Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
d69c6fd8
Commit
d69c6fd8
authored
Oct 10, 2019
by
Animesh Jain
Committed by
Zhi
Oct 10, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[Relay][AlterOp] NHWC to NCHWc support for Pool, pad, concatenate, sum. (#4059)
parent
aa424139
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
321 additions
and
35 deletions
+321
-35
python/tvm/relay/frontend/tflite.py
+6
-4
src/relay/op/nn/pad.cc
+2
-2
src/relay/op/nn/pooling.cc
+2
-8
src/relay/op/tensor/reduce.cc
+56
-2
src/relay/op/tensor/transform.cc
+19
-7
tests/python/relay/test_pass_alter_op_layout.py
+236
-12
No files found.
python/tvm/relay/frontend/tflite.py
View file @
d69c6fd8
...
...
@@ -748,10 +748,12 @@ class OperatorConverter(object):
elif
padding
==
Padding
.
SAME
:
pad_top
,
pad_bottom
=
get_pad_value
(
input_h
,
dilated_kernel_h
,
stride_h
)
pad_left
,
pad_right
=
get_pad_value
(
input_w
,
dilated_kernel_w
,
stride_w
)
in_expr
=
_op
.
nn
.
pad
(
data
=
in_expr
,
pad_width
=
((
0
,
0
),
(
pad_top
,
pad_bottom
),
(
pad_left
,
pad_right
),
(
0
,
0
)))
do_pad
=
not
(
pad_top
==
0
and
pad_bottom
==
0
and
pad_left
==
0
and
pad_right
==
0
)
if
do_pad
:
in_expr
=
_op
.
nn
.
pad
(
data
=
in_expr
,
pad_width
=
((
0
,
0
),
(
pad_top
,
pad_bottom
),
(
pad_left
,
pad_right
),
(
0
,
0
)))
else
:
raise
tvm
.
error
.
OpAttributeUnImplemented
(
'Padding format {} is not supported for operator Conv.'
.
format
(
padding
))
...
...
src/relay/op/nn/pad.cc
View file @
d69c6fd8
...
...
@@ -6,9 +6,9 @@
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
*
* http://www.apache.org/licenses/LICENSE-2.0
*
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
...
...
src/relay/op/nn/pooling.cc
View file @
d69c6fd8
...
...
@@ -47,15 +47,9 @@ Array<Array<Layout> > Pool2DInferCorrectLayout(
T
*
params
=
const_cast
<
T
*>
(
attrs
.
as
<
T
>
());
if
(
new_in_layouts
.
defined
())
{
// Set the pool with the new layout.
CHECK_EQ
(
new_in_layouts
.
size
(),
1
);
Layout
raw_layout
(
params
->
layout
);
Layout
input
=
new_in_layouts
[
0
];
if
(
input
.
IndexOf
(
LayoutAxis
::
Get
(
'W'
))
==
raw_layout
.
IndexOf
(
LayoutAxis
::
Get
(
'W'
))
&&
input
.
IndexOf
(
LayoutAxis
::
Get
(
'H'
))
==
raw_layout
.
IndexOf
(
LayoutAxis
::
Get
(
'H'
))
&&
!
input
.
Contains
(
LayoutAxis
::
Get
(
'w'
))
&&
!
input
.
Contains
(
LayoutAxis
::
Get
(
'h'
)))
{
params
->
layout
=
input
.
name
();
// modify self to follow the input layout
}
params
->
layout
=
new_in_layouts
[
0
].
name
();
}
Layout
inferred_layout
(
params
->
layout
);
...
...
src/relay/op/tensor/reduce.cc
View file @
d69c6fd8
...
...
@@ -6,9 +6,9 @@
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
*
* http://www.apache.org/licenses/LICENSE-2.0
*
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
...
...
@@ -119,6 +119,59 @@ Array<Integer> GetExcludeAxes(size_t indim,
return
r_axes
;
}
// Return the modified layout for AlterOpLayout pass.
Array
<
Array
<
Layout
>>
ReduceInferCorrectLayout
(
const
Attrs
&
attrs
,
const
Array
<
Layout
>&
new_in_layouts
,
const
Array
<
Layout
>&
old_in_layouts
,
const
Array
<
Array
<
IndexExpr
>>&
old_in_shapes
)
{
// NOTE: Discard "const" qualifier here.
ReduceAttrs
*
params
=
const_cast
<
ReduceAttrs
*>
(
attrs
.
as
<
ReduceAttrs
>
());
// Get the reduce axes.
uint32_t
indim
=
old_in_shapes
[
0
].
size
();
auto
r_axes
=
GetReduceAxes
(
indim
,
params
->
axis
,
params
->
exclude
);
Layout
ret
=
Layout
::
Undef
();
if
(
new_in_layouts
.
defined
()
&&
r_axes
.
size
())
{
// Adapt to new layout. The axis has to change. Record original reduce axes. Convert to the
// modified layout axes.
CHECK_EQ
(
new_in_layouts
.
size
(),
1
);
CHECK_EQ
(
old_in_layouts
.
size
(),
1
);
// 1) Collect the original axes
std
::
unordered_set
<
std
::
string
>
old_r_dims
;
for
(
auto
r_axis
:
r_axes
)
{
old_r_dims
.
emplace
(
old_in_layouts
[
0
][
r_axis
].
name
());
}
// 2) Collect the new axes by walking new_layout.
tvm
::
Array
<
tvm
::
Integer
>
new_r_axes
;
std
::
string
new_layout_string
=
""
;
int
axis_index
=
0
;
for
(
auto
iter_var
:
new_in_layouts
[
0
]
->
axes
)
{
const
auto
&
layout_axis
=
LayoutAxis
::
Get
(
iter_var
);
const
std
::
string
&
layout_dim
=
layout_axis
.
name
();
if
(
old_r_dims
.
count
(
layout_dim
))
{
new_r_axes
.
push_back
(
tvm
::
Integer
(
axis_index
));
}
// Collect only the primal axis.
if
(
layout_axis
.
IsPrimal
())
{
new_layout_string
+=
layout_dim
;
axis_index
++
;
}
}
// 3) Set the new axis and layout.
ret
=
Layout
(
new_layout_string
);
params
->
axis
=
new_r_axes
;
}
else
if
(
old_in_layouts
.
defined
())
{
// If the new layout is undefined, set the old layout as the inferred layout.
CHECK_EQ
(
old_in_layouts
.
size
(),
1
);
ret
=
old_in_layouts
[
0
];
}
return
Array
<
Array
<
Layout
>>
{{
ret
},
{
ret
}};
}
template
<
typename
F
>
Array
<
Tensor
>
ReduceCompute
(
const
Attrs
&
attrs
,
...
...
@@ -325,6 +378,7 @@ Example::
.
set_attrs_type_key
(
"relay.attrs.ReduceAttrs"
)
.
set_support_level
(
4
)
.
add_type_rel
(
"Reduce"
,
ReduceRel
)
.
set_attr
<
FInferCorrectLayout
>
(
"FInferCorrectLayout"
,
ReduceInferCorrectLayout
)
.
set_attr
<
FTVMCompute
>
(
"FTVMCompute"
,
SumCompute
)
.
set_attr
<
TOpPattern
>
(
"TOpPattern"
,
kCommReduce
);
...
...
src/relay/op/tensor/transform.cc
View file @
d69c6fd8
...
...
@@ -283,22 +283,34 @@ Array<Array<Layout>> ConcatenateLayout(
const
Array
<
Layout
>&
new_in_layouts
,
const
Array
<
Layout
>&
old_in_layouts
,
const
Array
<
Array
<
IndexExpr
>>
&
old_in_shapes
)
{
const
ConcatenateAttrs
*
param
=
attrs
.
as
<
ConcatenateAttrs
>
(
);
ConcatenateAttrs
*
param
=
const_cast
<
ConcatenateAttrs
*>
(
attrs
.
as
<
ConcatenateAttrs
>
()
);
size_t
axis
=
param
->
axis
<
0
?
param
->
axis
+
old_in_shapes
[
0
].
size
()
:
static_cast
<
size_t
>
(
param
->
axis
);
Layout
ret
;
bool
is_new_layout_selected
=
false
;
if
(
new_in_layouts
.
defined
())
{
// this function is called after some operators are alternated.
// If all the new input layouts are same, the new in layout gets selected. For axis, the new
// axis in the new layout is identified. The param->axis is then modified on the fly to conform
// to the new input layout.
const
auto
&
concate_dim
=
old_in_layouts
[
0
][
axis
];
for
(
size_t
i
=
0
;
i
<
new_in_layouts
.
size
();
++
i
)
{
if
(
new_in_layouts
[
i
].
ndim
()
>
axis
&&
new_in_layouts
[
i
][
axis
]
==
concate_dim
)
{
ret
=
new_in_layouts
[
i
];
break
;
bool
all_input_layouts_same
=
true
;
for
(
auto
new_layout
:
new_in_layouts
)
{
if
(
!
new_layout
.
Equals
(
new_in_layouts
[
0
]))
{
all_input_layouts_same
=
false
;
}
}
}
else
{
// this function is called on the original correct relay ir
if
(
all_input_layouts_same
)
{
auto
new_index
=
new_in_layouts
[
0
].
IndexOf
(
concate_dim
);
ret
=
new_in_layouts
[
0
];
param
->
axis
=
new_index
;
is_new_layout_selected
=
true
;
}
}
if
(
!
is_new_layout_selected
)
{
// this function is called on the original correct relay ir
for
(
size_t
i
=
0
;
i
<
old_in_layouts
.
size
();
++
i
)
{
if
(
old_in_layouts
[
i
].
defined
())
{
ret
=
old_in_layouts
[
i
];
...
...
tests/python/relay/test_pass_alter_op_layout.py
View file @
d69c6fd8
...
...
@@ -45,6 +45,7 @@ def test_alter_op():
y
=
relay
.
Function
([
x
,
weight
],
y
)
return
y
# Register alter op layout. "level" is used to override the previously registered functions.
@register_alter_op_layout
(
"nn.conv2d"
,
level
=
100
)
def
alter_conv2d
(
attrs
,
inputs
,
tinfos
):
data
,
weight
=
inputs
...
...
@@ -79,6 +80,7 @@ def test_alter_return_none():
called
=
[
False
]
# Register alter op layout. "level" is used to override the previously registered functions.
@register_alter_op_layout
(
"nn.global_max_pool2d"
,
level
=
101
)
def
alter_conv2d
(
attrs
,
inputs
,
tinfos
):
called
[
0
]
=
True
...
...
@@ -112,6 +114,7 @@ def test_alter_layout():
y
=
relay
.
Function
(
analysis
.
free_vars
(
y
),
y
)
return
y
# Register alter op layout. "level" is used to override the previously registered functions.
@register_alter_op_layout
(
"nn.conv2d"
,
level
=
102
)
def
alter_conv2d
(
attrs
,
inputs
,
tinfos
):
data
,
weight
=
inputs
...
...
@@ -180,6 +183,7 @@ def test_alter_layout_dual_path():
y
=
relay
.
Function
(
analysis
.
free_vars
(
ret
),
ret
)
return
y
# Register alter op layout. "level" is used to override the previously registered functions.
@register_alter_op_layout
(
"nn.conv2d"
,
level
=
103
)
def
alter_conv2d
(
attrs
,
inputs
,
tinfos
):
data
,
weight
=
inputs
...
...
@@ -241,6 +245,7 @@ def test_alter_layout_resnet():
y
=
relay
.
nn
.
global_max_pool2d
(
y
)
return
relay
.
Function
(
analysis
.
free_vars
(
y
),
y
)
# Register alter op layout. "level" is used to override the previously registered functions.
@register_alter_op_layout
(
"nn.conv2d"
,
level
=
104
)
def
alter_conv2d
(
attrs
,
inputs
,
tinfos
):
data
,
weight
=
inputs
...
...
@@ -291,6 +296,7 @@ def test_alter_layout_broadcast_op():
y
=
relay
.
Function
(
analysis
.
free_vars
(
y
),
y
)
return
y
# Register alter op layout. "level" is used to override the previously registered functions.
@register_alter_op_layout
(
"nn.conv2d"
,
level
=
105
)
def
alter_conv2d
(
attrs
,
inputs
,
tinfos
):
data
,
weight
=
inputs
...
...
@@ -338,6 +344,7 @@ def test_alter_layout_scalar():
y
=
relay
.
Function
(
analysis
.
free_vars
(
y
),
y
)
return
y
# Register alter op layout. "level" is used to override the previously registered functions.
@register_alter_op_layout
(
"nn.conv2d"
,
level
=
106
)
def
alter_conv2d
(
attrs
,
inputs
,
tinfos
):
data
,
weight
=
inputs
...
...
@@ -370,9 +377,19 @@ def test_alter_layout_scalar():
assert
analysis
.
alpha_equal
(
a
,
b
),
"Actual =
\n
"
+
str
(
a
)
def
test_alter_layout_concatenate
():
""" """
def
before
():
""" NCHW, NHWC and corner case concatenate layout transform."""
# Register alter op layout. "level" is used to override the previously registered functions.
@register_alter_op_layout
(
"nn.conv2d"
,
level
=
107
)
def
alter_conv2d
(
attrs
,
inputs
,
tinfos
):
data
,
weight
=
inputs
new_attrs
=
dict
(
attrs
)
new_attrs
[
'data_layout'
]
=
'NCHW16c'
return
relay
.
nn
.
conv2d
(
data
,
weight
,
**
new_attrs
)
# NCHW layout transformation.
def
before_nchw
():
x
=
relay
.
var
(
"x"
,
shape
=
(
1
,
64
,
56
,
56
))
weight1
=
relay
.
var
(
'weight1'
)
weight2
=
relay
.
var
(
'weight2'
)
...
...
@@ -388,14 +405,7 @@ def test_alter_layout_concatenate():
y
=
relay
.
Function
(
analysis
.
free_vars
(
ret
),
ret
)
return
y
@register_alter_op_layout
(
"nn.conv2d"
,
level
=
107
)
def
alter_conv2d
(
attrs
,
inputs
,
tinfos
):
data
,
weight
=
inputs
new_attrs
=
dict
(
attrs
)
new_attrs
[
'data_layout'
]
=
'NCHW16c'
return
relay
.
nn
.
conv2d
(
data
,
weight
,
**
new_attrs
)
def
expected
():
def
expected_nchw
():
x
=
relay
.
var
(
"x"
,
shape
=
(
1
,
64
,
56
,
56
))
weight1
=
relay
.
var
(
'weight1'
)
weight2
=
relay
.
var
(
'weight2'
)
...
...
@@ -415,10 +425,57 @@ def test_alter_layout_concatenate():
y
=
relay
.
Function
(
analysis
.
free_vars
(
ret
),
ret
)
return
y
a
=
before
()
a
=
before
_nchw
()
a
=
run_opt_pass
(
a
,
transform
.
AlterOpLayout
())
b
=
expected
()
b
=
expected_nchw
()
b
=
run_opt_pass
(
b
,
transform
.
InferType
())
assert
analysis
.
alpha_equal
(
a
,
b
),
"Actual =
\n
"
+
str
(
a
)
# NHWC layout transformation.
def
before_nhwc
():
x
=
relay
.
var
(
"x"
,
shape
=
(
1
,
56
,
56
,
64
))
weight1
=
relay
.
var
(
'weight1'
)
weight2
=
relay
.
var
(
'weight2'
)
y
=
relay
.
nn
.
conv2d
(
x
,
weight1
,
channels
=
32
,
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
),
data_layout
=
'NHWC'
)
y1
=
relay
.
nn
.
conv2d
(
y
,
weight2
,
channels
=
32
,
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
),
data_layout
=
'NHWC'
)
ret
=
relay
.
concatenate
([
y
,
y1
],
axis
=
3
)
y
=
relay
.
Function
(
analysis
.
free_vars
(
ret
),
ret
)
return
y
def
expected_nhwc
():
x
=
relay
.
var
(
"x"
,
shape
=
(
1
,
56
,
56
,
64
))
weight1
=
relay
.
var
(
'weight1'
)
weight2
=
relay
.
var
(
'weight2'
)
y
=
relay
.
layout_transform
(
x
,
"NHWC"
,
"NCHW16c"
)
y
=
relay
.
nn
.
conv2d
(
y
,
weight1
,
channels
=
32
,
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
),
data_layout
=
"NCHW16c"
)
y1
=
relay
.
nn
.
conv2d
(
y
,
weight2
,
channels
=
32
,
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
),
data_layout
=
'NCHW16c'
)
ret
=
relay
.
concatenate
([
y
,
y1
],
axis
=
1
)
ret
=
relay
.
layout_transform
(
ret
,
"NCHW16c"
,
"NHWC"
)
y
=
relay
.
Function
(
analysis
.
free_vars
(
ret
),
ret
)
return
y
a
=
before_nhwc
()
a
=
run_opt_pass
(
a
,
transform
.
AlterOpLayout
())
b
=
expected_nhwc
()
b
=
run_opt_pass
(
b
,
transform
.
InferType
())
assert
analysis
.
alpha_equal
(
a
,
b
),
"Actual =
\n
"
+
str
(
a
)
...
...
@@ -435,6 +492,7 @@ def test_alter_layout_nchw_upsamping_op():
y
=
relay
.
Function
(
analysis
.
free_vars
(
y
),
y
)
return
y
# Register alter op layout. "level" is used to override the previously registered functions.
@register_alter_op_layout
(
"nn.conv2d"
,
level
=
108
)
def
alter_conv2d
(
attrs
,
inputs
,
tinfos
):
data
,
weight
=
inputs
...
...
@@ -474,6 +532,7 @@ def test_alter_layout_strided_slice():
y
=
relay
.
Function
(
analysis
.
free_vars
(
y
),
y
)
return
y
# Register alter op layout. "level" is used to override the previously registered functions.
@register_alter_op_layout
(
"nn.conv2d"
,
level
=
109
)
def
alter_conv2d
(
attrs
,
inputs
,
tinfos
):
data
,
weight
=
inputs
...
...
@@ -511,6 +570,7 @@ def test_alter_layout_depthwise_conv2d():
return
y
import
topi
# Register alter op layout. "level" is used to override the previously registered functions.
@register_alter_op_layout
(
"nn.conv2d"
,
level
=
110
)
def
alter_conv2d
(
attrs
,
inputs
,
tinfos
):
with
tvm
.
target
.
create
(
"llvm"
):
...
...
@@ -548,6 +608,7 @@ def test_alter_layout_prelu():
y
=
relay
.
Function
(
analysis
.
free_vars
(
y
),
y
)
return
y
# Register alter op layout. "level" is used to override the previously registered functions.
@register_alter_op_layout
(
"nn.conv2d"
,
level
=
111
)
def
alter_conv2d
(
attrs
,
inputs
,
tinfos
):
data
,
weight
=
inputs
...
...
@@ -580,6 +641,167 @@ def test_alter_layout_prelu():
assert
(
analysis
.
alpha_equal
(
a
,
b
))
def
test_alter_layout_pool
():
""" Check NCHW, NHWC pool layout conversion"""
# Register alter op layout. "level" is used to override the previously registered functions.
@register_alter_op_layout
(
"nn.conv2d"
,
level
=
113
)
def
alter_conv2d
(
attrs
,
inputs
,
tinfos
):
data
,
weight
=
inputs
new_attrs
=
dict
(
attrs
)
new_attrs
[
'data_layout'
]
=
'NCHW16c'
return
relay
.
nn
.
conv2d
(
data
,
weight
,
**
new_attrs
)
# Check NCHW conversion.
def
before_nchw
():
x
=
relay
.
var
(
"x"
,
shape
=
(
1
,
64
,
56
,
56
))
weight1
=
relay
.
var
(
'weight1'
)
y
=
relay
.
nn
.
conv2d
(
x
,
weight1
,
channels
=
32
,
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
))
ret
=
relay
.
nn
.
avg_pool2d
(
y
,
pool_size
=
(
1
,
1
))
y
=
relay
.
Function
(
analysis
.
free_vars
(
ret
),
ret
)
return
y
def
expected_nchw
():
x
=
relay
.
var
(
"x"
,
shape
=
(
1
,
64
,
56
,
56
))
weight1
=
relay
.
var
(
'weight1'
)
y
=
relay
.
layout_transform
(
x
,
"NCHW"
,
"NCHW16c"
)
y
=
relay
.
nn
.
conv2d
(
y
,
weight1
,
channels
=
32
,
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
),
data_layout
=
"NCHW16c"
)
ret
=
relay
.
nn
.
avg_pool2d
(
y
,
pool_size
=
(
1
,
1
),
layout
=
'NCHW16c'
)
ret
=
relay
.
layout_transform
(
ret
,
"NCHW16c"
,
"NCHW"
)
y
=
relay
.
Function
(
analysis
.
free_vars
(
ret
),
ret
)
return
y
a
=
before_nchw
()
a
=
run_opt_pass
(
a
,
transform
.
AlterOpLayout
())
b
=
expected_nchw
()
b
=
run_opt_pass
(
b
,
transform
.
InferType
())
assert
analysis
.
alpha_equal
(
a
,
b
),
"Actual =
\n
"
+
str
(
a
)
# Check NHWC conversion.
def
before_nhwc
():
x
=
relay
.
var
(
"x"
,
shape
=
(
1
,
56
,
56
,
64
))
weight1
=
relay
.
var
(
'weight1'
)
y
=
relay
.
nn
.
conv2d
(
x
,
weight1
,
channels
=
32
,
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
),
data_layout
=
'NHWC'
)
ret
=
relay
.
nn
.
avg_pool2d
(
y
,
pool_size
=
(
1
,
1
),
layout
=
'NHWC'
)
y
=
relay
.
Function
(
analysis
.
free_vars
(
ret
),
ret
)
return
y
def
expected_nhwc
():
x
=
relay
.
var
(
"x"
,
shape
=
(
1
,
56
,
56
,
64
))
weight1
=
relay
.
var
(
'weight1'
)
y
=
relay
.
layout_transform
(
x
,
"NHWC"
,
"NCHW16c"
)
y
=
relay
.
nn
.
conv2d
(
y
,
weight1
,
channels
=
32
,
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
),
data_layout
=
"NCHW16c"
)
ret
=
relay
.
nn
.
avg_pool2d
(
y
,
pool_size
=
(
1
,
1
),
layout
=
'NCHW16c'
)
ret
=
relay
.
layout_transform
(
ret
,
"NCHW16c"
,
"NHWC"
)
y
=
relay
.
Function
(
analysis
.
free_vars
(
ret
),
ret
)
return
y
a
=
before_nhwc
()
a
=
run_opt_pass
(
a
,
transform
.
AlterOpLayout
())
b
=
expected_nhwc
()
b
=
run_opt_pass
(
b
,
transform
.
InferType
())
assert
analysis
.
alpha_equal
(
a
,
b
),
"Actual =
\n
"
+
str
(
a
)
def
test_alter_layout_sum
():
""" Check NCHW, NHWC sum layout conversion"""
# Register alter op layout. "level" is used to override the previously registered functions.
@register_alter_op_layout
(
"nn.conv2d"
,
level
=
114
)
def
alter_conv2d
(
attrs
,
inputs
,
tinfos
):
data
,
weight
=
inputs
new_attrs
=
dict
(
attrs
)
new_attrs
[
'data_layout'
]
=
'NCHW16c'
return
relay
.
nn
.
conv2d
(
data
,
weight
,
**
new_attrs
)
# Check NCHW conversion.
def
before_nchw
():
x
=
relay
.
var
(
"x"
,
shape
=
(
1
,
64
,
56
,
56
))
weight1
=
relay
.
var
(
'weight1'
)
y
=
relay
.
nn
.
conv2d
(
x
,
weight1
,
channels
=
32
,
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
))
ret
=
relay
.
sum
(
y
,
axis
=
1
,
keepdims
=
True
)
y
=
relay
.
Function
(
analysis
.
free_vars
(
ret
),
ret
)
return
y
def
expected_nchw
():
x
=
relay
.
var
(
"x"
,
shape
=
(
1
,
64
,
56
,
56
))
weight1
=
relay
.
var
(
'weight1'
)
y
=
relay
.
layout_transform
(
x
,
"NCHW"
,
"NCHW16c"
)
y
=
relay
.
nn
.
conv2d
(
y
,
weight1
,
channels
=
32
,
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
),
data_layout
=
"NCHW16c"
)
ret
=
relay
.
layout_transform
(
y
,
"NCHW16c"
,
"NCHW"
)
ret
=
relay
.
sum
(
ret
,
axis
=
[
1
],
keepdims
=
True
)
y
=
relay
.
Function
(
analysis
.
free_vars
(
ret
),
ret
)
return
y
a
=
before_nchw
()
a
=
run_opt_pass
(
a
,
transform
.
AlterOpLayout
())
b
=
expected_nchw
()
b
=
run_opt_pass
(
b
,
transform
.
InferType
())
assert
analysis
.
alpha_equal
(
a
,
b
),
"Actual =
\n
"
+
str
(
a
)
# Check NHWC conversion.
def
before_nhwc
():
x
=
relay
.
var
(
"x"
,
shape
=
(
1
,
56
,
56
,
64
))
weight1
=
relay
.
var
(
'weight1'
)
y
=
relay
.
nn
.
conv2d
(
x
,
weight1
,
channels
=
32
,
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
),
data_layout
=
'NHWC'
)
ret
=
relay
.
sum
(
y
,
axis
=
3
,
keepdims
=
True
)
y
=
relay
.
Function
(
analysis
.
free_vars
(
ret
),
ret
)
return
y
def
expected_nhwc
():
x
=
relay
.
var
(
"x"
,
shape
=
(
1
,
56
,
56
,
64
))
weight1
=
relay
.
var
(
'weight1'
)
y
=
relay
.
layout_transform
(
x
,
"NHWC"
,
"NCHW16c"
)
y
=
relay
.
nn
.
conv2d
(
y
,
weight1
,
channels
=
32
,
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
),
data_layout
=
"NCHW16c"
)
ret
=
relay
.
layout_transform
(
y
,
"NCHW16c"
,
"NCHW"
)
ret
=
relay
.
sum
(
ret
,
axis
=
[
1
],
keepdims
=
True
)
ret
=
relay
.
layout_transform
(
ret
,
"NCHW"
,
"NHWC"
)
y
=
relay
.
Function
(
analysis
.
free_vars
(
ret
),
ret
)
return
y
a
=
before_nhwc
()
a
=
run_opt_pass
(
a
,
transform
.
AlterOpLayout
())
b
=
expected_nhwc
()
b
=
run_opt_pass
(
b
,
transform
.
InferType
())
assert
analysis
.
alpha_equal
(
a
,
b
),
"Actual =
\n
"
+
str
(
a
)
if
__name__
==
"__main__"
:
test_alter_op
()
test_alter_return_none
()
...
...
@@ -593,3 +815,5 @@ if __name__ == "__main__":
test_alter_layout_strided_slice
()
test_alter_layout_depthwise_conv2d
()
test_alter_layout_prelu
()
test_alter_layout_pool
()
test_alter_layout_sum
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment