = 4;
const IN_DIM: usize = 8;
......@@ -38,14 +38,15 @@ fn main() {
.unwrap()
.read_to_end(&mut params_bytes)
.unwrap();
let params = tvm::runtime::load_param_dict(&params_bytes)
let params = tvm_runtime::load_param_dict(&params_bytes)
.unwrap()
.into_iter()
.map(|(k, v)| (k, v.to_owned()))
.collect::<HashMap<String, Tensor<'static>>>();
let graph =
Graph::try_from(&fs::read_to_string(concat!(env!("OUT_DIR"), "/graph.json")).unwrap()).unwrap();
Graph::try_from(&fs::read_to_string(concat!(env!("OUT_DIR"), "/graph.json")).unwrap())
.unwrap();
let mut exec = GraphExecutor::new(graph, &syslib).unwrap();
let x = Array::from_shape_vec(
......@@ -53,7 +54,8 @@ fn main() {
(0..BATCH_SIZE * IN_DIM)
.map(|x| x as f32)
.collect::<Vec<f32>>(),
).unwrap();
)
.unwrap();
let w = Array::try_from(params.get("dense0_weight").unwrap())
.unwrap()
.into_shape((IN_DIM * 2, IN_DIM))
......@@ -66,7 +68,7 @@ fn main() {
let expected_o1 = &right - 1f32;
exec.load_params(params);
exec.set_input("data", x.clone().into());
exec.set_input("data", (&x).into());
check_sum!(exec, data, x);
check_sum!(exec, dense0_weight, w);
......
......@@ -2,11 +2,11 @@
name = "test-tvm-basic"
version = "0.0.0"
license = "Apache-2.0"
authors = ["Nick Hynes <nhynes@berkeley.edu>"]
authors = ["TVM Contributors"]
[dependencies]
ndarray = "0.11.2"
tvm = { path = "../../" }
tvm-runtime = { path = "../../" }
[build-dependencies]
ar = "0.6.0"
extern crate ar;
use std::{env, path::PathBuf, process::Command};
use std::{env, path::Path, process::Command};
use ar::Builder;
use std::fs::File;
......@@ -11,17 +11,23 @@ fn main() {
let output = Command::new(concat!(
env!("CARGO_MANIFEST_DIR"),
"/src/build_test_lib.py"
)).arg(&out_dir)
))
.arg(&out_dir)
.output()
.expect("Failed to execute command");
if output.stderr.len() > 0 {
panic!(String::from_utf8(output.stderr).unwrap());
}
assert!(
Path::new(&format!("{}/test.o", out_dir)).exists(),
"Could not build tvm lib: {}",
String::from_utf8(output.stderr)
.unwrap()
.trim()
.split("\n")
.last()
.unwrap_or("")
);
let in_path: PathBuf = [&out_dir, "test.o"].iter().collect();
let out_path: PathBuf = [&out_dir, "libtest.a"].iter().collect();
let mut builder = Builder::new(File::create(out_path.to_str().unwrap()).unwrap());
builder.append_path(in_path.to_str().unwrap()).unwrap();
let mut builder = Builder::new(File::create(format!("{}/libtest.a", out_dir)).unwrap());
builder.append_path(format!("{}/test.o", out_dir)).unwrap();
println!("cargo:rustc-link-lib=static=test");
println!("cargo:rustc-link-search=native={}", out_dir);
......
extern crate ndarray;
#[macro_use]
extern crate tvm;
extern crate tvm_runtime;
use ndarray::Array;
use tvm::{
ffi::runtime::DLTensor,
runtime::{Module, SystemLibModule},
};
use tvm_runtime::{DLTensor, Module, SystemLibModule};
fn main() {
let syslib = SystemLibModule::default();
......
mod allocator;
mod array;
mod module;
#[macro_use]
mod packed_func;
mod graph;
#[cfg(target_env = "sgx")]
#[macro_use]
pub mod sgx;
mod threading;
mod workspace;
use std::os::raw::c_char;
pub use self::{array::*, graph::*, module::*, packed_func::*, threading::*, workspace::*};
#[cfg(target_env = "sgx")]
use self::sgx::ocall_packed_func;
#[no_mangle]
pub extern "C" fn TVMAPISetLastError(cmsg: *const c_char) {
#[cfg(not(target_env = "sgx"))]
unsafe {
panic!(std::ffi::CStr::from_ptr(cmsg).to_str().unwrap());
}
#[cfg(target_env = "sgx")]
ocall_packed!("__sgx_set_last_error__", cmsg);
}
use std::{any::Any, convert::TryFrom, marker::PhantomData, os::raw::c_void};
use super::Tensor;
use ffi::runtime::{
BackendPackedCFunc, DLDataTypeCode_kDLFloat, DLDataTypeCode_kDLInt, DLTensor,
TVMTypeCode_kArrayHandle, TVMTypeCode_kHandle, TVMTypeCode_kNDArrayContainer, TVMValue,
};
use errors::*;
pub type PackedFunc = Box<Fn(&[TVMArgValue]) -> TVMRetValue + Send + Sync>;
/// Calls a packed function and returns a `TVMRetValue`.
///
/// # Example
///
/// `call_packed!(my_tvm_func, &mut arg1, &mut arg2)`
#[macro_export]
macro_rules! call_packed {
($fn:expr, $($args:expr),+) => {
$fn(&[$($args.into(),)+])
};
($fn:expr) => {
$fn(&Vec::new())
};
}
/// A borrowed TVMPODValue. Can be constructed using `into()` but the preferred way
/// to obtain a `TVMArgValue` is automatically via `call_packed!`.
#[derive(Clone, Copy)]
pub struct TVMArgValue<'a> {
_lifetime: PhantomData<&'a ()>,
pub(crate) value: TVMValue,
pub(crate) type_code: i64,
}
impl<'a> TVMArgValue<'a> {
pub fn new(value: TVMValue, type_code: i64) -> Self {
TVMArgValue {
_lifetime: PhantomData,
value: value,
type_code: type_code,
}
}
}
/// Creates a conversion to a `TVMArgValue` for a primitive type and DLDataTypeCode.
macro_rules! impl_prim_tvm_arg {
($type:ty, $field:ident, $code:expr, $as:ty) => {
impl<'a> From<$type> for TVMArgValue<'a> {
fn from(val: $type) -> Self {
TVMArgValue {
value: TVMValue { $field: val as $as },
type_code: $code as i64,
_lifetime: PhantomData,
}
}
}
impl<'a> TryFrom<TVMArgValue<'a>> for $type {
type Error = Error;
fn try_from(val: TVMArgValue<'a>) -> Result<Self> {
ensure!(
val.type_code == $code as i64,
"Could not downcast arg. Expected `{}`, got `{}`",
$code,
val.type_code
);
Ok(unsafe { val.value.$field as $type })
}
}
};
($type:ty, $field:ident, $code:expr) => {
impl_prim_tvm_arg!($type, $field, $code, $type);
};
($type:ty,v_int64) => {
impl_prim_tvm_arg!($type, v_int64, DLDataTypeCode_kDLInt, i64);
};
($type:ty,v_float64) => {
impl_prim_tvm_arg!($type, v_float64, DLDataTypeCode_kDLFloat, f64);
};
}
impl_prim_tvm_arg!(f32, v_float64);
impl_prim_tvm_arg!(f64, v_float64);
impl_prim_tvm_arg!(i8, v_int64);
impl_prim_tvm_arg!(u8, v_int64);
impl_prim_tvm_arg!(i32, v_int64);
impl_prim_tvm_arg!(u32, v_int64);
impl_prim_tvm_arg!(i64, v_int64);
impl_prim_tvm_arg!(u64, v_int64);
/// Creates a conversion to a `TVMArgValue` for an object handle.
impl<'a, T> From<*const T> for TVMArgValue<'a> {
fn from(ptr: *const T) -> Self {
TVMArgValue {
value: TVMValue {
v_handle: ptr as *mut T as *mut c_void,
},
type_code: TVMTypeCode_kArrayHandle as i64,
_lifetime: PhantomData,
}
}
}
/// Creates a conversion to a `TVMArgValue` for a mutable object handle.
impl<'a, T> From<*mut T> for TVMArgValue<'a> {
fn from(ptr: *mut T) -> Self {
TVMArgValue {
value: TVMValue {
v_handle: ptr as *mut c_void,
},
type_code: TVMTypeCode_kHandle as i64,
_lifetime: PhantomData,
}
}
}
impl<'a> From<&'a mut DLTensor> for TVMArgValue<'a> {
fn from(arr: &'a mut DLTensor) -> Self {
TVMArgValue {
value: TVMValue {
v_handle: arr as *mut _ as *mut c_void,
},
type_code: TVMTypeCode_kArrayHandle as i64,
_lifetime: PhantomData,
}
}
}
impl<'a> From<&'a DLTensor> for TVMArgValue<'a> {
fn from(arr: &'a DLTensor) -> Self {
TVMArgValue {
value: TVMValue {
v_handle: arr as *const _ as *mut DLTensor as *mut c_void,
},
type_code: TVMTypeCode_kArrayHandle as i64,
_lifetime: PhantomData,
}
}
}
impl<'a> TryFrom<TVMArgValue<'a>> for Tensor<'a> {
type Error = Error;
fn try_from(val: TVMArgValue<'a>) -> Result<Self> {
ensure!(
val.type_code == TVMTypeCode_kArrayHandle as i64
|| val.type_code == TVMTypeCode_kNDArrayContainer as i64,
"Could not downcast arg. Expected `{}` or `{}`, but got `{}`",
TVMTypeCode_kArrayHandle,
TVMTypeCode_kNDArrayContainer,
val.type_code,
);
let dlt = unsafe { *(val.value.v_handle as *mut DLTensor as *const DLTensor) };
Ok(dlt.into())
}
}
/// An owned TVMPODValue. Can be converted from a variety of primitive and object types.
/// Can be downcasted using `try_from` if it contains the desired type.
///
/// # Example
///
/// ```
/// let a = 42u32;
/// let b: i64 = TVMRetValue::from(a).try_into().unwrap();
///
/// let s = "hello, world!";
/// let t: TVMRetValue = s.into();
/// assert_eq!(String::try_from(t).unwrap(), s);
/// ```
pub struct TVMRetValue {
/// A primitive return value, if any.
prim_value: u64,
/// An object return value, if any.
box_value: Box<Any>,
/// The DLDataTypeCode which determines whether `prim_value` or `box_value` is in use.
type_code: i64,
}
#[cfg(target_env = "sgx")]
impl TVMRetValue {
pub(crate) fn from_tvm_value(value: TVMValue, type_code: i64) -> Self {
unsafe {
Self {
prim_value: match type_code {
0 | 1 => value.v_int64 as u64,
2 => value.v_float64 as u64,
3 | 7 | 8 | 9 | 10 => value.v_handle as u64,
11 | 12 => value.v_str as u64,
_ => 0,
} as u64,
box_value: box (),
type_code: type_code,
}
}
}
pub fn into_tvm_value(self) -> (TVMValue, i64) {
let val = match self.type_code {
0 | 1 => TVMValue {
v_int64: self.prim_value.clone() as i64,
},
2 => TVMValue {
v_float64: self.prim_value.clone() as f64,
},
3 | 7 | 8 | 9 | 10 | 13 => TVMValue {
v_handle: Box::into_raw(self.box_value) as *mut c_void,
},
11 | 12 => TVMValue {
v_str: Box::into_raw(self.box_value) as *const _,
},
_ => unreachable!(),
};
(val, self.type_code)
}
}
impl Default for TVMRetValue {
fn default() -> Self {
TVMRetValue {
prim_value: 0,
box_value: box (),
type_code: 0,
}
}
}
macro_rules! impl_prim_ret_value {
($type:ty, $code:expr) => {
impl From<$type> for TVMRetValue {
fn from(val: $type) -> Self {
TVMRetValue {
prim_value: val as u64,
box_value: box (),
type_code: $code,
}
}
}
impl TryFrom<TVMRetValue> for $type {
type Error = Error;
fn try_from(ret: TVMRetValue) -> Result<$type> {
if ret.type_code == $code {
Ok(ret.prim_value as $type)
} else {
bail!(ErrorKind::TryFromTVMRetValueError(
stringify!($type).to_string(),
ret.type_code
))
}
}
}
};
}
macro_rules! impl_boxed_ret_value {
($type:ty, $code:expr) => {
impl From<$type> for TVMRetValue {
fn from(val: $type) -> Self {
TVMRetValue {
prim_value: 0,
box_value: box val,
type_code: $code,
}
}
}
impl TryFrom<TVMRetValue> for $type {
type Error = Error;
fn try_from(ret: TVMRetValue) -> Result<$type> {
if let Ok(val) = ret.box_value.downcast::<$type>() {
Ok(*val)
} else {
bail!(ErrorKind::TryFromTVMRetValueError(
stringify!($type).to_string(),
ret.type_code
))
}
}
}
};
}
impl_prim_ret_value!(i8, 0);
impl_prim_ret_value!(u8, 1);
impl_prim_ret_value!(i16, 0);
impl_prim_ret_value!(u16, 1);
impl_prim_ret_value!(i32, 0);
impl_prim_ret_value!(u32, 1);
impl_prim_ret_value!(f32, 2);
impl_prim_ret_value!(i64, 0);
impl_prim_ret_value!(u64, 1);
impl_prim_ret_value!(f64, 2);
impl_prim_ret_value!(isize, 0);
impl_prim_ret_value!(usize, 1);
impl_boxed_ret_value!(String, 11);
impl<'a, 't> From<&'t Tensor<'a>> for TVMRetValue {
fn from(val: &'t Tensor<'a>) -> Self {
TVMRetValue {
prim_value: 0,
box_value: box DLTensor::from(val),
type_code: TVMTypeCode_kNDArrayContainer as i64,
}
}
}
impl<'a> TryFrom<TVMRetValue> for Tensor<'a> {
type Error = Error;
fn try_from(ret: TVMRetValue) -> Result<Self> {
ensure!(
ret.type_code == TVMTypeCode_kArrayHandle as i64
|| ret.type_code == TVMTypeCode_kNDArrayContainer as i64,
"Could not downcast arg. Expected `{}` or `{}`, but got `{}`",
TVMTypeCode_kArrayHandle,
TVMTypeCode_kNDArrayContainer,
ret.type_code,
);
let dlt = unsafe { *(ret.prim_value as *mut DLTensor as *const DLTensor) };
Ok(dlt.into())
}
}
// @see `WrapPackedFunc` in `llvm_module.cc`.
pub(super) fn wrap_backend_packed_func(func: BackendPackedCFunc) -> PackedFunc {
box move |args: &[TVMArgValue]| {
func(
args
.iter()
.map(|ref arg| arg.value)
.collect::<Vec<TVMValue>>()
.as_ptr(),
args
.iter()
.map(|ref arg| arg.type_code as i32)
.collect::<Vec<i32>>()
.as_ptr() as *const i32,
args.len() as i32,
);
TVMRetValue::default()
}
}
......@@ -2,24 +2,60 @@
set -e
export LD_LIBRARY_PATH=lib:$LD_LIBRARY_PATH
export TVM_HOME="$(git rev-parse --show-toplevel)"
tvm_root="$(git rev-parse --show-toplevel)"
export PYTHONPATH="$tvm_root/python":"$tvm_root/nnvm/python":"$tvm_root/topi/python"
export LD_LIBRARY_PATH="$TVM_HOME/lib":"$TVM_HOME/build":"$TVM_HOME/nnvm":$LD_LIBRARY_PATH
export PYTHONPATH="$TVM_HOME/python":"$TVM_HOME/nnvm/python":"$TVM_HOME/topi/python"
export RUST_DIR="$TVM_HOME/rust"
#cd rust
#cargo fmt -- --check
cd $RUST_DIR
cargo fmt -- --check
# test common
cd $RUST_DIR/common
cargo build --features runtime
cargo test --features runtime --tests
cargo build --features frontend
cargo test --features frontend --tests
# test runtime
cd $RUST_DIR/runtime
# run basic tests
#python3 tests/build_model.py
#cargo test --tests
python3 tests/build_model.py
cargo test --tests
# run TVM module test
#cd tests/test_tvm_basic
#cargo run
#cd -
cd tests/test_tvm_basic
cargo run
cd -
# run NNVM graph test
#cd tests/test_nnvm
#cargo run
#cd -
cd tests/test_nnvm
cargo run
cd -
# test frontend
cd $RUST_DIR/frontend
cargo test --tests -- --test-threads=1
# run basic tests on cpu
cd tests/basics
cargo build --features cpu
cargo run --features cpu
# uncomment when have more CI resources
# cargo build --features gpu
# cargo run --features gpu
# fi
cd -
# run callback tests separately: https://discuss.tvm.ai/t/are-global-functions-need-to-be-accessed-in-separate-processes/1075
cd tests/callback
cargo build
cargo run --bin int
cargo run --bin float
cargo run --bin array
cargo run --bin string
cd -
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment