Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
d39a4ea0
Commit
d39a4ea0
authored
May 02, 2019
by
Haichen Shen
Committed by
Tianqi Chen
May 02, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add MXNet converter for RNN layer ops (#3125)
parent
2ed7f95a
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
170 additions
and
12 deletions
+170
-12
python/tvm/relay/build_module.py
+8
-0
python/tvm/relay/frontend/mxnet.py
+113
-12
tests/python/frontend/mxnet/test_forward.py
+49
-0
No files found.
python/tvm/relay/build_module.py
View file @
d39a4ea0
...
...
@@ -26,6 +26,7 @@ from .. import nd as _nd, target as _target, autotvm
from
..contrib
import
graph_runtime
as
_graph_rt
from
.
import
ir_pass
from
.
import
expr
as
_expr
from
.
import
ty
as
_ty
from
.backend
import
interpreter
as
_interpreter
from
.backend
import
graph_runtime_codegen
as
_graph_gen
...
...
@@ -427,6 +428,8 @@ class GraphExecutor(_interpreter.Executor):
self
.
target
=
target
def
_make_executor
(
self
,
func
):
ret_type
=
ir_pass
.
infer_type
(
func
)
.
ret_type
num_outputs
=
len
(
ret_type
.
fields
)
if
isinstance
(
ret_type
,
_ty
.
TupleType
)
else
1
graph_json
,
mod
,
params
=
build
(
func
,
target
=
self
.
target
)
gmodule
=
_graph_rt
.
create
(
graph_json
,
mod
,
self
.
ctx
)
if
params
:
...
...
@@ -440,7 +443,12 @@ class GraphExecutor(_interpreter.Executor):
# Run the module, and fetch the output.
gmodule
.
run
()
# make a copy so multiple invocation won't hurt perf.
if
num_outputs
==
1
:
return
gmodule
.
get_output
(
0
)
.
copyto
(
_nd
.
cpu
(
0
))
outputs
=
[]
for
i
in
range
(
num_outputs
):
outputs
.
append
(
gmodule
.
get_output
(
i
)
.
copyto
(
_nd
.
cpu
(
0
)))
return
outputs
return
_graph_wrapper
...
...
python/tvm/relay/frontend/mxnet.py
View file @
d39a4ea0
...
...
@@ -34,6 +34,12 @@ from .nnvm_common import _warn_not_used
__all__
=
[
'from_mxnet'
]
_activation_map
=
{
"sigmoid"
:
_op
.
sigmoid
,
"tanh"
:
_op
.
tanh
,
"relu"
:
_op
.
nn
.
relu
}
def
_mx_fully_connected
(
inputs
,
attrs
):
import
mxnet
as
mx
units
=
attrs
.
get_int
(
"num_hidden"
)
...
...
@@ -66,12 +72,6 @@ def _get_channel_axis(layout, op_name):
def
_mx_activations
(
inputs
,
attrs
):
act_type
=
attrs
.
get_str
(
"act_type"
)
assert
len
(
inputs
)
==
1
if
act_type
==
"sigmoid"
:
return
_op
.
sigmoid
(
inputs
[
0
])
if
act_type
==
"tanh"
:
return
_op
.
tanh
(
inputs
[
0
])
if
act_type
==
"relu"
:
return
_op
.
nn
.
relu
(
inputs
[
0
])
if
act_type
==
"softrelu"
:
def
_stable_softrelu
(
x
):
# log(1 + exp(-abs(x))) + relu(x)
...
...
@@ -80,8 +80,10 @@ def _mx_activations(inputs, attrs):
return
_op
.
add
(
_op
.
log
(
_op
.
add
(
one
,
exp_neg_abs_x
)),
_op
.
nn
.
relu
(
x
))
return
_stable_softrelu
(
inputs
[
0
])
if
act_type
not
in
_activation_map
:
raise
tvm
.
error
.
OpNotImplemented
(
'Operator {} is not supported for frontend MXNet.'
.
format
(
act_type
))
return
_activation_map
[
act_type
](
inputs
[
0
])
def
_mx_compare
(
new_op
,
wrapper
):
...
...
@@ -189,7 +191,8 @@ def _mx_pooling(inputs, attrs):
def
_mx_adaptive_avg_pooling
(
inputs
,
attrs
):
output_size
=
attrs
.
get_int_tuple
(
"output_size"
,
[])
if
output_size
!=
(
1
,):
raise
RuntimeError
(
"AdaptiveAvgPooling with output_size other than 1 is not supported yet."
)
raise
tvm
.
error
.
OpAttributeUnimplemented
(
"AdaptiveAvgPooling with output_size other than 1 is not supported yet."
)
return
_op
.
nn
.
global_avg_pool2d
(
inputs
[
0
])
...
...
@@ -471,7 +474,7 @@ def _mx_take(inputs, attrs):
assert
len
(
inputs
)
==
2
mode
=
attrs
.
get_str
(
"mode"
,
"clip"
)
if
mode
==
"raise"
:
raise
RuntimeError
(
"take doesn't support raise mode
"
)
raise
tvm
.
error
.
OpAttributeUnimplemented
(
"take with raise mode is not supported yet
"
)
axis
=
attrs
.
get_int
(
"axis"
,
0
)
return
_op
.
take
(
inputs
[
0
],
inputs
[
1
]
.
astype
(
"int32"
),
axis
,
mode
)
...
...
@@ -571,13 +574,13 @@ def _mx_l2_normalize(inputs, attrs):
def
_mx_shape_array
(
inputs
,
attrs
):
assert
len
(
inputs
)
==
1
if
attrs
.
get_int
(
"lhs_begin"
,
None
)
is
not
None
:
raise
RuntimeError
(
"shape_array doesn't support lhs_begin"
)
raise
tvm
.
error
.
OpAttributeUnimplemented
(
"shape_array doesn't support lhs_begin"
)
if
attrs
.
get_int
(
"lhs_end"
,
None
)
is
not
None
:
raise
RuntimeError
(
"shape_array doesn't support lhs_end"
)
raise
tvm
.
error
.
OpAttributeUnimplemented
(
"shape_array doesn't support lhs_end"
)
if
attrs
.
get_int
(
"rhs_begin"
,
None
)
is
not
None
:
raise
RuntimeError
(
"shape_array doesn't support rhs_begin"
)
raise
tvm
.
error
.
OpAttributeUnimplemented
(
"shape_array doesn't support rhs_begin"
)
if
attrs
.
get_int
(
"rhs_end"
,
None
)
is
not
None
:
raise
RuntimeError
(
"shape_array doesn't support rhs_end"
)
raise
tvm
.
error
.
OpAttributeUnimplemented
(
"shape_array doesn't support rhs_end"
)
return
_op
.
shape_of
(
inputs
[
0
],
dtype
=
'int64'
)
...
...
@@ -657,6 +660,101 @@ def _mx_argsort(inputs, attrs):
return
_op
.
argsort
(
inputs
[
0
],
**
new_attrs
)
def
_mx_rnn_param_concat
(
inputs
,
_
):
# We don't need to concatenate RNN params because we will unravel the RNN op
return
[
inputs
]
def
_mx_rnn_layer
(
inputs
,
attrs
):
def
_rnn_cell
(
data
,
states
,
i2h_weight
,
h2h_weight
,
i2h_bias
,
h2h_bias
,
activation
):
i2h
=
_op
.
nn
.
bias_add
(
_op
.
nn
.
dense
(
data
,
i2h_weight
),
i2h_bias
,
axis
=-
1
)
h2h
=
_op
.
nn
.
bias_add
(
_op
.
nn
.
dense
(
states
[
0
],
h2h_weight
),
h2h_bias
,
axis
=-
1
)
out
=
_activation_map
[
activation
](
i2h
+
h2h
)
return
out
,
[
out
]
def
_gru_cell
(
data
,
states
,
i2h_weight
,
h2h_weight
,
i2h_bias
,
h2h_bias
):
dtype
=
ir_pass
.
infer_type
(
data
)
.
checked_type
.
dtype
i2h
=
_op
.
nn
.
bias_add
(
_op
.
nn
.
dense
(
data
,
i2h_weight
),
i2h_bias
,
axis
=-
1
)
h2h
=
_op
.
nn
.
bias_add
(
_op
.
nn
.
dense
(
states
[
0
],
h2h_weight
),
h2h_bias
,
axis
=-
1
)
i2h_r
,
i2h_z
,
i2h
=
_op
.
split
(
i2h
,
indices_or_sections
=
3
,
axis
=
1
)
h2h_r
,
h2h_z
,
h2h
=
_op
.
split
(
h2h
,
indices_or_sections
=
3
,
axis
=
1
)
reset_gate
=
_activation_map
[
"sigmoid"
](
i2h_r
+
h2h_r
)
update_gate
=
_activation_map
[
"sigmoid"
](
i2h_z
+
h2h_z
)
next_h_tmp
=
_activation_map
[
"tanh"
](
reset_gate
*
h2h
+
i2h
)
next_h
=
(
_expr
.
const
(
1
,
dtype
)
-
update_gate
)
*
next_h_tmp
+
update_gate
*
states
[
0
]
return
next_h
,
[
next_h
]
def
_lstm_cell
(
data
,
states
,
i2h_weight
,
h2h_weight
,
i2h_bias
,
h2h_bias
):
i2h
=
_op
.
nn
.
bias_add
(
_op
.
nn
.
dense
(
data
,
i2h_weight
),
i2h_bias
,
axis
=-
1
)
h2h
=
_op
.
nn
.
bias_add
(
_op
.
nn
.
dense
(
states
[
0
],
h2h_weight
),
h2h_bias
,
axis
=-
1
)
gates
=
i2h
+
h2h
slice_gates
=
_op
.
split
(
gates
,
indices_or_sections
=
4
,
axis
=
1
)
in_gate
=
_activation_map
[
"sigmoid"
](
slice_gates
[
0
])
forget_gate
=
_activation_map
[
"sigmoid"
](
slice_gates
[
1
])
in_transform
=
_activation_map
[
"tanh"
](
slice_gates
[
2
])
out_gate
=
_activation_map
[
"sigmoid"
](
slice_gates
[
3
])
next_c
=
forget_gate
*
states
[
1
]
+
in_gate
*
in_transform
next_h
=
out_gate
*
_activation_map
[
"tanh"
](
next_c
)
return
next_h
,
[
next_h
,
next_c
]
num_layers
=
attrs
.
get_int
(
"num_layers"
,
1
)
mode
=
attrs
.
get_str
(
"mode"
)
if
mode
.
startswith
(
"rnn"
):
mode
,
activation
=
mode
.
split
(
'_'
)
assert
mode
in
[
"rnn"
,
"gru"
,
"lstm"
]
bidirectional
=
attrs
.
get_bool
(
"bidirectional"
,
False
)
if
bidirectional
:
raise
tvm
.
error
.
OpAttributeUnimplemented
(
"Bidirectional RNN op is not supported yet"
)
layout
=
attrs
.
get_str
(
"layout"
,
"TNC"
)
if
layout
!=
"TNC"
:
raise
tvm
.
error
.
OpAttributeUnimplemented
(
"RNN with layout other than TNC is not supported yet"
)
num_states
=
2
if
mode
==
'lstm'
else
1
assert
len
(
inputs
)
==
num_states
+
2
seq_data
=
inputs
[
0
]
concat_weight
=
inputs
[
1
]
concat_states
=
inputs
[
2
:]
seq_len
=
int
(
ir_pass
.
infer_type
(
seq_data
)
.
checked_type
.
shape
[
0
])
assert
len
(
concat_weight
)
==
num_layers
*
4
weights
=
[]
bias
=
[]
states
=
[]
for
i
in
range
(
num_layers
):
w
=
[]
b
=
[]
s
=
[]
for
j
in
range
(
2
):
w
.
append
(
concat_weight
[
i
*
2
+
j
]
.
args
[
0
])
b
.
append
(
concat_weight
[
num_layers
*
2
+
i
*
2
+
j
]
.
args
[
0
])
for
state
in
concat_states
:
s
.
append
(
_op
.
take
(
state
,
_expr
.
const
(
i
,
"int32"
),
axis
=
0
))
weights
.
append
(
w
)
bias
.
append
(
b
)
states
.
append
(
s
)
seq_output
=
[]
for
t
in
range
(
seq_len
):
data
=
_op
.
take
(
seq_data
,
_expr
.
const
(
t
,
"int32"
),
axis
=
0
)
for
l
in
range
(
num_layers
):
if
mode
==
"rnn"
:
out
,
new_states
=
_rnn_cell
(
data
,
states
[
l
],
*
weights
[
l
],
*
bias
[
l
],
activation
)
elif
mode
==
"gru"
:
out
,
new_states
=
_gru_cell
(
data
,
states
[
l
],
*
weights
[
l
],
*
bias
[
l
])
else
:
# mode == "lstm"
out
,
new_states
=
_lstm_cell
(
data
,
states
[
l
],
*
weights
[
l
],
*
bias
[
l
])
states
[
l
]
=
new_states
data
=
out
seq_output
.
append
(
out
)
outputs
=
[
_op
.
stack
(
seq_output
,
axis
=
0
)]
for
i
in
range
(
num_states
):
outputs
.
append
(
_op
.
stack
([
s
[
i
]
for
s
in
states
],
axis
=
0
))
return
outputs
# Note: due to attribute conversion constraint
# ops in the identity set must be attribute free
_identity_list
=
[
...
...
@@ -807,6 +905,9 @@ _convert_map = {
"_contrib_box_nms"
:
_mx_box_nms
,
"_contrib_DeformableConvolution"
:
_mx_deformable_convolution
,
"_contrib_AdaptiveAvgPooling2D"
:
_mx_adaptive_avg_pooling
,
# NLP
"RNN"
:
_mx_rnn_layer
,
"_rnn_param_concat"
:
_mx_rnn_param_concat
,
# List of missing operators that are present in NNVMv1
# TODO(tvm-tvm): support all operators.
#
...
...
tests/python/frontend/mxnet/test_forward.py
View file @
d39a4ea0
...
...
@@ -527,6 +527,54 @@ def test_forward_bilinear_resize():
mx_sym
=
mx
.
sym
.
contrib
.
BilinearResize2D
(
data
,
height
=
5
,
width
=
10
)
verify_mxnet_frontend_impl
(
mx_sym
,
(
1
,
2
,
3
,
4
),
(
1
,
2
,
5
,
10
))
def
test_forward_rnn_layer
():
def
verify
(
mode
,
input_size
,
seq_len
,
hidden_size
,
num_layers
,
batch
=
1
):
if
mode
==
"rnn"
:
layer
=
gluon
.
rnn
.
RNN
(
hidden_size
,
num_layers
)
elif
mode
==
"gru"
:
layer
=
gluon
.
rnn
.
GRU
(
hidden_size
,
num_layers
)
else
:
# mode == "lstm"
layer
=
gluon
.
rnn
.
LSTM
(
hidden_size
,
num_layers
)
num_states
=
2
if
mode
==
"lstm"
else
1
layer
.
initialize
()
dtype
=
"float32"
data_np
=
np
.
random
.
uniform
(
size
=
(
seq_len
,
batch
,
input_size
))
.
astype
(
dtype
)
states_np
=
[]
states_mx
=
[]
shape_dict
=
{
'data0'
:
data_np
.
shape
}
inputs
=
{
'data0'
:
data_np
}
for
i
in
range
(
num_states
):
s
=
np
.
random
.
uniform
(
size
=
(
num_layers
,
batch
,
hidden_size
))
.
astype
(
dtype
)
states_np
.
append
(
s
)
states_mx
.
append
(
mx
.
nd
.
array
(
s
))
shape_dict
[
'data
%
s'
%
(
i
+
1
)]
=
s
.
shape
inputs
[
'data
%
s'
%
(
i
+
1
)]
=
s
layer
.
hybridize
()
mx_out
,
mx_states
=
layer
(
mx
.
nd
.
array
(
data_np
),
states_mx
)
mx_res
=
[
mx_out
]
+
mx_states
mx_sym
=
layer
.
_cached_graph
[
1
]
mx_params
=
{}
for
name
,
param
in
layer
.
collect_params
()
.
items
():
mx_params
[
name
]
=
param
.
_reduce
()
new_sym
,
params
=
relay
.
frontend
.
from_mxnet
(
mx_sym
,
shape
=
shape_dict
,
arg_params
=
mx_params
)
for
target
,
ctx
in
ctx_list
():
# only test graph runtime because debug runtime is too slow
for
kind
in
[
"graph"
]:
intrp
=
relay
.
create_executor
(
kind
,
ctx
=
ctx
,
target
=
target
)
op_res
=
intrp
.
evaluate
(
new_sym
)(
**
inputs
,
**
params
)
assert
len
(
op_res
)
==
len
(
mx_res
)
for
i
,
val
in
enumerate
(
op_res
):
tvm
.
testing
.
assert_allclose
(
val
.
asnumpy
(),
mx_res
[
i
]
.
asnumpy
(),
rtol
=
1e-3
)
for
mode
in
[
"rnn"
,
"gru"
,
"lstm"
]:
verify
(
mode
,
64
,
10
,
64
,
1
)
verify
(
mode
,
64
,
10
,
64
,
2
)
verify
(
mode
,
64
,
10
,
32
,
2
)
if
__name__
==
'__main__'
:
test_forward_mlp
()
...
...
@@ -566,3 +614,4 @@ if __name__ == '__main__':
test_forward_take
()
test_forward_gather_nd
()
test_forward_bilinear_resize
()
test_forward_rnn_layer
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment