Commit e0810512 by Zhi Committed by Tianqi Chen

[TVM][RUNTIME] A minimum example to generate external library wrappers for DSOModule (#4280)

parent 74299972
......@@ -232,6 +232,12 @@ if(USE_VM_PROFILER)
list(APPEND RUNTIME_SRCS ${RUNTIME_VM_PROFILER_SRCS})
endif(USE_VM_PROFILER)
if(USE_EXAMPLE_EXT_RUNTIME)
message(STATUS "Build with example external runtime...")
file(GLOB RUNTIME_EXAMPLE_EXTERNAL_SRCS src/runtime/contrib/example_ext_runtime/*.cc)
list(APPEND RUNTIME_SRCS ${RUNTIME_EXAMPLE_EXTERNAL_SRCS})
endif(USE_EXAMPLE_EXT_RUNTIME)
# Module rules
include(cmake/modules/VTA.cmake)
include(cmake/modules/CUDA.cmake)
......
......@@ -181,3 +181,6 @@ set(USE_VTA_TSIM ON)
# Whether to build VTA FPGA driver (device side only)
set(USE_VTA_FPGA OFF)
# Whether to build the example external runtime module
set(USE_EXAMPLE_EXT_RUNTIME OFF)
......@@ -111,7 +111,7 @@ class Module : public ObjectRef {
*
* \endcode
*/
class ModuleNode : public Object {
class TVM_DLL ModuleNode : public Object {
public:
/*! \brief virtual destructor */
virtual ~ModuleNode() {}
......
......@@ -144,7 +144,12 @@ class Module(ModuleBase):
else:
fcompile = _cc.create_shared
if self.type_key == "c":
kwargs.update({'options': ["-I" + path for path in find_include_path()]})
options = []
if "options" in kwargs:
opts = kwargs["options"]
options = opts if isinstance(opts, (list, tuple)) else [opts]
opts = options + ["-I" + path for path in find_include_path()]
kwargs.update({'options': opts})
fcompile(file_name, files, **kwargs)
def time_evaluator(self, func_name, ctx, number=10, repeat=1, min_repeat_ms=0):
......
......@@ -185,5 +185,8 @@ runtime::Module DeviceSourceModuleCreate(
TVM_REGISTER_GLOBAL("module.source_module_create")
.set_body_typed(SourceModuleCreate);
TVM_REGISTER_GLOBAL("module.csource_module_create")
.set_body_typed(CSourceModuleCreate);
} // namespace codegen
} // namespace tvm
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file external_runtime_test.cc
* \brief Test an example runtime module to interpreting a json string.
*
* This is an exmaple runtime employed to show how we can interprete and execute
* a json string that represents a simple computational (sub)graph. Users will
* mainly need to implement four functions as follows:
* - GetFunction. It is used to get the packed function from the json runtime
* module using a provided function name. This function returns a PackedFunc
* that can be directly invoked by feeding it with parameters.
* - SaveToBinary. This function is used to achieve the serialization purpose.
* The emitted binary stream can be directly saved to disk so that users can
* load then back when needed.
* - LoadFromBinary. This function uses binary stream to load the json that
* saved by SaveToBinary which essentially performs deserialization.
*/
#include <dmlc/logging.h>
#include <tvm/runtime/c_runtime_api.h>
#include <tvm/runtime/memory.h>
#include <tvm/runtime/module.h>
#include <tvm/runtime/ndarray.h>
#include <tvm/runtime/object.h>
#include <tvm/runtime/packed_func.h>
#include <tvm/runtime/registry.h>
#include <fstream>
#include <cmath>
#include <map>
#include <sstream>
#include <string>
#include <vector>
namespace tvm {
namespace runtime {
// A simple JSON node that contains multiple inputs and a single output.
struct NodeEntry {
int id;
int output;
std::vector<int> inputs;
};
/*!
* \brief The following 6 functions are examples for demonstration. Users need
* to provide their own API when they use the external library. The ones that
* accecpt TVMValue are wrappers used to bridge the PackedFunc and user-defined
* kernels.
*/
void Add_(float* a, int len_a, float* b, int len_b, float* c) {
for (int i = 0; i < len_a * len_b; i++) {
c[i] = a[i] + b[i];
}
}
int Add(TVMValue* value, int* type_code, int nargs) {
CHECK_EQ(nargs, 3U) << "Expect 3 args, but get " << nargs << "\n";
DLTensor* arg0 = static_cast<DLTensor*>(value[0].v_handle);
DLTensor* arg1 = static_cast<DLTensor*>(value[1].v_handle);
DLTensor* out = static_cast<DLTensor*>(value[2].v_handle);
Add_(static_cast<float*>(arg0->data), arg0->shape[0],
static_cast<float*>(arg1->data), arg1->shape[0],
static_cast<float*>(out->data));
return 0;
}
void Sub_(float* a, int len_a, float* b, int len_b, float* c) {
for (int i = 0; i < len_a * len_b; i++) {
c[i] = a[i] - b[i];
}
}
int Sub(TVMValue* value, int* type_code, int nargs) {
CHECK_EQ(nargs, 3U) << "Expect 3 args, but get " << nargs << "\n";
DLTensor* arg0 = static_cast<DLTensor*>(value[0].v_handle);
DLTensor* arg1 = static_cast<DLTensor*>(value[1].v_handle);
DLTensor* out = static_cast<DLTensor*>(value[2].v_handle);
Sub_(static_cast<float*>(arg0->data), arg0->shape[0],
static_cast<float*>(arg1->data), arg1->shape[0],
static_cast<float*>(out->data));
return 0;
}
void Mul_(float* a, int len_a, float* b, int len_b, float* c) {
for (int i = 0; i < len_a * len_b; i++) {
c[i] = a[i] * b[i];
}
}
int Mul(TVMValue* value, int* type_code, int nargs) {
CHECK_EQ(nargs, 3U) << "Expect 3 args, but get " << nargs << "\n";
DLTensor* arg0 = static_cast<DLTensor*>(value[0].v_handle);
DLTensor* arg1 = static_cast<DLTensor*>(value[1].v_handle);
DLTensor* out = static_cast<DLTensor*>(value[2].v_handle);
Mul_(static_cast<float*>(arg0->data), arg0->shape[0],
static_cast<float*>(arg1->data), arg1->shape[0],
static_cast<float*>(out->data));
return 0;
}
/*!
* \brief The example json runtime module. Here we define a simple format for
* the computational graph using json for demonstration purpose. Users should
* customize their own format.
*/
class ExampleJsonModule : public ModuleNode {
public:
explicit ExampleJsonModule(std::string graph_json) {
this->graph_json_ = graph_json;
ParseJson(this->graph_json_);
}
/*!
* \brief Get a PackedFunc from the example json module.
*
* \param name the name of the function.
* \param sptr_to_self The ObjectPtr that points to this module node.
*
* \return The function pointer when it is found, otherwise, PackedFunc(nullptr).
*/
PackedFunc GetFunction(const std::string& name,
const ObjectPtr<Object>& sptr_to_self) final {
if (this->graph_.find(name) != this->graph_.end()) {
this->curr_subgraph_ = name;
return PackedFunc([sptr_to_self, this](TVMArgs args, TVMRetValue* rv) {
for (auto i = 0; i < args.size(); ++i) {
CHECK(args[i].type_code() == kNDArrayContainer || args[i].type_code() == kArrayHandle)
<< "Expect NDArray or DLTensor as inputs"
<< "\n";
if (args[i].type_code() == kArrayHandle) {
DLTensor* arg = args[i];
this->data_entry_[i].CopyFrom(arg);
} else {
NDArray arg = args[i];
this->data_entry_[i].CopyFrom(arg);
}
}
for (const auto& it : this->graph_[this->curr_subgraph_]) {
this->Run(it.id, it.inputs, it.output);
}
CHECK_GT(graph_.count(this->curr_subgraph_), 0U);
auto out_idx = graph_[this->curr_subgraph_].back().output;
if (args[args.size() - 1].type_code() == kArrayHandle) {
DLTensor* arg = args[args.size() - 1];
this->data_entry_[out_idx].CopyTo(arg);
} else {
NDArray arg = args[args.size() - 1];
this->data_entry_[out_idx].CopyTo(arg);
}
*rv = data_entry_.back();
});
} else {
LOG(FATAL) << "Unkown runtime type: " << name << "\n";
return PackedFunc();
}
}
/*!
* \brief Execute a function with provided arguments. The output will be
* packed to the last argument according to TVM's calling convention.
*
* \param id The id of the function.
* \param inputs The input indices that indicate where the data should be
* fetched in the data entry pool.
* \param output The output index.
*/
void Run(int id, const std::vector<int>& inputs, int output) {
std::vector<int> args(inputs.begin(), inputs.end());
args.push_back(output);
std::vector<TVMValue> values(args.size());
std::vector<int> type_codes(args.size());
TVMArgsSetter setter(values.data(), type_codes.data());
if (op_id_[id] == "add" || op_id_[id] == "sub" || op_id_[id] == "mul") {
for (size_t i = 0; i < args.size(); i++) {
setter(i, data_entry_[args[i]]);
}
}
if (op_id_[id] == "add") {
Add(values.data(), type_codes.data(), args.size());
} else if (op_id_[id] == "sub") {
Sub(values.data(), type_codes.data(), args.size());
} else if (op_id_[id] == "mul") {
Mul(values.data(), type_codes.data(), args.size());
} else {
LOG(FATAL) << "Unknown op: " << op_id_[id] << "\n";
}
}
const char* type_key() const { return "examplejson"; }
/*!
* \brief Save the json runtime to a binary stream, which can then be
* serialized to disk.
*
* \param stream. The stream to save the binary.
*/
void SaveToBinary(dmlc::Stream* stream) final {
stream->Write(this->graph_json_);
}
/*!
* \brief Parse the example json string.
*
* \param json. The json string that represents a simple computational graph.
*
* \Note this is a very simple json that only serves for demostration purpose.
* Users usually have their own format and they can serialize it using the
* SaveToBinary method and deserialize it using LoadFromFile.
*/
void ParseJson(const std::string& json) {
std::string line;
std::string curr_subgraph;
std::stringstream ss(json);
while (std::getline(ss, line, '\n')) {
std::stringstream ss2(line);
std::string token;
int id = 0;
ss2 >> token;
if (token.find("json_rt_") != std::string::npos) {
curr_subgraph = token;
continue;
}
ss2 >> id;
if (op_id_.size() <= static_cast<size_t>(id)) {
op_id_.resize(id + 1);
data_entry_.resize(id + 1);
}
int64_t total_elements = 1;
std::vector<int64_t> shape;
if (token == "input") {
int64_t size = 0;
while (ss2 >> size) {
total_elements *= size;
shape.push_back(size);
}
} else {
op_id_[id] = token;
bool shape_data = false;
NodeEntry entry;
while (ss2 >> token) {
if (token == "shape:") {
shape_data = true;
} else if (shape_data) {
total_elements *= std::stoll(token);
shape.push_back(std::stoll(token));
} else if (token != "inputs:") {
entry.inputs.push_back(std::stoi(token));
}
}
entry.id = id;
entry.output = id;
graph_[curr_subgraph].push_back(entry);
}
DLContext ctx;
ctx.device_type = static_cast<DLDeviceType>(1);
ctx.device_id = 0;
data_entry_[id] = NDArray::Empty(shape, DLDataType{kDLFloat, 32, 1}, ctx);
}
}
/*!
* \brief Create a module from a file path of a serialized graph.
*
* \param path The file path contains a computational graph representation.
*
* \return The created json module.
*/
static Module Create(const std::string& path) {
std::ifstream filep;
filep.open(path, std::ios::in);
std::string graph_json;
std::string line;
while (std::getline(filep, line)) {
graph_json += line;
graph_json += "\n";
}
filep.close();
auto n = tvm::runtime::make_object<ExampleJsonModule>(graph_json);
return Module(n);
}
/*!
* \brief Load a json module from stream.
*
* \param strm The binary stream to load json.
*
* \return The created json module.
*/
static Module LoadFromBinary(void* strm) {
dmlc::Stream* stream = static_cast<dmlc::Stream*>(strm);
std::string graph_json;
stream->Read(&graph_json);
auto n = tvm::runtime::make_object<ExampleJsonModule>(graph_json);
return Module(n);
}
private:
/* \brief The json string that represents a computational graph. */
std::string graph_json_;
/* \brief The subgraph that being processed. */
std::string curr_subgraph_;
/*! \brief A simple graph from subgraph id to node entries. */
std::map<std::string, std::vector<NodeEntry> > graph_;
/* \brief A simple pool to contain the tensor for each node in the graph. */
std::vector<NDArray> data_entry_;
/* \brief A mapping from node id to op name. */
std::vector<std::string> op_id_;
};
TVM_REGISTER_GLOBAL("module.loadfile_examplejson")
.set_body([](TVMArgs args, TVMRetValue* rv) {
*rv = ExampleJsonModule::Create(args[0]);
});
TVM_REGISTER_GLOBAL("module.loadbinary_examplejson")
.set_body_typed(ExampleJsonModule::LoadFromBinary);
} // namespace runtime
} // namespace tvm
......@@ -18,7 +18,7 @@
*/
/*!
* \file dso_dll_module.cc
* \file dso_module.cc
* \brief Module to load from dynamic shared library.
*/
#include <tvm/runtime/module.h>
......
......@@ -396,7 +396,7 @@ std::pair<std::function<void()>, std::shared_ptr<GraphRuntime::OpArgs> > GraphRu
// Get compiled function from the module that contains both host and device
// code.
tvm::runtime::PackedFunc pf = module_.GetFunction(param.func_name, false);
tvm::runtime::PackedFunc pf = module_.GetFunction(param.func_name, true);
CHECK(pf != nullptr) << "no such function in module: " << param.func_name;
auto fexec = [arg_ptr, pf]() {
......
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from shutil import which
import json
import pytest
import sys
import numpy as np
import tvm
from tvm import relay
from tvm import module as _tvm_module
from tvm.contrib import util
tmp_path = util.tempdir()
def generate_csource_module():
"""Mock the codegen with an external library (e.g., CBLAS/cuDNN)"""
code = r'''
#include <tvm/runtime/c_runtime_api.h>
#include <dlpack/dlpack.h>
#include <cstdint>
#include <cstring>
#include <iostream>
#define GCC_BINARY_OP_1D(p_ID_, p_OP_, p_DIM1_) \
extern "C" void p_ID_(float* a, float* b, float* out) { \
for (int64_t i = 0; i < p_DIM1_; ++i) { \
out[i] = a[i] p_OP_ b[i]; \
} \
}
#define GCC_BINARY_OP_2D(p_ID_, p_OP_, p_DIM1_, p_DIM2_) \
extern "C" void p_ID_(float* a, float* b, float* out) { \
for (int64_t i = 0; i < p_DIM1_; ++i) { \
for (int64_t j = 0; j < p_DIM2_; ++j) { \
int64_t k = i * p_DIM2_ + j; \
out[k] = a[k] p_OP_ b[k]; \
} \
} \
}
GCC_BINARY_OP_2D(gcc_1_0, *, 10, 10);
GCC_BINARY_OP_2D(gcc_1_1, -, 10, 10);
GCC_BINARY_OP_2D(gcc_1_2, +, 10, 10);
extern "C" void gcc_1_(float* gcc_input4, float* gcc_input5,
float* gcc_input6, float* gcc_input7, float* out) {
float* buf_0 = (float*)malloc(4 * 100);
float* buf_1 = (float*)malloc(4 * 100);
gcc_1_2(gcc_input4, gcc_input5, buf_0);
gcc_1_1(buf_0, gcc_input6, buf_1);
gcc_1_0(buf_1, gcc_input7, out);
free(buf_0);
free(buf_1);
}
extern "C" int json_rt_1(TVMValue* value, int* type_code, int nargs) {
if (nargs != 5) {
printf("Expect 5 args, but get %d", nargs);
return 1;
}
DLTensor* arg0 = static_cast<DLTensor*>(value[0].v_handle);
DLTensor* arg1 = static_cast<DLTensor*>(value[1].v_handle);
DLTensor* arg2 = static_cast<DLTensor*>(value[2].v_handle);
DLTensor* arg3 = static_cast<DLTensor*>(value[3].v_handle);
DLTensor* out = static_cast<DLTensor*>(value[4].v_handle);
gcc_1_(static_cast<float*>(arg0->data), static_cast<float*>(arg1->data),
static_cast<float*>(arg2->data), static_cast<float*>(arg3->data),
static_cast<float*>(out->data));
return 0;
}
GCC_BINARY_OP_2D(gcc_0_0, *, 10, 10);
GCC_BINARY_OP_2D(gcc_0_1, -, 10, 10);
GCC_BINARY_OP_2D(gcc_0_2, +, 10, 10);
extern "C" void gcc_0_(float* gcc_input0, float* gcc_input1,
float* gcc_input2, float* gcc_input3, float* out) {
float* buf_0 = (float*)malloc(4 * 100);
float* buf_1 = (float*)malloc(4 * 100);
gcc_0_2(gcc_input0, gcc_input1, buf_0);
gcc_0_1(buf_0, gcc_input2, buf_1);
gcc_0_0(buf_1, gcc_input3, out);
free(buf_0);
free(buf_1);
}
extern "C" int json_rt_0(TVMValue* value, int* type_code, int nargs) {
if (nargs != 5) {
printf("Expect 5 args, but get %d", nargs);
return 1;
}
DLTensor* arg0 = static_cast<DLTensor*>(value[0].v_handle);
DLTensor* arg1 = static_cast<DLTensor*>(value[1].v_handle);
DLTensor* arg2 = static_cast<DLTensor*>(value[2].v_handle);
DLTensor* arg3 = static_cast<DLTensor*>(value[3].v_handle);
DLTensor* out = static_cast<DLTensor*>(value[4].v_handle);
gcc_0_(static_cast<float*>(arg0->data), static_cast<float*>(arg1->data),
static_cast<float*>(arg2->data), static_cast<float*>(arg3->data),
static_cast<float*>(out->data));
return 0;
}
'''
csource_module = _tvm_module.csource_module_create(code, "cc")
return csource_module
def generate_engine_module():
"""
Mock the codegen of an external backend with its own runtime engine
(e.g., MKL-DNN/TensorRT)
"""
code = r'''
#include <tvm/runtime/c_runtime_api.h>
#include <dlpack/dlpack.h>
#include "gcc_engine.h"
extern "C" void gcc_1_(float* gcc_input4, float* gcc_input5,
float* gcc_input6, float* gcc_input7, float* out) {
std::string graph =
"add_2d,10,10\n"
"sub_2d,10,10\n"
"mul_2d,10,10\n";
Engine engine;
engine.run(graph, {gcc_input4, gcc_input5, gcc_input6, gcc_input7}, out);
}
extern "C" int json_rt_1(TVMValue* value, int* type_code, int nargs) {
if (nargs != 5) {
printf("Expect 5 args, but get %d", nargs);
return 1;
}
DLTensor* arg0 = static_cast<DLTensor*>(value[0].v_handle);
DLTensor* arg1 = static_cast<DLTensor*>(value[1].v_handle);
DLTensor* arg2 = static_cast<DLTensor*>(value[2].v_handle);
DLTensor* arg3 = static_cast<DLTensor*>(value[3].v_handle);
DLTensor* out = static_cast<DLTensor*>(value[4].v_handle);
gcc_1_(static_cast<float*>(arg0->data), static_cast<float*>(arg1->data),
static_cast<float*>(arg2->data), static_cast<float*>(arg3->data),
static_cast<float*>(out->data));
return 0;
}
extern "C" void gcc_0_(float* gcc_input0, float* gcc_input1,
float* gcc_input2, float* gcc_input3, float* out) {
std::string graph =
"add_2d,10,10\n"
"sub_2d,10,10\n"
"mul_2d,10,10\n";
Engine engine;
engine.run(graph, {gcc_input0, gcc_input1, gcc_input2, gcc_input3}, out);
}
extern "C" int json_rt_0(TVMValue* value, int* type_code, int nargs) {
if (nargs != 5) {
printf("Expect 5 args, but get %d", nargs);
return 1;
}
DLTensor* arg0 = static_cast<DLTensor*>(value[0].v_handle);
DLTensor* arg1 = static_cast<DLTensor*>(value[1].v_handle);
DLTensor* arg2 = static_cast<DLTensor*>(value[2].v_handle);
DLTensor* arg3 = static_cast<DLTensor*>(value[3].v_handle);
DLTensor* out = static_cast<DLTensor*>(value[4].v_handle);
gcc_0_(static_cast<float*>(arg0->data), static_cast<float*>(arg1->data),
static_cast<float*>(arg2->data), static_cast<float*>(arg3->data),
static_cast<float*>(out->data));
return 0;
}
'''
gen_gcc_engine()
csource_module = _tvm_module.csource_module_create(code, "cc")
return csource_module
def gen_gcc_engine():
"""An example of external backend runtime engine. This is supposed to be provided
by third-party vendors and included when building the generated external kernel code.
"""
code = r'''
#ifndef _GCC_ENGINE_H_
#define _GCC_ENGINE_H_
#include <cstdint>
#include <string>
#include <sstream>
#include <vector>
#define GCC_BINARY_OP_2D(p_ID_, p_OP_) \
void p_ID_(int64_t dim1, int64_t dim2, float* a, float* b, float* out) { \
for (int64_t i = 0; i < dim1; ++i) { \
for (int64_t j = 0; j < dim2; ++j) { \
int64_t k = i * dim2 + j; \
out[k] = a[k] p_OP_ b[k]; \
} \
} \
}
GCC_BINARY_OP_2D(add_2d, +);
GCC_BINARY_OP_2D(sub_2d, -);
GCC_BINARY_OP_2D(mul_2d, *);
struct Layer {
void (*op)(int64_t, int64_t, float*, float*, float*);
std::vector<int64_t> shapes;
std::vector<float*> args;
};
class Engine {
public:
float* alloc_buffer(int64_t size) {
float* buf = (float*)malloc(sizeof(float) * size);
buffers.push_back(buf);
return buf;
}
void add(std::string op, int64_t dim1, int64_t dim2, float* in1, float* in2, float* out) {
Layer layer;
layer.shapes.push_back(dim1);
layer.shapes.push_back(dim2);
layer.args.push_back(in1);
layer.args.push_back(in2);
layer.args.push_back(out);
if (op == "add_2d")
layer.op = &add_2d;
else if (op == "sub_2d")
layer.op = &sub_2d;
else if (op == "mul_2d")
layer.op = &mul_2d;
net.push_back(layer);
return ;
}
void run(std::string graph, std::vector<float*> args, float* out) {
std::stringstream ss(graph);
std::string line;
int layer_idx = 0;
int arg_idx = 0;
float* buf = nullptr;
while (std::getline(ss, line, '\n')) {
std::stringstream ss2(line);
std::string token;
std::vector<std::string> attrs;
while (std::getline(ss2, token, ',')) {
attrs.push_back(token);
}
int64_t dim1 = stoll(attrs[1]);
int64_t dim2 = stoll(attrs[2]);
auto out_buf = this->alloc_buffer(dim1 * dim2);
if (layer_idx == 0) {
this->add(attrs[0], dim1, dim2, args[0], args[1], out_buf);
buf = out_buf;
arg_idx = 2;
}
else {
this->add(attrs[0], dim1, dim2, buf, args[arg_idx], out_buf);
buf = out_buf;
arg_idx++;
}
layer_idx++;
}
this->net.back().args.back() = out;
for (auto layer : net) {
(*layer.op)(layer.shapes[0], layer.shapes[1], layer.args[0], layer.args[1], layer.args[2]);
}
}
~Engine() {
for (auto buf : buffers) {
free(buf);
}
}
private:
std::vector<Layer> net;
std::vector<float*> buffers;
};
#endif
'''
header_file = tmp_path.relpath("gcc_engine.h")
with open(header_file, 'w') as f:
f.write(code)
def get_synthetic_lib():
x = relay.var('x', shape=(10, 10))
w0 = relay.var('w0', shape=(10, 10))
w1 = relay.var('w1', shape=(10, 10))
w2 = relay.var('w2', shape=(10, 10))
w3 = relay.var('w3', shape=(10, 10))
w4 = relay.var('w4', shape=(10, 10))
w5 = relay.var('w5', shape=(10, 10))
w6 = relay.var('w6', shape=(10, 10))
w7 = relay.var('w7', shape=(10, 10))
# subgraph0
gcc_input0 = relay.var('gcc_input0', shape=(10, 10))
gcc_input1 = relay.var('gcc_input1', shape=(10, 10))
gcc_input2 = relay.var('gcc_input2', shape=(10, 10))
gcc_input3 = relay.var('gcc_input3', shape=(10, 10))
subgraph0 = relay.Function([gcc_input0, gcc_input1, gcc_input2,
gcc_input3], relay.copy(gcc_input0))
subgraph0 = subgraph0.set_attribute(
"Primitive", tvm.expr.IntImm("int32", 1))
# Call subgraph0
subgraph0_ret = relay.Call(subgraph0, [x, w0, w1, w2])
# subgraph1
gcc_input4 = relay.var('gcc_input4', shape=(10, 10))
gcc_input5 = relay.var('gcc_input5', shape=(10, 10))
gcc_input6 = relay.var('gcc_input6', shape=(10, 10))
gcc_input7 = relay.var('gcc_input7', shape=(10, 10))
subgraph1 = relay.Function([gcc_input4, gcc_input5, gcc_input6,
gcc_input7], relay.copy(gcc_input4))
subgraph1 = subgraph1.set_attribute(
"Primitive", tvm.expr.IntImm("int32", 1))
# Call subgraph1
subgraph1_ret = relay.Call(subgraph1, [x, w3, w4, w5])
# Other ops that will be executed on TVM.
add2 = relay.add(x, w6)
sub2 = relay.subtract(add2, w7)
ret = relay.concatenate((subgraph0_ret, subgraph1_ret, sub2), 0)
func = relay.Function([x, w0, w1, w2, w3, w4, w5, w6, w7], ret)
mod = relay.Module.from_expr(func)
_, lib, _ = relay.build(mod, "llvm")
return lib
def get_whole_graph_json():
nodex = {"op": "null", "name": "x", "inputs": []}
node0 = {"op": "null", "name": "w0", "inputs": []}
node1 = {"op": "null", "name": "w1", "inputs": []}
node2 = {"op": "null", "name": "w2", "inputs": []}
node3 = {"op": "null", "name": "w3", "inputs": []}
node4 = {"op": "null", "name": "w4", "inputs": []}
node5 = {"op": "null", "name": "w5", "inputs": []}
node6 = {"op": "null", "name": "w6", "inputs": []}
node7 = {"op": "null", "name": "w7", "inputs": []}
subgraph0 = {
"op": "tvm_op",
"name": "json_rt_0",
"attrs": {
"num_outputs": "1",
"num_inputs": "4",
"func_name": "json_rt_0",
"flatten_data": "0"
},
"inputs": [
[0, 0, 0],
[1, 0, 0],
[2, 0, 0],
[3, 0, 0],
]
}
subgraph1 = {
"op": "tvm_op",
"name": "json_rt_1",
"attrs": {
"num_outputs": "1",
"num_inputs": "4",
"func_name": "json_rt_1",
"flatten_data": "0"
},
"inputs": [
[0, 0, 0],
[4, 0, 0],
[5, 0, 0],
[6, 0, 0],
]
}
fused_op = {
"op": "tvm_op",
"name": "fused_add_subtract_concatenate",
"attrs": {
"num_outputs": "1",
"num_inputs": "5",
"func_name": "fused_add_subtract_concatenate",
"flatten_data": "0"
},
"inputs": [
[9, 0, 0],
[10, 0, 0],
[0, 0, 0],
[7, 0, 0],
[8, 0, 0]
]
}
nodes = [nodex, node0, node1, node2, node3, node4,
node5, node6, node7, subgraph0, subgraph1, fused_op]
arg_nodes = [0, 1, 2, 3, 4, 5, 6, 7, 8]
heads = [[11, 0, 0]]
node_row_ptr = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
storage_id = ["list_int", [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]]
shape = ["list_shape", [
[10, 10], [10, 10], [10, 10], [10, 10], [10, 10], [10, 10],
[10, 10], [10, 10], [10, 10], [10, 10], [10, 10], [30, 10]]]
dltype = ["list_str", [
"float32", "float32", "float32", "float32", "float32", "float32",
"float32", "float32", "float32", "float32", "float32", "float32"]]
attrs = {
"shape": shape,
"dltype": dltype,
"storage_id": storage_id,
}
graph = {"nodes": nodes,
"arg_nodes": arg_nodes,
"node_row_ptr": node_row_ptr,
"heads": heads,
"attrs": attrs}
return json.dumps(graph)
def run_extern(label, get_extern_src, **kwargs):
if which("gcc") is None:
print("Skip test because gcc is not available.")
obj_name = "{}.o".format(label)
lib_name = "external_{}.so".format(label)
# Get Json and the compiled library.
graph_json = get_whole_graph_json()
lib = get_synthetic_lib()
lib.save(obj_name)
# library that contains external code.
csource_module = get_extern_src()
kwargs["options"] = [obj_name] + kwargs["options"]
lib_path = tmp_path.relpath(lib_name)
csource_module.export_library(lib_path, fcompile=False, **kwargs)
# load module for execution.
lib = tvm.module.load(lib_path)
mod = tvm.contrib.graph_runtime.create(graph_json, lib, tvm.cpu(0))
x_data = np.random.rand(10, 10).astype('float32')
mod.set_input("x", x_data)
w_data = []
for i in range(8):
data = np.random.rand(10, 10).astype('float32')
w_data.append(data)
var = "w" + str(i)
mod.set_input(var, data)
mod.run()
out = tvm.nd.empty((30, 10), ctx=tvm.cpu())
out = mod.get_output(0, out)
tvm.testing.assert_allclose(
out.asnumpy(),
np.concatenate((((x_data + w_data[0]) - w_data[1]) * w_data[2],
((x_data + w_data[3]) - w_data[4]) * w_data[5],
x_data + w_data[6] - w_data[7]),
axis=0))
def test_dso_extern():
run_extern("lib", generate_csource_module, options=["-O2", "-std=c++11"])
def test_engine_extern():
run_extern("engine",
generate_engine_module,
options=["-O2", "-std=c++11", "-I" + tmp_path.relpath("")])
def test_json_extern():
if which("gcc") is None:
print("Skip test because gcc is not available.")
# Get subgraph Json.
subgraph_json = ("json_rt_0\n" +
"input 0 10 10\n" +
"input 1 10 10\n" +
"input 2 10 10\n" +
"input 3 10 10\n" +
"add 4 inputs: 0 1 shape: 10 10\n" +
"sub 5 inputs: 4 2 shape: 10 10\n" +
"mul 6 inputs: 5 3 shape: 10 10\n" +
"json_rt_1\n" +
"input 0 10 10\n" +
"input 1 10 10\n" +
"input 2 10 10\n" +
"input 3 10 10\n" +
"add 4 inputs: 0 1 shape: 10 10\n" +
"sub 5 inputs: 4 2 shape: 10 10\n" +
"mul 6 inputs: 5 3 shape: 10 10")
subgraph_path = tmp_path.relpath('subgraph.examplejson')
with open(subgraph_path, 'w') as f:
f.write(subgraph_json)
# Get Json and module.
graph_json = get_whole_graph_json()
lib = get_synthetic_lib()
ext_lib = tvm.module.load(subgraph_path, "examplejson")
lib.import_module(ext_lib)
lib_name = 'external.so'
lib_path = tmp_path.relpath(lib_name)
lib.export_library(lib_path)
# load module for execution.
lib = tvm.module.load(lib_path)
mod = tvm.contrib.graph_runtime.create(graph_json, lib, tvm.cpu(0))
x_data = np.random.rand(10, 10).astype('float32')
mod.set_input("x", x_data)
w_data = []
for i in range(8):
data = np.random.rand(10, 10).astype('float32')
w_data.append(data)
var = "w" + str(i)
mod.set_input(var, data)
mod.run()
out = tvm.nd.empty((30, 10), ctx=tvm.cpu())
out = mod.get_output(0, out)
tvm.testing.assert_allclose(
out.asnumpy(),
np.concatenate((((x_data + w_data[0]) - w_data[1]) * w_data[2],
((x_data + w_data[3]) - w_data[4]) * w_data[5],
x_data + w_data[6] - w_data[7]),
axis=0))
if __name__ == "__main__":
test_dso_extern()
test_engine_extern()
test_json_extern()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment