Commit d69c6fd8 by Animesh Jain Committed by Zhi

[Relay][AlterOp] NHWC to NCHWc support for Pool, pad, concatenate, sum. (#4059)

parent aa424139
......@@ -748,6 +748,8 @@ class OperatorConverter(object):
elif padding == Padding.SAME:
pad_top, pad_bottom = get_pad_value(input_h, dilated_kernel_h, stride_h)
pad_left, pad_right = get_pad_value(input_w, dilated_kernel_w, stride_w)
do_pad = not (pad_top == 0 and pad_bottom == 0 and pad_left == 0 and pad_right == 0)
if do_pad:
in_expr = _op.nn.pad(data=in_expr, pad_width=((0, 0),
(pad_top, pad_bottom),
(pad_left, pad_right),
......
......@@ -47,15 +47,9 @@ Array<Array<Layout> > Pool2DInferCorrectLayout(
T *params = const_cast<T*>(attrs.as<T>());
if (new_in_layouts.defined()) {
// Set the pool with the new layout.
CHECK_EQ(new_in_layouts.size(), 1);
Layout raw_layout(params->layout);
Layout input = new_in_layouts[0];
if (input.IndexOf(LayoutAxis::Get('W')) == raw_layout.IndexOf(LayoutAxis::Get('W')) &&
input.IndexOf(LayoutAxis::Get('H')) == raw_layout.IndexOf(LayoutAxis::Get('H')) &&
!input.Contains(LayoutAxis::Get('w')) && !input.Contains(LayoutAxis::Get('h'))) {
params->layout = input.name(); // modify self to follow the input layout
}
params->layout = new_in_layouts[0].name();
}
Layout inferred_layout(params->layout);
......
......@@ -119,6 +119,59 @@ Array<Integer> GetExcludeAxes(size_t indim,
return r_axes;
}
// Return the modified layout for AlterOpLayout pass.
Array<Array<Layout>> ReduceInferCorrectLayout(const Attrs& attrs,
const Array<Layout>& new_in_layouts,
const Array<Layout>& old_in_layouts,
const Array<Array<IndexExpr>>& old_in_shapes) {
// NOTE: Discard "const" qualifier here.
ReduceAttrs* params = const_cast<ReduceAttrs*>(attrs.as<ReduceAttrs>());
// Get the reduce axes.
uint32_t indim = old_in_shapes[0].size();
auto r_axes = GetReduceAxes(indim, params->axis, params->exclude);
Layout ret = Layout::Undef();
if (new_in_layouts.defined() && r_axes.size()) {
// Adapt to new layout. The axis has to change. Record original reduce axes. Convert to the
// modified layout axes.
CHECK_EQ(new_in_layouts.size(), 1);
CHECK_EQ(old_in_layouts.size(), 1);
// 1) Collect the original axes
std::unordered_set<std::string> old_r_dims;
for (auto r_axis : r_axes) {
old_r_dims.emplace(old_in_layouts[0][r_axis].name());
}
// 2) Collect the new axes by walking new_layout.
tvm::Array<tvm::Integer> new_r_axes;
std::string new_layout_string = "";
int axis_index = 0;
for (auto iter_var : new_in_layouts[0]->axes) {
const auto& layout_axis = LayoutAxis::Get(iter_var);
const std::string& layout_dim = layout_axis.name();
if (old_r_dims.count(layout_dim)) {
new_r_axes.push_back(tvm::Integer(axis_index));
}
// Collect only the primal axis.
if (layout_axis.IsPrimal()) {
new_layout_string += layout_dim;
axis_index++;
}
}
// 3) Set the new axis and layout.
ret = Layout(new_layout_string);
params->axis = new_r_axes;
} else if (old_in_layouts.defined()) {
// If the new layout is undefined, set the old layout as the inferred layout.
CHECK_EQ(old_in_layouts.size(), 1);
ret = old_in_layouts[0];
}
return Array<Array<Layout>>{{ret}, {ret}};
}
template<typename F>
Array<Tensor> ReduceCompute(const Attrs& attrs,
......@@ -325,6 +378,7 @@ Example::
.set_attrs_type_key("relay.attrs.ReduceAttrs")
.set_support_level(4)
.add_type_rel("Reduce", ReduceRel)
.set_attr<FInferCorrectLayout>("FInferCorrectLayout", ReduceInferCorrectLayout)
.set_attr<FTVMCompute>("FTVMCompute", SumCompute)
.set_attr<TOpPattern>("TOpPattern", kCommReduce);
......
......@@ -283,22 +283,34 @@ Array<Array<Layout>> ConcatenateLayout(
const Array<Layout>& new_in_layouts,
const Array<Layout>& old_in_layouts,
const Array<Array<IndexExpr>> &old_in_shapes) {
const ConcatenateAttrs* param = attrs.as<ConcatenateAttrs>();
ConcatenateAttrs* param = const_cast<ConcatenateAttrs*>(attrs.as<ConcatenateAttrs>());
size_t axis = param->axis < 0 ? param->axis + old_in_shapes[0].size() :
static_cast<size_t>(param->axis);
Layout ret;
bool is_new_layout_selected = false;
if (new_in_layouts.defined()) { // this function is called after some operators are alternated.
// If all the new input layouts are same, the new in layout gets selected. For axis, the new
// axis in the new layout is identified. The param->axis is then modified on the fly to conform
// to the new input layout.
const auto& concate_dim = old_in_layouts[0][axis];
for (size_t i = 0; i < new_in_layouts.size(); ++i) {
if (new_in_layouts[i].ndim() > axis &&
new_in_layouts[i][axis] == concate_dim) {
ret = new_in_layouts[i];
break;
bool all_input_layouts_same = true;
for (auto new_layout : new_in_layouts) {
if (!new_layout.Equals(new_in_layouts[0])) {
all_input_layouts_same = false;
}
}
if (all_input_layouts_same) {
auto new_index = new_in_layouts[0].IndexOf(concate_dim);
ret = new_in_layouts[0];
param->axis = new_index;
is_new_layout_selected = true;
}
} else { // this function is called on the original correct relay ir
}
if (!is_new_layout_selected) {
// this function is called on the original correct relay ir
for (size_t i = 0; i < old_in_layouts.size(); ++i) {
if (old_in_layouts[i].defined()) {
ret = old_in_layouts[i];
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment