Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
de8d4a4d
Commit
de8d4a4d
authored
Feb 14, 2018
by
Lianmin Zheng
Committed by
Tianqi Chen
Feb 13, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[TOPI] Add winograd for mali (#898)
* add winograd for mali * fix lint * add padding * fix comment
parent
01f52b1d
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
212 additions
and
13 deletions
+212
-13
topi/python/topi/mali/conv2d.py
+212
-13
No files found.
topi/python/topi/mali/conv2d.py
View file @
de8d4a4d
...
...
@@ -2,6 +2,8 @@
"""conv2d schedule on ARM Mali GPU"""
from
__future__
import
absolute_import
as
_abs
import
numpy
as
np
import
tvm
from
..
import
generic
...
...
@@ -63,7 +65,23 @@ def transpose(s, tensor, readers):
s
[
tmp
]
.
compute_inline
()
return
s
.
cache_write
(
tmp
,
"global"
),
tmp
@conv2d.register
(
"mali"
)
def
const_array
(
data
,
name
):
""" convert an const array to tvm tensor"""
row
,
col
=
data
.
shape
dtype
=
str
(
data
.
dtype
)
def
select_array
(
i
,
j
):
now
=
tvm
.
const
(
0.0
,
dtype
)
for
ii
in
range
(
row
):
for
jj
in
range
(
col
):
now
=
tvm
.
select
(
tvm
.
all
(
i
%
row
==
ii
,
j
%
col
==
jj
),
tvm
.
const
(
data
[
ii
][
jj
],
dtype
),
now
)
return
now
return
tvm
.
compute
(
data
.
shape
,
select_array
,
name
=
name
)
@conv2d.register
([
"mali"
])
def
decl_conv2d
(
data
,
kernel
,
stride
,
padding
,
layout
=
'NCHW'
,
out_dtype
=
'float32'
):
"""Conv2D operator for ARM Mali GPU backend.
...
...
@@ -94,10 +112,20 @@ def decl_conv2d(data, kernel, stride, padding, layout='NCHW', out_dtype='float32
assert
data
.
dtype
==
kernel
.
dtype
,
"Do not support inputs with different data types now."
out_dtype
=
data
.
dtype
if
util
.
get_const_int
(
kernel
.
shape
[
2
])
==
1
:
HPAD
,
WPAD
,
_
,
_
=
get_pad_tuple
(
padding
,
kernel
)
kernel_shape
=
util
.
get_const_tuple
(
kernel
.
shape
)
if
isinstance
(
stride
,
(
tuple
,
list
)):
HSTR
,
WSTR
=
stride
else
:
HSTR
,
WSTR
=
stride
,
stride
if
(
kernel_shape
[
2
:
4
]
==
(
3
,
3
)
and
(
HPAD
,
WPAD
)
==
(
1
,
1
)
and
kernel_shape
[
0
]
>=
64
and
(
HSTR
,
WSTR
)
==
(
1
,
1
)):
return
_decl_winograd
(
data
,
kernel
,
stride
,
padding
,
layout
,
out_dtype
)
elif
kernel_shape
[
2
:
4
]
==
(
1
,
1
):
return
_decl_im2col
(
data
,
kernel
,
stride
,
padding
,
layout
,
out_dtype
)
else
:
return
_decl_
direct
(
data
,
kernel
,
stride
,
padding
,
layout
,
out_dtype
)
return
_decl_
spatialpack
(
data
,
kernel
,
stride
,
padding
,
layout
,
out_dtype
)
@generic.schedule_conv2d_nchw.register
([
"mali"
])
def
schedule_conv2d_nchw
(
outs
):
...
...
@@ -129,14 +157,17 @@ def schedule_conv2d_nchw(outs):
if
'im2col_conv_output'
in
op
.
tag
:
_schedule_im2col_conv2d
(
s
,
op
)
if
'direct_conv_output'
in
op
.
tag
:
_schedule_direct_conv2d
(
s
,
op
)
if
'spatialpack_conv_output'
in
op
.
tag
:
_schedule_spatialpack_conv2d
(
s
,
op
)
if
'winograd_conv_output'
in
op
.
tag
:
_schedule_winograd
(
s
,
op
)
traverse
(
outs
[
0
]
.
op
)
return
s
def
_decl_
direct
(
data
,
kernel
,
stride
,
padding
,
layout
,
out_dtype
):
"""declare the
direct
method (spatial packing) for conv2d"""
def
_decl_
spatialpack
(
data
,
kernel
,
stride
,
padding
,
layout
,
out_dtype
):
"""declare the
spatialpack
method (spatial packing) for conv2d"""
_
,
CI
,
IH
,
IW
=
[
util
.
get_const_int
(
x
)
for
x
in
data
.
shape
]
CO
,
_
,
KH
,
KW
=
[
util
.
get_const_int
(
x
)
for
x
in
kernel
.
shape
]
HPAD
,
WPAD
,
_
,
_
=
get_pad_tuple
(
padding
,
kernel
)
...
...
@@ -207,12 +238,12 @@ def _decl_direct(data, kernel, stride, padding, layout, out_dtype):
output
=
tvm
.
compute
(
oshape
,
lambda
n
,
co
,
h
,
w
:
conv
[
n
][
co
//
VC
][
h
/
VH
][
w
//
VW
][
h
%
VH
][
w
%
VW
][
co
%
VC
],
name
=
'output_unpack'
,
tag
=
'
direct
_conv_output'
)
name
=
'output_unpack'
,
tag
=
'
spatialpack
_conv_output'
)
return
output
def
_schedule_
direct
_conv2d
(
s
,
op
):
"""schedule the
direct
method (spatial packing) for conv2d"""
def
_schedule_
spatialpack
_conv2d
(
s
,
op
):
"""schedule the
spatialpack
method (spatial packing) for conv2d"""
# get ops and tensors
output
=
op
.
output
(
0
)
output_height
=
util
.
get_const_int
(
output
.
shape
[
2
])
...
...
@@ -294,8 +325,6 @@ def _schedule_direct_conv2d(s, op):
_
,
co
,
oh
,
ow
=
s
[
output
]
.
op
.
axis
tile_and_bind3d
(
s
,
output
,
co
,
oh
,
ow
,
num_thread
,
1
,
last
)
#print(tvm.lower(s, [data, kernel, output], simple_mode=True))
def
_decl_im2col
(
data
,
kernel
,
stride
,
padding
,
layout
=
'NCHW'
,
out_dtype
=
'float32'
):
"""declare the Im2Col method for conv2d"""
_
,
CI
,
IH
,
IW
=
[
x
.
value
for
x
in
data
.
shape
]
...
...
@@ -476,4 +505,174 @@ def _schedule_im2col_conv2d(s, op):
s
[
output
]
.
vectorize
(
vw
)
fuse_and_bind
(
s
,
output
,
[
n
,
co
,
h
,
w
])
#print(tvm.lower(s, [data, kernel], simple_mode=True))
def
_decl_winograd
(
data
,
kernel
,
stride
,
padding
,
layout
,
out_dtype
):
"""declare winograd fast convolution F(2x2, 3x3) for conv2d"""
N
,
CI
,
H
,
W
=
[
util
.
get_const_int
(
x
)
for
x
in
data
.
shape
]
CO
,
CI
,
KH
,
KW
=
[
util
.
get_const_int
(
x
)
for
x
in
kernel
.
shape
]
HPAD
,
WPAD
,
_
,
_
=
get_pad_tuple
(
padding
,
kernel
)
if
isinstance
(
stride
,
(
tuple
,
list
)):
HSTR
,
WSTR
=
stride
else
:
HSTR
,
WSTR
=
stride
,
stride
assert
HSTR
==
1
and
WSTR
==
1
and
HPAD
==
1
and
WPAD
==
1
and
KH
==
3
and
KW
==
3
data_pad
=
pad
(
data
,
(
0
,
0
,
HPAD
,
WPAD
),
name
=
"data_pad"
)
B_data
=
np
.
array
([
[
1
,
0
,
0
,
0
],
[
0
,
1
,
-
1
,
1
],
[
-
1
,
1
,
1
,
0
],
[
0
,
0
,
0
,
-
1
]
],
out_dtype
)
G_data
=
np
.
array
([
[
1
,
0
,
0
],
[
1.0
/
2
,
1.0
/
2
,
1.0
/
2
],
[
1.0
/
2
,
-
1.0
/
2
,
1.0
/
2
],
[
0
,
0
,
1
],
],
out_dtype
)
A_data
=
np
.
array
([
[
1
,
0
],
[
1
,
1
],
[
1
,
-
1
],
[
0
,
-
1
],
],
out_dtype
)
m
=
2
r
=
3
alpha
=
m
+
r
-
1
K
=
CO
C
=
CI
nH
,
nW
=
(
H
+
m
-
1
)
//
m
,
(
W
+
m
-
1
)
//
m
P
=
N
*
nH
*
nW
bna
,
bnb
=
4
,
4
if
data
.
dtype
==
'float16'
:
bnb
*=
2
P_round
=
(
P
+
bnb
-
1
)
//
bnb
*
bnb
assert
K
%
bna
==
0
and
P_round
%
bnb
==
0
# pack input tile
input_tile
=
tvm
.
compute
((
C
,
P_round
//
bnb
,
alpha
,
alpha
,
bnb
),
lambda
c
,
b
,
eps
,
nu
,
bb
:
tvm
.
select
(
b
*
bnb
+
bb
<
P
,
\
data_pad
[(
b
*
bnb
+
bb
)
//
(
nH
*
nW
)][
c
][(
b
*
bnb
+
bb
)
//
nW
%
nH
*
m
+
eps
]
\
[(
b
*
bnb
+
bb
)
%
nW
*
m
+
nu
],
tvm
.
const
(
0
,
data_pad
.
dtype
)),
name
=
'd'
)
# transform kernel
G
=
const_array
(
G_data
,
'G'
)
r_kh
=
tvm
.
reduce_axis
((
0
,
KH
),
'r_kh'
)
r_kw
=
tvm
.
reduce_axis
((
0
,
KW
),
'r_kw'
)
U
=
tvm
.
compute
((
alpha
,
alpha
,
K
//
bna
,
C
,
bna
),
lambda
eps
,
nu
,
k
,
c
,
kk
:
tvm
.
sum
(
kernel
[
k
*
bna
+
kk
][
c
][
r_kh
][
r_kw
]
*
G
[
eps
][
r_kh
]
*
G
[
nu
][
r_kw
],
axis
=
[
r_kh
,
r_kw
]),
name
=
'U'
)
# transform image
B
=
const_array
(
B_data
,
'B'
)
r_eps
=
tvm
.
reduce_axis
((
0
,
alpha
),
'r_eps'
)
r_nu
=
tvm
.
reduce_axis
((
0
,
alpha
),
'r_nu'
)
V
=
tvm
.
compute
((
alpha
,
alpha
,
P_round
//
bnb
,
C
,
bnb
),
lambda
eps
,
nu
,
b
,
c
,
bb
:
tvm
.
sum
(
input_tile
[
c
][
b
][
r_eps
][
r_nu
][
bb
]
*
B
[
r_eps
][
eps
]
*
B
[
r_nu
][
nu
],
axis
=
[
r_eps
,
r_nu
]),
name
=
'V'
)
# batch gemm
c
=
tvm
.
reduce_axis
((
0
,
C
),
name
=
'c'
)
M
=
tvm
.
compute
((
alpha
,
alpha
,
K
,
P_round
),
lambda
eps
,
nu
,
k
,
b
:
tvm
.
sum
(
U
[
eps
][
nu
][
k
//
bna
][
c
][
k
%
bna
]
*
V
[
eps
][
nu
][
b
//
bnb
][
c
][
b
%
bnb
],
axis
=
c
),
name
=
'M'
)
# inverse transform
A
=
const_array
(
A_data
,
'A'
)
r_eps
=
tvm
.
reduce_axis
((
0
,
alpha
),
'r_eps'
)
r_nu
=
tvm
.
reduce_axis
((
0
,
alpha
),
'r_nu'
)
Y
=
tvm
.
compute
((
K
,
P
,
m
,
m
),
lambda
k
,
b
,
vh
,
vw
:
tvm
.
sum
(
M
[
r_eps
][
r_nu
][
k
][
b
]
*
A
[
r_eps
][
vh
]
*
A
[
r_nu
][
vw
],
axis
=
[
r_eps
,
r_nu
]),
name
=
'Y'
)
# unpack output
output
=
tvm
.
compute
((
N
,
K
,
H
,
W
),
lambda
n
,
k
,
h
,
w
:
Y
[
k
][
n
*
nH
*
nW
+
(
h
//
m
)
*
nW
+
w
//
m
][
h
%
m
][
w
%
m
]
# thw following term is used to make the padding effective,
# otherwise the padding will be eliminated by bound inference
+
tvm
.
const
(
0
,
out_dtype
)
*
M
[
alpha
-
1
][
alpha
-
1
][
K
-
1
][
P_round
-
1
],
name
=
'output'
,
tag
=
'winograd_conv_output'
)
return
output
def
_schedule_winograd
(
s
,
op
):
"""schedule winograd fast convolution F(2x2, 3x3) for conv2d"""
# get ops and tensors
output
=
op
.
output
(
0
)
Y
=
op
.
input_tensors
[
0
]
M
,
A
=
s
[
Y
]
.
op
.
input_tensors
U
,
V
=
s
[
M
]
.
op
.
input_tensors
kernel
,
G
=
s
[
U
]
.
op
.
input_tensors
d
,
B
=
s
[
V
]
.
op
.
input_tensors
data_pad
=
s
[
d
]
.
op
.
input_tensors
[
0
]
data
=
s
[
data_pad
]
.
op
.
input_tensors
[
0
]
# padding
s
[
data_pad
]
.
compute_inline
()
# pack input tiles
c
,
b
,
eps
,
nu
,
bb
=
s
[
d
]
.
op
.
axis
s
[
d
]
.
reorder
(
eps
,
nu
,
bb
)
aha
=
s
[
d
]
.
fuse
(
eps
,
nu
)
s
[
d
]
.
unroll
(
bb
)
tile_and_bind3d
(
s
,
d
,
c
,
b
,
aha
,
4
,
1
,
1
)
# transform kernel
s
[
G
]
.
compute_inline
()
eps
,
nu
,
k
,
c
,
kk
,
=
s
[
U
]
.
op
.
axis
r_kh
,
r_kw
=
s
[
U
]
.
op
.
reduce_axis
s
[
U
]
.
reorder
(
k
,
c
,
kk
,
eps
,
nu
,
r_kh
,
r_kw
)
_
=
[
s
[
U
]
.
unroll
(
x
)
for
x
in
[
eps
,
nu
,
r_kh
,
r_kw
]]
s
[
U
]
.
vectorize
(
kk
)
tile_and_bind
(
s
,
U
,
k
,
c
,
1
,
256
)
# transform image
s
[
B
]
.
compute_inline
()
eps
,
nu
,
b
,
c
,
bb
=
s
[
V
]
.
op
.
axis
r_eps
,
r_nu
=
s
[
V
]
.
op
.
reduce_axis
s
[
V
]
.
reorder
(
b
,
c
,
bb
,
eps
,
nu
,
r_nu
,
r_eps
)
_
=
[
s
[
V
]
.
unroll
(
x
)
for
x
in
[
eps
,
nu
,
r_eps
,
r_nu
]]
s
[
V
]
.
vectorize
(
bb
)
tile_and_bind
(
s
,
V
,
b
,
c
,
2
,
1
)
# batch gemm
bna
,
bnb
=
4
,
4
if
data
.
dtype
==
'float16'
:
bnb
*=
2
eps
,
nu
,
k
,
b
=
s
[
M
]
.
op
.
axis
c
=
s
[
M
]
.
op
.
reduce_axis
[
0
]
yo
,
xo
,
yi
,
xi
=
s
[
M
]
.
tile
(
k
,
b
,
bna
,
bnb
)
s
[
M
]
.
reorder
(
c
,
yi
,
xi
)
c
,
c_unroll
=
s
[
M
]
.
split
(
c
,
2
)
s
[
M
]
.
unroll
(
c_unroll
)
s
[
M
]
.
unroll
(
yi
)
s
[
M
]
.
vectorize
(
xi
)
z
=
s
[
M
]
.
fuse
(
eps
,
nu
)
tile_and_bind3d
(
s
,
M
,
z
,
yo
,
xo
,
1
,
8
,
1
)
# inverse transform
s
[
A
]
.
compute_inline
()
k
,
b
,
vh
,
vw
=
s
[
Y
]
.
op
.
axis
r_eps
,
r_nu
=
s
[
Y
]
.
op
.
reduce_axis
_
=
[
s
[
Y
]
.
unroll
(
x
)
for
x
in
[
vh
,
vw
,
r_eps
,
r_nu
]]
tile_and_bind
(
s
,
Y
,
k
,
b
,
4
,
1
)
# schedule output
if
output
.
op
in
s
.
outputs
:
# no bias
output
=
output
else
:
# has bias
s
[
output
]
.
compute_inline
()
output
=
s
.
outputs
[
0
]
_
,
k
,
h
,
w
=
s
[
output
]
.
op
.
axis
tile_and_bind3d
(
s
,
output
,
k
,
h
,
w
,
1
,
2
,
2
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment